Forms of Element Migration in Natural and Drinking Waters of Krasnoshchelye Village (Kola Peninsula, Russia) and Human Health Risk Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Objects
2.2. Research Methods
2.3. Software and Thermodynamic Dataset for Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dolgikh, P.G. Geoecological Features of the Chemical Composition of Waters and Bottom Sediments of the Ust-Ilimsky Reservoir. Doctoral Dissertation, AP.P. Vinogradov Institute of Geochemistry, Irkutsk, Russia, 2024. Available online: http://www.igc.irk.ru/ru/zashchita (accessed on 15 May 2024).
- Ushakova, E.S. Ecogeochemistry of Aquatic Ecosystems of Urbanized Territories of the Northern Caspian Sea. Doctoral Dissertation, Tomsk Polytechnic University, Tomsk, Russia, 2024. Available online: https://portal.tpu.ru/council/indcouncils/6080/worklist (accessed on 18 July 2024).
- Kayukova, E.P.; Filimonova, E.A. Quality of fresh groundwater of the Crimean Mountains (the Bodrak River Basin). Mosc. Univ. Bulletin. Ser. 4 Geol. 2022, 1, 79–88. [Google Scholar] [CrossRef]
- SanPiN 2.1.3684-21; Sanitary Rules and Standards. Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Envi-ronmental Factors for Humans. Ministry of Health of Russia: Moscow, Russia, 2021.
- Order of the Ministry of Agriculture of the Russian Federation Dated December 13, 2016, No. 552 “On the Approval of Water Quality Standards for Aquatic Objects of Fisheries Significance, Including Standards for Maximum Allowable Concentrations of Harmful Sub-stances in the Waters of Aquatic Objects of Fisheries Significance”; Ministry of agriculture of the Russian Federation: Moscow, Russia, 2016.
- Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; p. 543.
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y. Water quality assessment of Lugu Lake based on Nemerow pollution index method. Sci. Rep. 2022, 12, 13613. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A comprehensive review of water quality indices (WQIs): History, models, attempts and perspectives. Rev. Environ. Sci. Biotechnol. 2023, 22, 349–395. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Paul, B. Water Quality Assessment Techniques. In Sustainable Agriculture Reviews 40; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2020; pp. 179–216. [Google Scholar] [CrossRef]
- Das, S.; Roy, P.K.; Banerjee, G.A. Mazumdar, Water Quality Index Is an Important Tool of Groundwater: A Case Study. In Advances in Water Resources Management for Sustainable Use; Lecture Notes in Civil Engineering, Vol 131; Springer: Singapore, 2021; pp. 149–168. [Google Scholar] [CrossRef]
- Shaaban, N.A.; Stevens, D.K. Transforming Complex Water Quality Monitoring Data into Water Quality Indices. Water Resour. Manag. 2025, 39, 3883–3899. [Google Scholar] [CrossRef]
- Goncharuk, V.V.; Zui, O.V.; Melnik, L.A.; Mishchuk, N.A.; Nanieva, A.V.; Pelishenko, A.V. Assessment of the physiological adequacy of drinking water by biotesting. Chem. Sustain. Dev. 2021, 1, 35–41. [Google Scholar] [CrossRef]
- SanPiN 2.1.4.1116-02; Sanitary Rules and Standards. Drinking Water. Hygienic Requirements for the Quality of Water Packaged in Containers. Quality Control, Ministry of Health of Russia: Moscow, Russia, 2002.
- Sanitary Norms and Rules. Requirements for the Physiological Usefulness of Drinking Water; Sanitary Norms and Rules: Minsk, Belarus, 2012. [Google Scholar]
- DSTU 7525-2014; Drinking Water. Requirements and Methods of Quality Control. Ministry of Economic Development of Ukraine: Kiev, Ukraine, 2014.
- Kovalsky, V.V. Geochemical Ecology; Nauka Publ.: Moscow, Russia, 1974. [Google Scholar]
- Krainov, S.R.; Ryzhenko, B.N.; Shvets, V.M. Geochemistry of Groundwater. Theoretical, Applied and Environmental Aspects; CentrLitNefteGaz: Moscow, Russia, 2012. [Google Scholar]
- Barvish, M.V.; Schwartz, A.A. A new approach to the assessment of the microcomponent composition of underground waters used for drinking water supply. Geoecology 2000, 5, 467–473. [Google Scholar]
- Linnik, P.N.; Nabivanets, B.I. Forms of Metal Migration in Fresh Surface Waters; Gidrometeoizdat: Leningrad, Russia, 1986. [Google Scholar]
- Linnik, P.N.; Zhezherya, V.A. Aluminum in surface water of ukraine: Concentrations, migration forms, distribution among abiotic components. Water Resour. 2013, 40, 157–169. [Google Scholar] [CrossRef]
- Sandimirov, S.S.; Pozhilenko, V.I.; Mazukhina, S.I.; Drogobuzhskaya, S.V.; Shirokaya, A.A.; Tereshchenko, P.S. Chemical Composition of Natural Waters of the Lovozero Massif, Russia. Model. Earth Syst. Environ. 2022, 8, 4307–4315. [Google Scholar] [CrossRef]
- Mazukhina, S.I.; Sandimirov, S.S.; Drogobuzhskaya, S.V. Physiological adequacy assessment of potable water in Lovozero district, Murmansk region of Russia. In Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems; Frank-Kamenetskaya, O.V., Vlasov, D.Y., Panova, E.G., Alekseeva, T.V., Eds.; Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2022; pp. 617–633. [Google Scholar] [CrossRef]
- Mazukhina, S.I.; Drogobuzhskaya, S.V.; Sandimirov, S.S.; Masloboev, V.A. Features of changes in chemical composition of drinking water as a result of water treatment (Lovozero, Kola peninsula). Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2023, 334, 243–252. [Google Scholar] [CrossRef]
- Mazukhina, S.; Drogobuzhskaya, S.; Sandimirov, S.; Masloboev, V. Effect of Water Treatment on the Chemical Composition of Drinking Water: A Case of Lovozero, Murmansk region, Russia. Sustainability 2022, 14, 16996. [Google Scholar] [CrossRef]
- Rospotrebnadzor. On the State of Epidemiological Well-Being of the Population in the Murmansk Region Were Prepared by a Working Group of Specialists: Sanitary-2022; Materials for the State Report; Rospotrebnadzor: Murmansk, Russia, 2023; Available online: https://51.rospotrebnadzor.ru/content/866/67906 (accessed on 10 March 2024).
- Rospotrebnadzor. On the State of the Sanitary and Epidemiological Well-Being of the Population in the Murmansk Region in 2023; Materials for the State Report; Rospotrebnadzor: Murmansk, Russia, 2024; 214p, Available online: https://51.rospotrebnadzor.ru/content/866/72395 (accessed on 12 July 2024).
- GOST R 56219-2014 (ISO 17294-2:2003); Water. Determination of 62 Elements by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method. Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of 62 Elements (MOD). Standardinform: Moscow, Russia, 2015; 32p.
- CV 3.18.05-2005; Water Quality. Methodology for Measuring the Elemental Composition of Drinking Water, Natural Water, Wastewater, and Atmospheric Precipitation Using Mass Spectrometry with Inductively Coupled Plasma Ionization. JSC: Saint Petersburg, Russia, 2005; 22p.
- Karpov, I.K.; Chudnenko, K.V.; Kulik, D.A.; Bychinskii, V.A. The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling. Am. J. Sci. 2002, 302, 281–311. [Google Scholar] [CrossRef]
- Chudnenko, K.V. Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, Applications; Akadem Publishing House “Geo”: Novosibirsk, Russia, 2010. [Google Scholar]
- Reid, R.; Prausnic, D.; Shervud, T. Gases and Liquids Properties; Him-ija: Leningrad, Russia, 1982; 592p. [Google Scholar]
- Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K. The Properties of Gases and Liquids; McGraw-Hill Book Company: New York, NY, USA, 1977. [Google Scholar]
- Shock, E.L.; Helgeson, H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 100 °C. Geochim. Cosmochim. Acta 1988, 52, 2009–2036. [Google Scholar] [CrossRef]
- Yokokawa, H. Tables of thermodynamic properties of inorganic compounds. J. Nat. Chem. Lab. Indust. 1988, 83, 27–121. [Google Scholar]
- Shock, E.L.; Helgeson, H.C.; Sverjensky, D.A. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 1989, 53, 2157–2183. [Google Scholar] [CrossRef]
- Johnson, J.W.; Oelkers, E.H.; Helgeson, H.C. SUPCRT92: Software package for calculating the standard molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 100 °C. Comput. Geosci. 1992, 18, 899–947. [Google Scholar] [CrossRef]
- Robie, R.A.; Hemingway, B.S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures; United States Geological Survey: Washington, DC, USA, 1995. [Google Scholar]
- Shock, E.L.; Sassani, D.C.; Willis, M.; Sverjensky, D.A. Inorganic species in geologic fluids: Correlation among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 1997, 61, 907–950. [Google Scholar] [CrossRef]
- Tokarev, I.V. Isotope Reconstruction of the Origin, Evolution and Assessment of the Current State of Water and Ice Objects. Doctoral Dissertation, St Petersburg University, Saint Petersburg, Russia, 2024. Version 2. p. 48. Available online: https://crust.ru/newsfullarchive.html (accessed on 18 July 2024).
- Toolabi, A.; Bonyadi, Z.; Paydar, M.; Najafpoor, A.A.; Ramavandi, B. Spatial distribution, occurrence, and health risk assessment of nitrate, fluoride, and arsenic in Bam groundwater resource. Iran. Groundw. Sustain. Dev. 2021, 12, 100543. [Google Scholar] [CrossRef]
- Kubisiak-Banaszkiewicz, L.; Zukiewicz-Sobczak, W.; Starek-Wójcicka, A.; Mazur, J.; Sobczak, P. Methods of Assessing Water Quality in Terms of Public Health. Water 2025, 17, 70. [Google Scholar] [CrossRef]
- Mazukhina, S.I.; Drogobuzhskaya, S.V.; Ionov, N.V.; Rybachenko, V.V. Analysis of the chemical composition of tap water of Murmansk. In Ecological Problems of the Northern Regions and Ways to Their Solution. Proceedings of the VIII Russian Scientific Conference with International Participation, Apatity, Russia, 24–29 June 2024; Makarov, D.V., Ed.; Publishing house of the FIS of the KSC RAS: Apatity, Russia, 2024; pp. 279–280. [Google Scholar]
- Mazukhina, S.I.; Chudnenko, K.V.; Tereshchenko, P.S.; Drogobuzhskaya, S.V. Formation of Concretions in Human Body under the Influence of the State of Environment of the Kola Peninsula: Thermodynamic Modeling. Chem. Sustain. Dev. 2020, 28, 186–194. [Google Scholar] [CrossRef]
- Mazukhina, S.I.; Maksimova, V.V.; Chudnenko, K.V.; Masloboev, V.A.; Sandimirov, S.S.; Drogobuzhskaya, S.V.; Tereshchenko, P.S.; Senzhenko, V.I.; Gudkov, A.V. Water Quality of the Arctic Zone of the Russian Federation: Physico-Chemical Modeling of Water Formation, Forms of Migration of Elements, Influence on the Human Body; Publishing house of the FIS of the KSC RAS: Apatity, Russia, 2020. [Google Scholar]
- Belisheva, N.K.; Drogobuzhskaya, S.V. Rare Earth Element Content in Hair Samples of Children Living in the Vicinity of the Kola Peninsula Mining Site and Nervous System Diseases. Biology 2024, 13, 626. [Google Scholar] [CrossRef]
- Tong, S.L.; Zhu, W.Z.; Gao, Z.H.; Meng, Y.X.; Peng, R.L.; Lu, G.C. Distribution characteristics of rare earth elements in children’s scalp hair from a rare earths mining area in Southern China. J. Environ. Sci. Health Part A 2004, 39, 2517–2532. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Wang, D.; Huang, L. Toxic Effects of Rare Earth Elements on Human Health: A Review. Toxics 2024, 12, 317. [Google Scholar] [CrossRef]
- Moskalev, Y.I. Mineral Exchange; Medicine: Moscow, Russia, 1985; 288p. [Google Scholar]




| No. Station | Water Object | Longitudes | Latitudes |
|---|---|---|---|
| 1 | Well 1 | 67°34′94.0″ | 37°04′67.3″ |
| 2 | Well 2 | 67°34′99.9″ | 37°05′68.8″ |
| 3 | Well 3 | 67°34′93.5″ | 37°04′73.5″ |
| 4 | Well 4 | 67°35′06.5″ | 37°04′20.1″ |
| 5 | Well 5 | 67°35′95.3″ | 37°04′63.4″ |
| 6 | Ponoy River | 67°34′62.8″ | 37°03′91.2″ |
| 7 | Lake Shumesozero | 67°36′34.7″ | 37°02′81.1″ |
| Indicator | Ponoy River | Well (Figure 2, Point 5) | Indicator | Ponoy River | Well (Figure 2, Point 5) | ||||
|---|---|---|---|---|---|---|---|---|---|
| AD | RM | AD | RM | AD | RM | AD | RM | ||
| mgL−1 | mgL−1 | ||||||||
| Eh | 0.845 | 0.8256 | Ba total | 0.0079 | 7.86 × 10−3 | 0.0373 | 0.0373 | ||
| pH | 6.38 | 6.39 | 6.66 | 6.68 | Ba2+ | 7.86 × 10−3 | 0.0373 | ||
| Is * | 0.00064 | 0.00180 | BaCO3 | 3.29 × 10−7 | 2.78 × 10−6 | ||||
| Al total | 0.045 | 0.0450 | 0.098 | 0.0980 | BaCl+ | 1.80 × 10−7 | 3.70 × 10−6 | ||
| Al(OH)2+ | 2.04 × 10−3 | 3.84 × 10−3 | BaOH+ | 3.61 × 10−10 | 3.26 × 10−9 | ||||
| Al(OH)2F | 0.0804 | 0.0378 | Si total | 5.71 | 5.71 | 3.06 | 3.06 | ||
| Al(OH)2F2− | 8.56 × 10−5 | 1.08 × 10−5 | SiO2 | 4.06 | 2.17 | ||||
| AlO2− | 8.20 × 10−3 | 5.79 × 10−2 | HSiO3− | 2.92 × 10−3 | 3.09 × 10−3 | ||||
| HAlO2 | 1.26 × 10−2 | 4.53 × 10−2 | H4SiO4 | 13.0 | 6.99 | ||||
| Al(OH)2+ | 9.23 × 10−4 | 9.27 × 10−4 | Sr total | 0.017 | 0.0170 | 0.041 | 0.0410 | ||
| Al(OH)3 | 0.0109 | 3.93 × 10−2 | Sr2+ | 0.0169 | 0.0406 | ||||
| Al(OH)4− | 0.0112 | 7.93 × 10−2 | SrOH+ | 1.40 × 10−9 | 6.15 × 10−9 | ||||
| Al3+ | 3.03 × 10−5 | 1.66 × 10−5 | SrCO3 | 6.59 × 10−7 | 5.81 × 10−6 | ||||
| AlSO4+ | 1.23 × 10−7 | 2.33 × 10−7 | SrHCO3+ | 1.47 × 10−4 | 6.94 × 10−4 | ||||
| Ca total | 4.23 | 4.23 | 15.0 | 15.00 | SrCl+ | 7.98 × 10−7 | 8.29 × 10−6 | ||
| Ca2+ | 4.18 | 14.80 | SrF+ | 1.77 × 10−7 | 1.04 × 10−7 | ||||
| CaOH+ | 1.23 × 10−6 | 8.14 × 10−6 | Cd total | 5.0 × 10−6 | 5.00 × 10−6 | 5.0 × 10−6 | 5.00 × 10−6 | ||
| CaCO3 | 1.50 × 10−3 | 9.24 × 10−3 | Cd2+ | 4.97 × 10−6 | 4.87 × 10−6 | ||||
| Ca(HCO3)+ | 8.73 × 10−2 | 0.28 | CdCl+ | 3.98 × 10−8 | 1.69 × 10−7 | ||||
| CaHSiO3+ | 4.62 × 10−6 | 1.64 × 10−5 | CdO | 7.22 × 10−14 | 2.43 × 10−13 | ||||
| CaCl+ | 2.40 × 10−4 | 3.66 × 10−3 | CdOH+ | 8.06 × 10−10 | 1.45 × 10−9 | ||||
| CaCl2 | 1.09 × 10−8 | 7.35 × 10−7 | Ni total | 0.00030 | 3.00 × 10−4 | 0.00028 | 2.80 × 10−4 | ||
| CaF+ | 1.84 × 10−4 | 1.59 × 10−4 | Ni2+ | 3.00 × 10−4 | 2.80 × 10−4 | ||||
| CaSO4 | 0.0336 | 0.429 | NiOH+ | 1.01 × 10−8 | 1.73 × 10−8 | ||||
| B total | 0.0004 | 4.40 × 10−4 | 0.0042 | 4.22 × 10−3 | Pb total | 5.6 × 10−5 | 5.60 × 10−5 | 0.00013 | 1.30 × 10−4 |
| B(OH)3 | 2.51 × 10−3 | 0.0241 | Pb2+ | 2.15 × 10−5 | 3.29 × 10−5 | ||||
| BO2− | 2.10 × 10−6 | 3.93 × 10−5 | PbOH+ | 3.73 × 10−5 | 1.05 × 10−4 | ||||
| Fe total | 2.21 | 2.21 | 0.263 | 0.263 | PbO | 9.00 × 10−10 | 4.73 × 10−9 | ||
| Fe2+ | 5.53 × 10−9 | 2.49 × 10−10 | PbCl+ | 4.18 × 10−8 | 2.77 × 10−7 | ||||
| FeSO4+ | 7.48 × 10−8 | 6.68 × 10−9 | Cu total | 0.00060 | 6.00 × 10−4 | 0.00150 | 1.50 × 10−3 | ||
| Fe(OH)3 | 0.148 | 0.0242 | Cu+ | 7.07 × 10−16 | 3.23 × 10−15 | ||||
| Fe(OH)4− | 1.91 × 10−3 | 6.18 × 10−4 | Cu2+ | 5.87 × 10−4 | 1.44 × 10−3 | ||||
| FeOH2+ | 2.50 × 10−3 | 1.14 × 10−4 | CuCl+ | 1.43 × 10−7 | 1.52 × 10−6 | ||||
| FeOH+ | 5.97 × 10−12 | 4.97 × 10−13 | CuOH+ | 1.58 × 10−5 | 7.13 × 10−5 | ||||
| FeO+ | 1.61 | 0.137 | CuF+ | 1.62 × 10−7 | 9.76 × 10−8 | ||||
| FeSO4 | 2.44 × 10−11 | 3.88 × 10−12 | CuCl2− | 1.01 × 10−12 | 1.48 × 10−16 | ||||
| HFeO2 | 1.39 | 0.228 | HCuO2− | 1.36 × 10−12 | 2.18 × 10−11 | ||||
| FeO2− | 6.23 × 10−4 | 2.02 × 10−4 | P total | 0.0020 | 2.00 × 10−3 | 0.0010 | 1.00 × 10−3 | ||
| FeCl+ | 3.91 × 10−13 | 7.47 × 10−14 | PO43− | 8.78 × 10−10 | 1.51 × 10−9 | ||||
| FeF+ | 1.29 × 10−12 | 1.39 × 10−14 | HPO42− | 8.13 × 10−4 | 7.04 × 10−4 | ||||
| FeF2+ | 1.26 × 10−6 | 7.67 × 10−9 | H2PO4− | 5.44 × 10−3 | 2.42 × 10−3 | ||||
| F− | 0.144 | 0.125 | 0.0409 | 0.0318 | Co total | 0.00011 | 1.10 × 10−4 | 0.00028 | 2.80 × 10−4 |
| HF | 7.29 × 10−5 | 9.52 × 10−6 | Co2+ | 1.10 × 10−4 | 2.80 × 10−4 | ||||
| HF2− | 2.14 × 10−10 | 7.15 × 10−12 | CoO | 6.33 × 10−11 | 5.52 × 10−10 | ||||
| K total | 1.00 | 1.00 | 3.67 | 3.67 | CoCl+ | 4.12 × 10−8 | 4.54 × 10−7 | ||
| K+ | 1.00 | 3.67 | HCoO2− | - | 5.19 × 10−16 | ||||
| KCl | 3.06 × 10−7 | 4.96 × 10−6 | CoOH+ | 2.26 × 10−8 | 1.06 × 10−7 | ||||
| KHSO4 | 6.87 × 10−13 | 4.80 × 10−12 | Cl total | 2.27 | 2.27 | 10.22 | 10.2 | ||
| KOH | 8.06 × 10−9 | 5.73 × 10−8 | Cl− | 2.27 | 10.2 | ||||
| KSO4− | 5.01 × 10−4 | 6.93 × 10−3 | HCl | 1.96 × 10−7 | 4.63 × 10−7 | ||||
| Mg total | 1.07 | 1.07 | 1.47 | 1.47 | Zr total | 0.00018 | 1.75 × 10−4 | 0.00079 | 7.90 × 10−4 |
| Mg2+ | 1.06 | 1.44 | HZrO3− | 1.37 × 10−4 | 8.08 × 10−4 | ||||
| MgOH+ | 5.74 × 10−6 | 1.49 × 10−5 | ZrO2 | 1.16 × 10−4 | 3.57 × 10−4 | ||||
| MgCO3 | 2.43 × 10−4 | 5.89 × 10−4 | U total | 0.00006 | 6.40 × 10−5 | 0.00008 | 7.90 × 10−5 | ||
| Mg(HCO3)+ | 2.96 × 10−2 | 3.70 × 10−2 | HUO4− | 1.95 × 10−7 | 4.70 × 10−7 | ||||
| MgCl+ | 1.19 × 10−4 | 7.00 × 10−4 | UO22+ | 3.33 × 10−7 | 1.23 × 10−7 | ||||
| MgF+ | 2.69 × 10−4 | 9.00 × 10−5 | UO2OH+ | 3.90 × 10−6 | 2.64 × 10−6 | ||||
| MgSO4 | 1.63 × 10−2 | 8.02 × 10−2 | UO42− | 4.95 × 10−15 | 2.33 × 10−14 | ||||
| MgHSiO3+ | 3.02 × 10−6 | 4.19 × 10−6 | UO3 | 7.25 × 10−5 | 9.17 × 10−5 | ||||
| Mn total | 0.033 | 0.0330 | 0.0110 | 1.10 × 10−2 | Li total | 0.0032 | 3.20 × 10−3 | 0.00023 | 2.30 × 10−4 |
| Mn2+ | 0.0329 | 1.09 × 10−2 | Li+ | 3.20 × 10−3 | 2.30 × 10−4 | ||||
| MnOH+ | 1.62 × 10−6 | 1.02 × 10−6 | LiOH | 4.18 × 10−10 | 5.62 × 10−11 | ||||
| MnO | 6.41 × 10−12 | 7.84 × 10−12 | Ce total | 0.00042 | 4.23 × 10−4 | 0.00513 | 5.13 × 10−3 | ||
| HMnO2− | - | - | Ce3+ | 1.42 × 10−11 | 2.16 × 10−12 | ||||
| MnSO4 | 1.32 × 10−4 | 1.59 × 10−4 | CeNO32+ | 6.09 × 10−4 | 7.40 × 10−3 | ||||
| MnF+ | 2.13 × 10−6 | 1.73 × 10−7 | CeSO4+ | 1.71 × 10−12 | 8.11 × 10−13 | ||||
| MnCl+ | 2.17 × 10−6 | 3.12 × 10−6 | CeOH2+ | 8.14 × 10−14 | 2.20 × 10−14 | ||||
| CO32− | 4.64 × 10−3 | 4.33 × 10−3 | Cr total | 0.00008 | - | 0.00017 | - | ||
| HCO3− | 46.2 | 2.01 | CrO42− | 7.23 × 10−5 | 2.31 × 10−4 | ||||
| HSO4− | 6.65 × 10−5 | 1.22 × 10−4 | HCrO4− | 1.07 × 10−4 | 1.49 × 10−4 | ||||
| SO42− | 1.95 | 1.91 | 7.52 | La total | 0.00031 | 3.05 × 10−4 | 0.00389 | 3.88 × 10−3 | |
| HNO3 | 4.87 × 10−9 | 2.12 × 10−7 | La3+ | 1.19 × 10−11 | 1.90 × 10−12 | ||||
| NO3− | 0.35 | 0.346 | 31.8 | 31.1 | LaCO3+ | 8.67 × 10−12 | 2.11 × 10−12 | ||
| Na+ | 2.82 | 2.82 | 7.64 | 7.64 | LaF2+ | 5.14 × 10−13 | 1.89 × 10−14 | ||
| NaOH | 4.98 × 10−8 | 2.68 × 10−7 | LaCl2+ | 1.71 × 10−15 | 1.09 × 10−15 | ||||
| NaAlO2 | 2.31 × 10−7 | 4.42 × 10−6 | LaNO32+ | 4.41 × 10−4 | 5.62 × 10−3 | ||||
| NaCl | 7.34 × 10−5 | 8.60 × 10−4 | LaOH2+ | 4.11 × 10−14 | 1.17 × 10−14 | ||||
| NaF | 3.20 × 10−6 | 2.16 × 10−6 | LaSO4+ | 1.44 × 10−12 | 7.18 × 10−13 | ||||
| NaSO4− | 1.38 × 10−3 | 1.36 × 10−2 | Zn2+ | 7.00 × 10−4 | 6.85 × 10−4 | 3.10 × 10−3 | 2.98 × 10−3 | ||
| NaHSiO3 | 3.62 × 10−5 | 1.04 × 10−4 | ZnOH+ | 1.82 × 10−5 | 1.46 × 10−4 | ||||
| O2 | 8.04 | 4.96 | ZnCl+ | 7.78 × 10−8 | 1.41 × 10−6 | ||||
| CO2 | 14.7 | 6.88 | ZnF+ | 7.90 × 10−8 | 8.21 × 10−8 | ||||
| VO2+ | 7.71 × 10−8 | 0.00021 | 6.53 × 10−9 | Y total | 0.00037 | 3.65 × 10−4 | 0.0040 | 3.98 × 10−3 | |
| VO43− | 0.0012 | 7.55 × 10−11 | 1.02 × 10−10 | Y3+ | 3.55 × 10−4 | 3.78 × 10−3 | |||
| HVO42− | 6.95 × 10−4 | 4.55 × 10−4 | YO+ | 3.50 × 10−8 | 1.22 × 10−6 | ||||
| H3VO4 | 1.09 × 10−4 | 1.80 × 10−5 | YOH2+ | 1.24 × 10−5 | 2.35 × 10−4 | ||||
| Nd total | 0.00033 | 3.25 × 10−4 | 0.00478 | 4.78 × 10−3 | Pr total | 0.00006 | 6.25 × 10−5 | 0.00106 | 1.06 × 10−3 |
| Nd3+ | 7.71 × 10−12 | 5.93 × 10−12 | Pr3+ | 2.08 × 10−12 | 4.41 × 10−13 | ||||
| NdNO32+ | 4.65 × 10−4 | 6.84 × 10−3 | PrNO32+ | 9.00 × 10−5 | 1.52 × 10−3 | ||||
| Object | T °C | MnO2 | FeO(OH) | Msc | Apt | Mnt | SiO2 |
|---|---|---|---|---|---|---|---|
| Well (Figure 2, Point 5) | |||||||
| mol | 20 | 2.00 × 10−4 | 4.71 × 10−3 | 2.08 × 10−7 | 9.86 × 10−6 | 1.56 × 10−3 | - |
| % | 1.72 | 41.29 | 0.01 | 0.49 | 56.5 | - | |
| mol | 3 | 2.00 × 10−4 | 4.71 × 10−3 | 1.21 × 10−3 | 9.93 × 10−6 | - | 0.0481 |
| % | 0.44 | 10.7 | 14.84 | 0.13 | - | 73.89 | |
| Ponoy River | |||||||
| mol | 20 | 6.01 × 10−4 | 0.0395 | - | 5.31 × 10−6 | 7.15 × 10−4 | 0.0511 |
| % | 0.76 | 50.91 | - | 0.04 | 3.81 | 44.48 | |
| mol | 3 | 6.01 × 10−4 | 0.0395 | 4.87 × 10−7 | 9.93 × 10−6 | - | 0.0481 |
| % | 0.42 | 28.21 | - | 0.13 | - | 69.25 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazukhina, S.; Drogobuzhskaya, S.; Masloboev, V.; Safonov, A.; Shirokaya, A.; Sandimirov, S.; Rybachenko, V. Forms of Element Migration in Natural and Drinking Waters of Krasnoshchelye Village (Kola Peninsula, Russia) and Human Health Risk Assessment. Water 2025, 17, 3042. https://doi.org/10.3390/w17213042
Mazukhina S, Drogobuzhskaya S, Masloboev V, Safonov A, Shirokaya A, Sandimirov S, Rybachenko V. Forms of Element Migration in Natural and Drinking Waters of Krasnoshchelye Village (Kola Peninsula, Russia) and Human Health Risk Assessment. Water. 2025; 17(21):3042. https://doi.org/10.3390/w17213042
Chicago/Turabian StyleMazukhina, Svetlana, Svetlana Drogobuzhskaya, Vladimir Masloboev, Aleksandr Safonov, Anna Shirokaya, Sergey Sandimirov, and Vladislav Rybachenko. 2025. "Forms of Element Migration in Natural and Drinking Waters of Krasnoshchelye Village (Kola Peninsula, Russia) and Human Health Risk Assessment" Water 17, no. 21: 3042. https://doi.org/10.3390/w17213042
APA StyleMazukhina, S., Drogobuzhskaya, S., Masloboev, V., Safonov, A., Shirokaya, A., Sandimirov, S., & Rybachenko, V. (2025). Forms of Element Migration in Natural and Drinking Waters of Krasnoshchelye Village (Kola Peninsula, Russia) and Human Health Risk Assessment. Water, 17(21), 3042. https://doi.org/10.3390/w17213042

