Flood-Induced Agricultural Damage Assessment: A Case Study of Pakistan
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Satellite Data
2.2.1. Coarser Resolution Dataset
2.2.2. Medium Resolution Dataset
2.3. Other Datasets
2.4. Methodology
2.4.1. Flood Inundation Mapping 2010
2.4.2. Flood Inundation Mapping 2022
2.4.3. Crop and Infrastructure Damage Assessment
3. Results
3.1. Precipitation Anomalies
3.2. Flood Inundation Mapping 2010 and 2022
3.3. Crop and Infrastructure Damage Assessment
4. Discussion
4.1. Flood 2010 Inundation Impact
4.2. Flood 2022 Inundation Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.; Ji, X.; Li, Y.; Luo, X.; Yang, L.; Ming, W.; Liu, C.; Yan, S.; Yang, C.; Sun, C. Modified flood potential index (MFPI) for flood monitoring in terrestrial water storage depletion basin using GRACE estimates. J. Hydrol. 2023, 616, 128765. [Google Scholar] [CrossRef]
- Harvey, C.A.; Saborio-Rodríguez, M.; Martinez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate change impacts and adaptation among smallholder farmers in Central America. Agric. Food Secur. 2018, 7, 57. [Google Scholar] [CrossRef]
- Kuldeep; Garg, P.K.; Garg, R.D. Geospatial techniques for flood inundation mapping. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar] [CrossRef]
- Cohen, S.; Brakenridge, G.R.; Kettner, A.; Bates, B.; Nelson, J.; McDonald, R.; Huang, Y.F.; Munasinghe, D.; Zhang, J. Estimating Floodwater Depths from Flood Inundation Maps and Topography. J. Am. Water Resour. Assoc. 2018, 54, 847–858. [Google Scholar] [CrossRef]
- The Human Cost of Weather-Related Disasters 1995–2015. Available online: https://www.undrr.org/publication/human-cost-weather-related-disasters-1995-2015 (accessed on 30 August 2025).
- Centre for Research on the Epidemiology of Disasters (CRED). The Human Cost of Natural Disasters: A Global Perspective. 2015. Available online: https://www.preventionweb.net/publication/human-cost-natural-disasters-global-perspective (accessed on 14 June 2023).
- Nazir, A.; Gilani, H.; Ramzan, M.; Hanan, N.P. Impacts of Extreme Floods on Agriculture in Pakistan. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2022; Available online: https://ui.adsabs.harvard.edu/abs/2022AGUFM.U25C2206N/abstract (accessed on 18 August 2025).
- Kimuli, J.B.; Di, B.; Zhang, R.; Wu, S.; Li, J.; Yin, W. A multisource trend analysis of floods in Asia-Pacific 1990–2018: Implications for climate change in sustainable development goals. Int. J. Disaster Risk Reduct. 2021, 59, 102237. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.; Hao, L.; Xu, C.; Liu, J.; Qu, Z.; Yan, X.; Sajjad, M.M.; Sun, Y. Disaster mapping and assessment of Pakistan’s 2022 mega-flood based on multi-source data-driven approach. Nat. Hazards 2024, 120, 3447–3466. [Google Scholar] [CrossRef]
- Ray, K.; Pandey, P.; Pandey, C.; Dimri, A.P.; Kishore, K. On the recent floods in India. Indian Acad. Sci. 2019, 117, 204–218. [Google Scholar] [CrossRef]
- Dewan, T.H. Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather Clim. Extrem. 2015, 7, 36–42. [Google Scholar] [CrossRef]
- Waghwala, R.K.; Agnihotri, P.G. Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. Int. J. Disaster Risk Reduct. 2019, 40, 101155. [Google Scholar] [CrossRef]
- Baron, J.; Bend, M.; Roseo, E.; Farrakh, I. Floods in Pakistan. 2022. Available online: https://openknowledge.worldbank.org/entities/publication/c48738e5-715d-5566-8b98-25f16bb28cb3 (accessed on 14 June 2023).
- Fihlani, P.; Mao, F. Pakistan floods: Monsoons bring misery to millions in Pakistan. BBC News, 26 August 2022. Available online: https://www.bbc.com/news/world-asia-62684037 (accessed on 30 August 2025).
- NDMA Annual Report 2010. Available online: https://reliefweb.int/report/pakistan/ndma-annual-report-2010 (accessed on 17 June 2023).
- Khan, S.; Sinha, R.; Whitehead, P.; Sarkar, S.; Jin, L.; Futter, M.N. Flows and sediment dynamics in the Ganga River under present and future climate scenarios. Hydrol. Sci. J. 2018, 63, 763–782. [Google Scholar] [CrossRef]
- Syed, A.; Raza, T.; Bhatti, T.T.; Eash, N.S. Climate Impacts on the agricultural sector of Pakistan: Risks and solutions. Environ. Chall. 2022, 6, 100433. [Google Scholar] [CrossRef]
- Fahad, S.; Wang, J. Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan. Land Use Policy 2018, 79, 301–309. [Google Scholar] [CrossRef]
- Ministry of Water and Power, Government of Pakistan. Annual Flood Report 2012. Available online: https://ffc.gov.pk/wp-content/uploads/2020/06/Annual-Flood-Report-2012.pdf (accessed on 30 August 2025).
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Khan, N.A.; Gao, Q.; Abid, M.; Shah, A.A. Mapping farmers’ vulnerability to climate change and its induced hazards: Evidence from the rice-growing zones of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 4229–4244. [Google Scholar] [CrossRef]
- Sahoo, S.N.; Sreeja, P. Development of flood inundation maps and quantification of flood risk in an urban catchment of Brahmaputra River. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2015, 3, A4015001. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Wang, J.; Yilmaz, K.K.; Gourley, J.J.; Adler, R.F.; Brakenridge, G.R.; Policelli, F.; Habib, S.; Irwin, D. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens. 2011, 49, 85–95. [Google Scholar] [CrossRef]
- Cohen, S.; Raney, A.; Munasinghe, D.; Loftis, J.D.; Molthan, A.; Bell, J.; Rogers, L.; Galantowicz, J.; Brakenridge, R.; Kettner, A.J.; et al. The Floodwater Depth Estimation Tool (FwDET v2.0) for improved remote sensing analysis of coastal flooding. Nat. Hazards Earth Syst. Sci. 2019, 19, 2053–2065. [Google Scholar] [CrossRef]
- Potcoava, M.C.; Stancalie, G.; Raducanu, D. The using of satellite image data from optic and microwaves data for development of a methodology for identification and extraction of flooded area. Int. Arch. Photogramm. Remote Sens. 2000, 33, 1185–1190. [Google Scholar]
- Huang, M.; Jin, S. Rapid Flood Mapping and Evaluation with a Supervised Classifier and Change Detection in Shouguang Using Sentinel-1 SAR and Sentinel-2 Optical Data. Remote Sens. 2020, 12, 2073. [Google Scholar] [CrossRef]
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth Parts A/B/C 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Das, P.; Chutiya, D.; Hazarika, N. Adjusting to Floods on the Brahmaputra Plains, Assam, India. 2009. Available online: https://lib.icimod.org/records/r39ae-wfp31 (accessed on 30 August 2025).
- Schäfer, L.; Künzel, V. Steps Towards Closing the Loss & Damage Finance Gap Recommendations for COP25—First Version. Available online: https://www.germanwatch.org/sites/default/files/Policy%20Briefing_Steps%20towards%20closing%20the%20Loss%26Damage%20finance%20gap_0.pdf (accessed on 18 August 2025).
- Qamer, F.M.; Abbas, S.; Ahmad, B.; Hussain, A.; Salman, A.; Muhammad, S.; Nawaz, M.; Shrestha, S.; Iqbal, B.; Thapa, S. A framework for multi-sensor satellite data to evaluate crop production losses: The case study of 2022 Pakistan floods. Sci. Rep. 2023, 13, 4240. [Google Scholar] [CrossRef] [PubMed]
- Tay, C.W.J.; Yun, S.H.; Chin, S.T.; Bhardwaj, A.; Jung, J.; Hill, E.M. Rapid flood and damage mapping using synthetic aperture radar in response to Typhoon Hagibis, Japan. Sci. Data 2020, 7, 100. [Google Scholar] [CrossRef]
- Tavus, B.; Kocaman, S.; Gokceoglu, C. Flood damage assessment with Sentinel-1 and Sentinel-2 data after Sardoba dam break with GLCM features and Random Forest method. Sci. Total Environ. 2022, 816, 151585. [Google Scholar] [CrossRef]
- Dutta, D.; Herath, S.; Musiake, K. A mathematical model for flood loss estimation. J. Hydrol. 2003, 277, 24–49. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L. A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment. Agriculture 2020, 10, 131. [Google Scholar] [CrossRef]
- Atefi, M.R.; Miura, H. Detection of Flash Flood Inundated Areas Using Relative Difference in NDVI from Sentinel-2 Images: A Case Study of the August 2020 Event in Charikar, Afghanistan. Remote Sens. 2022, 14, 3647. [Google Scholar] [CrossRef]
- Shrestha, R.; Shao, Y.; Di, L.; Kang, L.; Yu, G.; Zhang, B. Detection of flood and its impact on crops using NDVI—Corn Case. In Proceedings of the 2013 2nd International Conference on Agro-Geoinformatics: Information for Sustainable Agriculture, Agro-Geoinformatics, Fairfax, VA, USA, 12–16 August 2013; pp. 200–204. [Google Scholar] [CrossRef]
- Pakistan—The World Factbook. Available online: https://www.cia.gov/the-world-factbook/countries/pakistan/ (accessed on 12 September 2025).
- MOIB. PBS Launches Results of 7th Population & Housing Census PAKISTAN. 18 July 2024. Available online: https://moib.gov.pk/News/62983 (accessed on 21 January 2025).
- Nawaz, A.; Farooq, M.; Lal, R.; Rehman, A.; Hafeez-ur-Rehman. Comparison of conventional and conservation rice-wheat systems in Punjab, Pakistan. Soil Tillage Res. 2017, 169, 35–43. [Google Scholar] [CrossRef]
- Landsat Science. Landsat 8. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-8/ (accessed on 12 September 2025).
- MODIS Web. Available online: https://modis.gsfc.nasa.gov/ (accessed on 12 September 2025).
- Erin, V. MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V061 [Data Set]. NASA EOSDIS Land Processes DAAC. 2021. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod09a1-061 (accessed on 16 June 2023).
- Narin, O.G.; Abdikan, S. Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images. Geocarto Int. 2022, 37, 1378–1392. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://zenodo.org/records/7254221 (accessed on 16 June 2023).
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 7633. [Google Scholar] [CrossRef] [PubMed]
- NDMA. NDMA Floods (2022): Sitrep Report No. 128. 19 October 2022. Available online: https://thedocs.worldbank.org/en/doc/4a0114eb7d1cecbbbf2f65c5ce0789db-0310012022/original/Pakistan-Floods-2022-PDNA-Main-Report.pdf (accessed on 30 August 2025).
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef]
- Loukas, A.; Garrote, L.; Vasiliades, L. Hydrological and Hydro-Meteorological Extremes and Related Risk and Uncertainty. Water 2021, 13, 377. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Sarmah, S.; You, N.; Zhou, Y.; Zhang, G.; Doughty, R.; Xiao, X. Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 166, 278–293. [Google Scholar] [CrossRef]
- Fan, J.; Sun, W.; Zhao, Y.; Xue, B.; Zuo, D.; Xu, Z. Trend Analyses of Extreme Precipitation Events in the Yarlung Zangbo River Basin, China Using a High-Resolution Precipitation Product. Sustainability 2018, 10, 1396. [Google Scholar] [CrossRef]
- Janes, T.; McGrath, F.; Macadam, I.; Jones, R. High-resolution climate projections for South Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and Mahanadi deltas. Sci. Total Environ. 2019, 650, 1499–1520. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Wang, Y.; Chen, Y.; Zhang, Q. Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs. Remote Sens. 2022, 14, 115. [Google Scholar] [CrossRef]
- Mushtaq, F.; Ali, M.; Ghosh, A.; Jalal, R.; Asghar, A.; Dadhich, G.; Chiozza, F.; Franceschini, G.; Muchoney, D.; Toirov, F.; et al. A Rapid Geospatial Flood Impact Assessment in Pakistan 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- WFP. Pakistan Flood Impact Assessment. September 2010. Available online: https://reliefweb.int/report/pakistan/pakistan-flood-impact-assessment-september-2010 (accessed on 17 June 2023).
- FAO. Update on Agriculture—Pakistan Floods. 10 August 2010. Available online: https://www.fao.org/fileadmin/templates/tc/tce/pdf/Pakistan_Update_Agriculture_2.pdf (accessed on 17 June 2023).
- Polastro, R.; Nagrah, A.; Steen, N.; Zafar, F. Inter-Agency Real Time Evaluation of the Humanitarian Response to Pakistan’s 2010 Flood Crisis. 2011. Available online: https://daraint.org/wp-content/uploads/2011/03/Final-Report-RTE-Pakistan-2011.pdf (accessed on 16 June 2023).
- Raza, S.I. Donors Pledge $500m for Flood Relief Efforts. 26 August 2022. Available online: https://www.dawn.com/news/1706855 (accessed on 14 June 2023).
- Kirsch, T.D.; Wadhwani, C.; Sauer, L.; Doocy, S.; Catlett, C. Impact of the 2010 Pakistan Floods on Rural and Urban Populations at Six Months. PLoS Curr. 2012, 4, e4fdfb212d2432. [Google Scholar] [CrossRef] [PubMed]
- Relief, I. Islamic Relief’s Pakistan Floods Response 2022 (26 September, 2022). Available online: https://reliefweb.int/report/pakistan/islamic-reliefs-pakistan-floods-response-2022-26-september-2022 (accessed on 30 August 2025).
- OCHA. PAKISTAN: 2022 Monsoon Floods. September 2022. Available online: https://reliefweb.int/report/pakistan/pakistan-2022-monsoon-floods-situation-report-no-5-9-september-2022 (accessed on 29 August 2025).
- Altaf, M. Pakistan: Flood Damages and Economic Losses Over USD 30 billion and Reconstruction Needs Over USD 16 billion—New Assessment. World Bank, 28 October 2022. Available online: https://www.worldbank.org/en/news/press-release/2022/10/28/pakistan-flood-damages-and-economic-losses-over-usd-30-billion-and-reconstruction-needs-over-usd-16-billion-new-assessme (accessed on 17 June 2023).
- Cutter, S.L.; Schumann, R.L., III; Emrich, C.T. Exposure, Social Vulnerability and Recovery Disparities in New Jersey after Hurricane Sandy. J. Extrem. Events 2014, 1, 1450002. [Google Scholar] [CrossRef]






| Crop | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Rice | |||||||||||||||
| Sugarcane | |||||||||||||||
| Cotton | |||||||||||||||
| Sowing | Growth | Harvesting | |||||||||||||
| Province | District | Flood 2010 | Flood 2022 | Province | District | Flood 2010 | Flood 2022 |
|---|---|---|---|---|---|---|---|
| Sindh | Badin | 358 | 3343 | Balochistan | Awaran | 2063 | - |
| Dadu | 1311 | 1619 | Chagai | 485 | - | ||
| Ghotki | 279 | 2127 | Dera Bugti | 2 | 165 | ||
| Hyderabad | 31 | 268 | Gwadar | 3506 | - | ||
| Jacobabad | 1597 | 2092 | Jaffarabad | 780 | 887 | ||
| Jamshoro | 674 | 643 | Jhal Magsi | 337 | 989 | ||
| Kambar Shahdadkot | 1580 | 2576 | Kachhi | 11 | 467 | ||
| Kashmore | 1049 | 1599 | Kech | 2387 | - | ||
| Khairpur | 580 | 2343 | Killa Abdullah | 4 | 969 | ||
| Larkana | 343 | 1116 | Lasbela | 582 | 3 | ||
| Matiari | 264 | 629 | Lehri | 165 | 1407 | ||
| Mirpur Khas | - | 1192 | Mastung | - | 200 | ||
| Naushahro Feroze | 681 | 1399 | Nasirabad | 214 | 1194 | ||
| Sanghar | 28 | 2492 | Panjgur | 410 | - | ||
| Shaheed Benazirabad | 448 | 1618 | Pishin | - | 464 | ||
| Shikarpur | 842 | 1502 | Quetta | - | 153 | ||
| Sujawal | 4039 | 3758 | Sibi | - | 124 | ||
| Sukkur | 639 | 1187 | Sohbatpur | 208 | 425 | ||
| Tando Allahyar | - | 604 | Washuk | 854 | - | ||
| Tando Mohammad Khan | 23 | 872 | Punjab | Attock | 34 | 216 | |
| Tharparkar | 427 | 91 | Bahawalpur | 20 | 507 | ||
| Thatta | 950 | 457 | Bhakkar | 1495 | 943 | ||
| Umerkot | 2 | 999 | Chiniot | - | 794 | ||
| Khyber Pakhtunkhwa | Bannu | 7 | 92 | Dera Ghazi Khan | 489 | 1329 | |
| Buner | - | 96 | Hafizabad | - | 80 | ||
| Charsadda | - | 355 | Jhang | 936 | 912 | ||
| Dera Ismail Khan | 697 | 2100 | Jhelum | 58 | - | ||
| Haripur | 52 | 48 | Khanewal | 30 | 375 | ||
| Karak | 41 | 85 | Khushab | 936 | 105 | ||
| Lakki Marwat | 417 | 520 | Layyah | 1242 | 716 | ||
| Mardan | - | 418 | Mianwali | 386 | 977 | ||
| Mirpur | 70 | - | Multan | 139 | 1324 | ||
| Nowshera | 15 | 134 | Muzaffargarh | 951 | 2704 | ||
| Peshawar | - | 231 | Rahim Yar Khan | 668 | 3708 | ||
| Swabi | 56 | 239 | Rajanpur | 1587 | 3510 | ||
| Tank | 52 | 231 | Sargodha | 5 | 127 |
| Province/Region | Total Agriculture Area Utilizing ESA Land Cover 2021 (km2) | Flood-Damaged Agriculture Area (km2) | Flood-Damaged Agriculture Area Percentage (%) |
|---|---|---|---|
| Punjab | 127,511 | 5512 | 4.3 |
| Sindh | 52,981 | 20,914 | 39.4 |
| Khyber Pakhtunkhwa | 18,481 | 2761 | 14.9 |
| Balochistan | 33,750 | 5189 | 15.3 |
| Total | 232,723 | 34,376 | 14.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazir, A.; Ahmad, A.; Ramzan, M.; Gilani, H.; Mobeen, M.; Tarer, S.; Hanan, N.P. Flood-Induced Agricultural Damage Assessment: A Case Study of Pakistan. Water 2025, 17, 3060. https://doi.org/10.3390/w17213060
Nazir A, Ahmad A, Ramzan M, Gilani H, Mobeen M, Tarer S, Hanan NP. Flood-Induced Agricultural Damage Assessment: A Case Study of Pakistan. Water. 2025; 17(21):3060. https://doi.org/10.3390/w17213060
Chicago/Turabian StyleNazir, Abid, Awais Ahmad, Mohsin Ramzan, Hammad Gilani, Muhammad Mobeen, Shahid Tarer, and Niall P. Hanan. 2025. "Flood-Induced Agricultural Damage Assessment: A Case Study of Pakistan" Water 17, no. 21: 3060. https://doi.org/10.3390/w17213060
APA StyleNazir, A., Ahmad, A., Ramzan, M., Gilani, H., Mobeen, M., Tarer, S., & Hanan, N. P. (2025). Flood-Induced Agricultural Damage Assessment: A Case Study of Pakistan. Water, 17(21), 3060. https://doi.org/10.3390/w17213060

