Spatio-Temporal Analysis of Structural Sediment Connectivity in a Dryland Catchment of the Pamir Mountains
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Index of Connectivity (IC)
2.3. Weighting Factor
2.4. Calculation of the Index of Connectivity
2.5. Computation of Weighted Mean IC Values
3. Results and Discussion
3.1. Relationships Between IC and Environmental Factors
3.2. Assessment of Spatio-Temporal Variations in Factors Affecting IC
| Parameter | Time | Description of Classes | Class | Parameter Value | Area (km2) |
|---|---|---|---|---|---|
| Elevation (m) | No time | Low elevation | 1 | 2065–3000 | 343.79 |
| Medium elevation | 2 | 3000–4000 | 3163.67 | ||
| High mountainous | 3 | 4000–5500 | 10,162.1 | ||
| Very high mountainous | 4 | 5000–6660 | 23.24 | ||
| Slope (%) | No time | Flat or low slope | 1 | 0–5% | 658.94 |
| Mild slope | 2 | 5–15% | 1907.01 | ||
| Moderate slope | 3 | 15–30% | 2662.19 | ||
| Steep slope | 4 | >30% | 8444.25 | ||
| NDVI | July 2015 | Non-vegetated | 1 | <0 | 13,523 |
| Sparse vegetation | 2 | 0–0.2 | 120.49 | ||
| Moderate vegetation | 3 | 0.2–0.5 | 44.61 | ||
| Dense vegetation | 4 | >0.5 | 0.42 | ||
| NDVI | July 2024 | Non-vegetated | 1 | <0 | 13,341.20 |
| Sparse vegetation | 2 | 0–0.2 | 261.57 | ||
| Moderate vegetation | 3 | 0.2–0.5 | 79.53 | ||
| Dense vegetation | 4 | >0.5 | 5.70 | ||
| SSM (m3/m3) | July 2015 | Very low | 1 | 0.05–0.08 | 2470.02 |
| Moderate | 2 | 0.08–0.11 | 8528.45 | ||
| High | 3 | >0.11 | 2689.25 | ||
| SSM (m3/m3) | July 2024 | Very low | 1 | 0.05–0.08 | 4318.69 |
| Moderate | 2 | 0.08–0.11 | 5440.87 | ||
| High | 3 | >0.11 | 3928.42 |
3.3. Assessment of the Spatio-Temporal Variations in IC
3.4. Limitations and Suggestions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Michaelides, K.; Chappell, A. Connectivity as a Concept for Characterising Hydrological Behaviour. Hydrol. Process. Int. J. 2009, 23, 517–522. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of Sediment Connectivity: Opportunities, Challenges and Limitations. Earth Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef]
- Sidle, R.C.; Gomi, T.; Usuga, J.C.L.; Jarihani, B. Hydrogeomorphic Processes and Scaling Issues in the Continuum from Soil Pedons to Catchments. Earth Sci. Rev. 2017, 175, 75–96. [Google Scholar] [CrossRef]
- Turnbull, L.; Hütt, M.-T.; Ioannides, A.A.; Kininmonth, S.; Poeppl, R.; Tockner, K.; Bracken, L.J.; Keesstra, S.; Liu, L.; Masselink, R. Connectivity and Complex Systems: Learning from a Multi-Disciplinary Perspective. Appl. Netw. Sci. 2018, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, A.; Lucas-Borja, M.E.; Fortesa, J.; García-Comendador, J.; Estrany, J. Changes in Soil Quality and Hydrological Connectivity Caused by the Abandonment of Terraces in a Mediterranean Burned Catchment. Forests 2017, 8, 333. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V. Assessing Sediment Connectivity in Dendritic and Parallel Calanchi Systems. Catena 2019, 172, 647–654. [Google Scholar] [CrossRef]
- Sidle, R.C.; Sasaki, S.; Otsuki, M.; Noguchi, S.; Rahim Nik, A. Sediment Pathways in a Tropical Forest: Effects of Logging Roads and Skid Trails. Hydrol. Process. 2004, 18, 703–720. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to Sediment and Flow Connectivity in the Landscape: A GIS and Field Numerical Assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- López-Vicente, M.; Sun, X.; Onda, Y.; Kato, H.; Gomi, T.; Hiraoka, M. Effect of Tree Thinning and Skidding Trails on Hydrological Connectivity in Two Japanese Forest Catchments. Geomorphology 2017, 292, 104–114. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A New Approach to Modeling the Sediment Retention Service (InVEST 3.0): Case Study of the Cape Fear Catchment, North Carolina, USA. Sci. Total Environ. 2015, 524, 166–177. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, B. Assessing Sedimentological Connectivity Using WATEM/SEDEM Model in a Hilly and Gully Watershed of the Loess Plateau, China. Ecol. Indic. 2016, 66, 259–268. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric Assessment of Spatial Sediment Connectivity in Small Alpine Catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Kalantari, Z.; Cavalli, M.; Cantone, C.; Crema, S.; Destouni, G. Flood Probability Quantification for Road Infrastructure: Data-Driven Spatial-Statistical Approach and Case Study Applications. Sci. Total Environ. 2017, 581, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Grauso, S.; Pasanisi, F.; Tebano, C. Assessment of a Simplified Connectivity Index and Specific Sediment Potential in River Basins by Means of Geomorphometric Tools. Geosciences 2018, 8, 48. [Google Scholar] [CrossRef]
- Zingaro, M.; Refice, A.; Giachetta, E.; D’Addabbo, A.; Lovergine, F.; De Pasquale, V.; Pepe, G.; Brandolini, P.; Cevasco, A.; Capolongo, D. Sediment Mobility and Connectivity in a Catchment: A New Mapping Approach. Sci. Total Environ. 2019, 672, 763–775. [Google Scholar] [CrossRef]
- Asadi, H.; Dastorani, M.T.; Sidle, R.C. Estimating Index of Sediment Connectivity Using a Smart Data-Driven Model. J. Hydrol. 2023, 620, 129467. [Google Scholar] [CrossRef]
- Asadi, H.; Dastorani, M.T.; Sidle, R.C.; Jahanshahi, A. A Comparative Assessment of Decision Tree Algorithms for Index of Sediment Connectivity Modelling. Water Resour. Manag. 2024, 38, 2293–2313. [Google Scholar] [CrossRef]
- Crema, S.; Cavalli, M. SedInConnect: A Stand-Alone, Free and Open Source Tool for the Assessment of Sediment Connectivity. Comput. Geosci. 2018, 111, 39–45. [Google Scholar] [CrossRef]
- Schopper, N.; Mergili, M.; Frigerio, S.; Cavalli, M.; Poeppl, R. Analysis of Lateral Sediment Connectivity and Its Connection to Debris Flow Intensity Patterns at Different Return Periods in the Fella River System in Northeastern Italy. Sci. Total Environ. 2019, 658, 1586–1600. [Google Scholar] [CrossRef]
- Nicoll, T.; Brierley, G. Within-Catchment Variability in Landscape Connectivity Measures in the Garang Catchment, Upper Yellow River. Geomorphology 2017, 277, 197–209. [Google Scholar] [CrossRef]
- Crema, S.; Bossi, G. Clustering Sediment Connectivity Maps to Distinguish Hillslope Processes. Rend. Online Della Soc. Geol. Ital. 2017, 42, 23–26. [Google Scholar] [CrossRef]
- Millares, A.; Moñino, A. Hydro-meteorological Drivers Influencing Suspended Sediment Transport and Yield in a Semi-arid Mountainous Basin. Earth Surf. Process. Landf. 2020, 45, 3791–3807. [Google Scholar] [CrossRef]
- Goldin, B.; Rudaz, B.; Bardou, E. Application of a Sediment Connectivity GIS-Based Index in a Basin Undergoing Glacier Retreat: The Case Study of the Navizence Catchment. Rend. Online Della Soc. Geol. Ital. 2016, 39, 35–38. [Google Scholar] [CrossRef]
- Najafi, S.; Sadeghi, S.H.R.; Heckmann, T. Temporospatial Variations of Structural Sediment Connectivity Patterns in Taham-Chi Watershed in Zanjan Province, Iran. J. Water Soil Conserv. 2017, 24, 131–147. [Google Scholar]
- Singh, M.; Tandon, S.K.; Sinha, R. Assessment of Connectivity in a Water-stressed Wetland (Kaabar Tal) of Kosi-Gandak Interfan, North Bihar Plains, India. Earth Surf. Process. Landf. 2017, 42, 1982–1996. [Google Scholar] [CrossRef]
- Kalantari, Z.; Ferreira, C.S.S.; Koutsouris, A.J.; Ahlmer, A.-K.; Cerdà, A.; Destouni, G. Assessing Flood Probability for Transportation Infrastructure Based on Catchment Characteristics, Sediment Connectivity and Remotely Sensed Soil Moisture. Sci. Total Environ. 2019, 661, 393–406. [Google Scholar] [CrossRef]
- Mishra, K.; Sinha, R.; Jain, V.; Nepal, S.; Uddin, K. Towards the Assessment of Sediment Connectivity in a Large Himalayan River Basin. Sci. Total Environ. 2019, 661, 251–265. [Google Scholar] [CrossRef]
- Llena, M.; Vericat, D.; Cavalli, M.; Crema, S.; Smith, M.W. The Effects of Land Use and Topographic Changes on Sediment Connectivity in Mountain Catchments. Sci. Total Environ. 2019, 660, 899–912. [Google Scholar] [CrossRef]
- López-Vicente, M.; Ben-Salem, N. Computing Structural and Functional Flow and Sediment Connectivity with a New Aggregated Index: A Case Study in a Large Mediterranean Catchment. Sci. Total Environ. 2019, 651, 179–191. [Google Scholar] [CrossRef]
- López-Vicente, M.; González-Romero, J.; Lucas-Borja, M.E. Forest Fire Effects on Sediment Connectivity in Headwater Sub-Catchments: Evaluation of Indices Performance. Sci. Total Environ. 2020, 732, 139206. [Google Scholar] [CrossRef]
- Liao, H.; He, Y. The Temporal Variation of Sediment Connectivity from 1982 to 2020 in the Wei River Basin, China. Hydrol. Process. 2023, 37, e15042. [Google Scholar] [CrossRef]
- Bertocco, T.; de Figueiredo, T.; Paz-González, A.; García-Tomillo, A.; López-Vicente, M. Deciphering Sediment Connectivity Dynamic in Traditional Water-Meadows (Lameiros). Geomorphology 2025, 480, 109750. [Google Scholar] [CrossRef]
- De Walque, B.; Degré, A.; Maugnard, A.; Bielders, C.L. Artificial Surfaces Characteristics and Sediment Connectivity Explain Muddy Flood Hazard in Wallonia. Catena 2017, 158, 89–101. [Google Scholar] [CrossRef]
- Martini, L.; Baggio, T.; Torresani, L.; Crema, S.; Cavalli, M. R_IC: A Novel and Versatile Implementation of the Index of Connectivity in R. Environ. Model. Softw. 2022, 155, 105446. [Google Scholar] [CrossRef]
- Zingaro, M.; Scicchitano, G.; Refice, A.; Marsico, A.; Kushabaha, A.; Elia, M.; Lafortezza, R.; Capolongo, D. Assessing the Impact of Vegetation Cover Changes and Post-Fire Effects through an Enhanced Sediment Flow Connectivity Index (SfCI). Catena 2024, 247, 108474. [Google Scholar] [CrossRef]
- Yu, C.-S.; Jeong, G.-S. Estimation of Area Average Rainfall Amount and Its Error. J. Korea Water Resour. Assoc. 2001, 34, 317–326. [Google Scholar]
- Limin, S.G.; Oue, H.; Takase, K. Estimation of Areal Average Rainfall in the Mountainous Kamo River Watershed, Japan. J. Agric. Meteorol. 2015, 71, 90–97. [Google Scholar] [CrossRef]
- Kang, B.-S.; Yang, S.-K.; Kang, M.-S. A Comparative Analysis of the Accuracy of Areal Precipitation According to the Rainfall Analysis Method of Mountainous Streams. J. Environ. Sci. Int. 2019, 28, 841–849. [Google Scholar] [CrossRef]
- Sidle, R.C.; Khan, A.A.; Caiserman, A.; Qadamov, A.; Khojazoda, Z. Food Security in High Mountains of Central Asia: A Broader Perspective. Bioscience 2023, 73, 347–363. [Google Scholar] [CrossRef]
- Navruzshoev, H.; Sagintayev, Z.; Kabutov, H.; Nekkadamova, N.; Vosidov, F.; Khalimov, A. Surface Area Dynamics of Gunt River Basin Mountain Lakes (the Pamirs, Tajikistan). Cent. Asian J. Water Res. 2022, 8, 141–152. [Google Scholar] [CrossRef]
- Barandun, M.; Pohl, E.; Naegeli, K.; McNabb, R.; Huss, M.; Berthier, E.; Saks, T.; Hoelzle, M. Hot Spots of Glacier Mass Balance Variability in Central Asia. Geophys. Res. Lett. 2021, 48, e2020GL092084. [Google Scholar] [CrossRef]
- Pohl, E.; Gloaguen, R.; Seiler, R. Remote Sensing-Based Assessment of the Variability of Winter and Summer Precipitation in the Pamirs and Their Effects on Hydrology and Hazards Using Harmonic Time Series Analysis. Remote Sens. 2015, 7, 9727–9752. [Google Scholar] [CrossRef]
- Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P. Sensitivity Analysis and Implications for Surface Processes from a Hydrological Modelling Approach in the Gunt Catchment, High Pamir Mountains. Earth Surf. Dyn. 2015, 3, 333–362. [Google Scholar] [CrossRef]
- Foerster, S.; Wilczok, C.; Brosinsky, A.; Segl, K. Assessment of Sediment Connectivity from Vegetation Cover and Topography Using Remotely Sensed Data in a Dryland Catchment in the Spanish Pyrenees. J. Soils Sediments 2014, 14, 1982–2000. [Google Scholar] [CrossRef]
- Destouni, G.; Verrot, L. Screening Long-Term Variability and Change of Soil Moisture in a Changing Climate. J. Hydrol. 2014, 516, 131–139. [Google Scholar] [CrossRef]
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997; ISBN 0160489385. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Asadi, H.; Dastorani, M.T.; Khosravi, K.; Sidle, R.C. Applying the C-Factor of the RUSLE Model to Improve the Prediction of Suspended Sediment Concentration Using Smart Data-Driven Models. Water 2022, 14, 3011. [Google Scholar] [CrossRef]
- Hao, H.; Chen, Y.; Xu, J.; Li, Z.; Li, Y.; Kayumba, P.M. Water Deficit May Cause Vegetation Browning in Central Asia. Remote Sens. 2022, 14, 2574. [Google Scholar] [CrossRef]
- Normatov, I.; Normatov, P. Climate Change Impact on Hydrological Characteristics and Water Availability of the Mountain Pamir Rivers. Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 31–41. [Google Scholar] [CrossRef]
- Gu, J.; Li, X.; Huang, C.; Okin, G.S. A Simplified Data Assimilation Method for Reconstructing Time-Series MODIS NDVI Data. Adv. Space Res. 2009, 44, 501–509. [Google Scholar] [CrossRef]
- Lemmetyinen, J.; Schwank, M.; Derksen, C.; Roy, A.; Colliander, A.; Rautiainen, K.; Pulliainen, J. Retrieval of Snow Parameters from L-Band Observations-Application for SMOS and SMAP. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: New York, NY, USA, 2016; pp. 7067–7070. [Google Scholar]
- Najafi, S.; Sadeghi, S.H.; Heckmann, T. Analysis of Sediment Accessibility and Availability Concepts Based on Sediment Connectivity throughout a Watershed. Land Degrad. Dev. 2021, 32, 3023–3044. [Google Scholar] [CrossRef]
- Gay, A.; Cerdan, O.; Mardhel, V.; Desmet, M. Application of an Index of Sediment Connectivity in a Lowland Area. J. Soils Sediments 2016, 16, 280–293. [Google Scholar] [CrossRef]
- North, M.A. A Method for Implementing a Statistically Significant Number of Data Classes in the Jenks Algorithm. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009; IEEE: New York, NY, USA, 2009; Volume 1, pp. 35–38. [Google Scholar]
- Alozeer, A.; Abdaki, M.A.; Al-Iraqi, A.; Al-Samman, S.; Al-Hammadi, N. Estimation of Mean Areal Rainfall and Missing Data by Using Gis in Nineveh, Northern Iraq. Iraqi Geol. J. 2020, 53, 93–103. [Google Scholar] [CrossRef]
- Asadi, H.; Dastorani, M.T.; Sidle, R.C.; Shahedi, K. Improving Flow Discharge-Suspended Sediment Relations: Intelligent Algorithms versus Data Separation. Water 2021, 13, 3650. [Google Scholar] [CrossRef]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Plant-Soil Reinforcement Response under Different Soil Hydrological Regimes. Geoderma 2017, 285, 141–150. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the Performance of GIS-Based Machine Learning Models with Different Accuracy Measures for Determining Susceptibility to Gully Erosion. Sci. Total Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef]
- Najafi, S.; Dragovich, D.; Heckmann, T.; Sadeghi, S.H. Sediment Connectivity Concepts and Approaches. Catena 2021, 196, 104880. [Google Scholar] [CrossRef]
- Asadi, H.; Shahedi, K.; Sidle, R.C.; Kalami, H.S.M. Prediction of Suspended Sediment Using Hydrologic and Hydrogeomorphic Data within Intelligence Models. Iran-Water Resour. Res. 2019, 15, 105–119. [Google Scholar]
- Asadi, H.; Shahedi, K.; Jarihani, B.; Sidle, R.C. Rainfall-Runoff Modelling Using Hydrological Connectivity Index and Artificial Neural Network Approach. Water 2019, 11, 212. [Google Scholar] [CrossRef]
- Lemenkova, P. Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: A Case Study of Northern Iceland. Adv. Res. Life Sci. 2020, 4, 70–78. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G. Spatial Variation in Sediment Connectivity of Small Watershed along a Regional Transect on the Loess Plateau. Catena 2022, 217, 106473. [Google Scholar] [CrossRef]
- Ren, Z.; Ma, X.; Wang, K.; Li, Z. Effects of Extreme Precipitation on Runoff and Sediment Yield in the Middle Reaches of the Yellow River. Atmosphere 2023, 14, 1415. [Google Scholar] [CrossRef]
- Zanandrea, F.; Michel, G.P.; Kobiyama, M.; Censi, G.; Abatti, B.H. Spatial-Temporal Assessment of Water and Sediment Connectivity through a Modified Connectivity Index in a Subtropical Mountainous Catchment. Catena 2021, 204, 105380. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, S.; Umar, H.; Usama Aslam, M.; Saghir, A.; Nasir, S.; Imran, S.; Zain, S.; Zain, R. Influence of Slope Variation on Northern Areas on Soil Physical Properties. Indian J. Pure Appl. Biosci. 2022, 10, 38–42. [Google Scholar] [CrossRef]
- Su, Y.; Chen, S.; Li, X.; Ma, S.; Xie, T.; Wang, J.; Yan, D.; Chen, J.; Feng, M.; Chen, F. Changes in Vegetation Greenness and Its Response to Precipitation Seasonality in Central Asia from 1982 to 2022. Environ. Res. Lett. 2023, 18, 104002. [Google Scholar] [CrossRef]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow Generation in Steep Forested Headwaters: A Linked Hydrogeomorphic Paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Pohl, E.; Gloaguen, R.; Andermann, C.; Knoche, M. Glacier Melt Buffers River Runoff in the P Amir M Ountains. Water Resour. Res. 2017, 53, 2467–2489. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A.; Håkanson, L.; Meili, M. A Validated Model for Daily Variations in the Flux, Origin, and Distribution of Settling Particles within Lakes. Limnol. Oceanogr. 1997, 42, 1517–1529. [Google Scholar] [CrossRef]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment Connectivity: A Framework for Understanding Sediment Transfer at Multiple Scales. Earth Surf. Process. Landf. 2015, 40, 177–188. [Google Scholar] [CrossRef]
- Sidle, R.C.; Zaginaev, V.; Caiserman, A. Challenges and Opportunities for Implementing Nature-Based Solutions for Disaster Risk Reduction in Mountainous Central Asia. Nat.-Based Solut. 2025, 8, 100241. [Google Scholar] [CrossRef]






| Authors | Study Area and Time Period | Variable for Temporal Assessment | Objectives |
|---|---|---|---|
| Goldin et al. [23] | Navizence Catchment, Switzerland; 40-year period | Hydraulic roughness coefficient (Manning’s n) and Digital Terrain Model from 2010 and post-glacial DTM from Slope Local Base Level (SLBL) technique | Assessment of IC temporal changes related to topographic evolution due to glacier retreat and surface roughness variations |
| Najafi et al. [24] | Taham-Chi watershed, Iran; 2 July 1990, 29 June 2001, and 25 May 2014 | RUSLE C-factor (NDVI from Landsat) | Assessment of spatial and temporal variations in structural sediment connectivity |
| Singh et al. [25] | Wetland (Kaabar Tal), Kosi-Gandak interfan, north Bihar Plains, India; pre- and post-monsoon, 2006 | RUSLE C-factor (NDVI from Landsat) | Applied concept of connectivity response unit to understand the effects of changing land use/land cover on IC in relatively flat terrain for pre- and post-monsoon scenarios |
| Kalantari et al. [26] | Västra Götaland and Värmland, Sweden; 19 August 2014 for Västra Götaland and 21 August 2014 for Värmland | Surface soil moisture (from ASCAT, 25 km resolution) | Effects of soil moisture dynamics on sediment connectivity and flood hazards |
| Mishra et al. [27] | Upper Kosi River basin, India; monthly scale | Total Stream Power (TSP) and Specific Stream Power (SSP) (from SWAT model) | Evaluation of monthly sediment connectivity values and stream power analysis of main river and its tributaries together with IC |
| Llena et al. [28] | Aran, Soto, Pocinos and Fiscal sub-catchments, Spain; 1957, 1997, 2010 | Hydraulic roughness coefficient (Manning’s n) and DEM (LiDAR) in 2010 and DEM using SfM-MVS applied to historical aerial photos in 1977 | The effects of decadal-scale land use and topographic changes on sediment connectivity in mountain catchments |
| López-Vicente & Ben-Salem [29] | Vero River Catchment, Spain; Sept 2009–Aug 2017 | Rainfall erosivity factor (rainfall intensity) and cover-management factor (RUSLE C-factor) | Development of a new aggregated index based on topography, cover-management factor, rainfall erosivity, residual topography, and soil permeability to assess structural and functional flow and sediment connectivity |
| López-Vicente et al. [30] | Palomar, Rayares#2 and Conejo#5 sub-catchments, Spain; Three periods: before fire (1 July 2011–30 June 2012), 1 yr after fire (1 July 2012–30 June 2013) and 2 yr after fire (1 July 2014–30 June 2015) | C-RUSLE, Manning’s n roughness values (overland flow component), Rainfall erosivity (EI30), DEM (LiDAR) 2009 and 2016 | Evaluation of different connectivity indexes for assessing sediment connectivity in Mediterranean forest ecosystems affected by fires and with subsequent post-fire management strategies within temporal and spatial scales |
| Liao & He [31] | Wei River Basin, China; 1982, 1990, 2000, 2010, 2020 | RUSLE C-factor (NDVI from Landsat) and land use data from Data Center for Resour. and Environ. Sci. Chinese Academy of Sciences | Evacuation of IC temporal changes at watershed scales and analysis of the relationship between changes in vegetation cover or land use type and sediment connectivity |
| Bertocco et al. [32] | Candanedos basin and Ribera or Sil basin, transboundary zone between Spanish province of Zamora and Portuguese district of Bragança; dry period (May–Sept), rainy period (Oct–Dec), and wet period (Jan–Apr) | Rainfall erosivity factor (rainfall intensity) and cover-management factor (RUSLE C-factor) | Examining the role of lameiros (as discontinuous elements) in the spatial pattern and temporal dynamics of sediment connectivity using the Aggregated Index of Connectivity. |
| Parameter | r | R2 | ||
|---|---|---|---|---|
| IC (July 2015) | IC (July 2024) | IC (July 2015) | IC (July 2024) | |
| NDVI | 0.33 | 0.36 | 0.11 | 0.13 |
| SSM | 0.88 | 0.93 | 0.77 | 0.86 |
| Slope | 0.65 | 0.76 | 0.42 | 0.58 |
| Elevation | −0.64 | −0.68 | 0.41 | 0.46 |
| IC | Time | Description of Classes | Class | IC Value | Area (km2) |
|---|---|---|---|---|---|
| ICSSM*C | July 2015 | Low | 1 | −12.00–(−9.16) | 1883.28 |
| Medium-low | 2 | −9.16–(−8.43) | 6094.77 | ||
| Medium-high | 3 | −8.43–(−7.59) | 5043.54 | ||
| High | 4 | −7.59–3.38 | 643.80 | ||
| ICSSM*C | July 2024 | Low | 1 | −12.06–(−9.22) | 2048.15 |
| Medium-low | 2 | −9.22–(−8.43) | 5625.79 | ||
| Medium-high | 3 | −8.43–(−7.64) | 5108.37 | ||
| High | 4 | −7.64–3.36 | 883.08 |
| IC | Min | Max | Mean | Weighted Mean | Median | STD | Kurtosis | Skewness |
|---|---|---|---|---|---|---|---|---|
| ICSSM*C July 2015 | −12.00 | 3.38 | −8.55 | −9.30 | −10.00 | 0.64 | 11.92 | 0.69 |
| ICSSM*C July 2024 | −12.06 | 3.36 | −8.56 | −9.20 | −8.66 | 0.68 | 9.60 | 0.46 |
| IC | Time | Zone | IC Value | Area (Km2) |
|---|---|---|---|---|
| ICSSM*C | July 2015 | 1 | −12.00–(−8.00) | 11,296.6 |
| 2 | −8.00–(−4.00) | 2359.15 | ||
| 3 | −4.00–(0.00) | 4.82046 | ||
| 4 | 0.00–(3.38) | 0.113505 | ||
| ICSSM*C | July 2024 | 1 | −12.06–(−8.06) | 10,738.5 |
| 2 | −8.06–(−4.06) | 2917.17 | ||
| 3 | −4.06–(−0.06) | 4.86939 | ||
| 4 | −0.06–3.36 | 0.123654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadi, H.; Sidle, R.C.; Caiserman, A. Spatio-Temporal Analysis of Structural Sediment Connectivity in a Dryland Catchment of the Pamir Mountains. Water 2025, 17, 3302. https://doi.org/10.3390/w17223302
Asadi H, Sidle RC, Caiserman A. Spatio-Temporal Analysis of Structural Sediment Connectivity in a Dryland Catchment of the Pamir Mountains. Water. 2025; 17(22):3302. https://doi.org/10.3390/w17223302
Chicago/Turabian StyleAsadi, Haniyeh, Roy C. Sidle, and Arnaud Caiserman. 2025. "Spatio-Temporal Analysis of Structural Sediment Connectivity in a Dryland Catchment of the Pamir Mountains" Water 17, no. 22: 3302. https://doi.org/10.3390/w17223302
APA StyleAsadi, H., Sidle, R. C., & Caiserman, A. (2025). Spatio-Temporal Analysis of Structural Sediment Connectivity in a Dryland Catchment of the Pamir Mountains. Water, 17(22), 3302. https://doi.org/10.3390/w17223302

