Citric Acid-Modified Sepiolite as an Efficient and Sustainable Adsorbent for the Removal of Methylene Blue from Aqueous Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of CA-SEP
2.3. Adsorption Experiments
2.4. Regeneration of Adsorbents
2.5. Treatment of MB-Containing Textile Wastewater
3. Results and Discussion
3.1. Characterization of the Adsorbent
3.2. Optimization and Selection of Adsorbent
3.3. Effect of Solution pH
3.4. Effect of Contact Time and Adsorbent Kinetics
3.5. Effect of Adsorbent Dosage
3.6. Adsorption Equilibrium Isotherms and Thermodynamic Study
3.7. Comparison of the Adsorption Capacity with Other Adsorbents
3.8. Adsorption Mechanisms
3.9. Preliminary Cost Evaluation and Reusability of CA-SEP
3.10. Application of CA-SEP to Real Wastewater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fayazi, M.; Rezvannejad, E. Bio-inspired preparation of silver nanoparticles on nanostructured sepiolite clay: Characterization and application as an effective adsorbent for methylene blue removal. Inorg. Chem. Commun. 2024, 159, 111786. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Liu, S.; Tan, X.; Zeng, G.; Zeng, W.; Ding, Y.; Cao, W.; Zheng, B. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environ. Sci. Pollut. Res. 2016, 23, 23606–23618. [Google Scholar] [CrossRef]
- El Messaoudi, N.; Ulfa, M.; Hamzah, A.; Hamid, Z.A.A.; Ramadhani, D.V.; Suryanegara, L.; Mahardika, M.; Melenia, A.T.; Pratama, A.W.; Prasetyoko, D. Fabrication a sustainable adsorbent nanocellulose-mesoporous hectorite bead for methylene blue adsorption. Case Stud. Chem. Environ. Eng. 2024, 10, 100850. [Google Scholar] [CrossRef]
- Farasati Far, B.; Naimi-Jamal, M.R.; Jahanbakhshi, M.; Keihankhadiv, S.; Baradarbarjastehbaf, F. Enhanced methylene blue adsorption using single-walled carbon nanotubes/chitosan-graft-gelatin nanocomposite hydrogels. Scient. Rep. 2024, 14, 19217. [Google Scholar] [CrossRef] [PubMed]
- Al-Gethami, W.; Qamar, M.A.; Shariq, M.; Alaghaz, A.N.M.; Farhan, A.; Areshi, A.A.; Alnasir, M.H. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: A comprehensive review. RSC Adv. 2024, 14, 2804–2834. [Google Scholar] [CrossRef] [PubMed]
- Piaskowski, K.; Świderska-Dąbrowska, R.; Zarzycki, P.K. Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int. 2018, 101, 1371–1384. [Google Scholar] [CrossRef]
- Bal, G.; Thakur, A. Distinct approaches of removal of dyes from wastewater: A review. Mater. Today Proceed. 2022, 50, 1575–1579. [Google Scholar] [CrossRef]
- Zain, N.S.; Mahmoud, M.H.H.; Khan, M.I.; Zafar, F.; Manzoor, S.; Akhtar, N.; Khan, M.A.; El Azab, I.H.; El-Bahy, Z.M. Machine learning-assisted optimization and evaluation of methylene blue adsorption kinetics on citrus aurantifolia leaves: Insights from isotherm and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2024, 164, 105696. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Kandel, D.R.; Kim, H.J.; Lim, J.M.; Poudel, M.B.; Cho, M.; Kim, H.W.; Oh, B.T.; Nah, C.; Lee, S.H.; Dahal, B.; et al. Cold plasma-assisted regeneration of biochar for dye adsorption. Chemosphere 2022, 309, 136638. [Google Scholar] [CrossRef]
- Radoor, S.; Kandel, D.R.; Park, K.; Jayakumar, A.; Karayil, J.; Lee, J. Low-cost and eco-friendly PVA/carrageenan membrane to efficiently remove cationic dyes from water: Isotherms, kinetics, thermodynamics, and regeneration study. Chemosphere 2024, 350, 140990. [Google Scholar] [CrossRef]
- Lee, H.; Fiore, S.; Berruti, F. Adsorption of methyl orange and methylene blue on activated biocarbon derived from birchwood pellets. Biomass Bioenergy 2024, 191, 107446. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar, M.T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Record 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Essa, W.K. Methylene blue removal by copper oxide nanoparticles obtained from green synthesis of Melia azedarach: Kinetic and isotherm studies. Chemistry 2024, 6, 249–263. [Google Scholar] [CrossRef]
- Ceroni, L.; Benazzato, S.; Pressi, S.; Calvillo, L.; Marotta, E.; Menna, E. Enhanced adsorption of methylene blue dye on functionalized multi-walled carbon nanotubes. Nanomaterials 2024, 14, 522. [Google Scholar] [CrossRef] [PubMed]
- Parastar, S.; Asl, F.B.; Poureshgh, Y.; Rashtbari, Y.; Nazari, S.; Asgari, E.; Hayati, B. Assessment of the efficiency of methylene blue removal from aqueous solutions using Iron magnetic nanoparticles immobilized on clinoptilolite zeolite. Int. J. Environ. Res. 2025, 19, 35. [Google Scholar] [CrossRef]
- Serikbayeva, A.M.; Roman, F.F.; Gomes, H.T.; Kalmakhanova, M.S. Development and characterization of organically grafted clay minerals for the removal of methylene blue from water. Clays Clay Miner. 2024, 72, e34. [Google Scholar] [CrossRef]
- Saad, E.M.; Wagdy, M.; Orabi, A.S. Advanced nano modification of ecofriendly glauconite clay for high efficiency methylene blue dye adsorption. Scient. Rep. 2024, 14, 23614. [Google Scholar] [CrossRef]
- Hamri, N.; Imessaoudene, A.; Hadadi, A.; Cheikh, S.; Boukerroui, A.; Bollinger, J.C.; Amrane, A.; Tahraoui, H.; Tran, H.N.; Ezzat, A.O.; et al. Enhanced adsorption capacity of methylene blue dye onto kaolin through acid treatment: Batch adsorption and machine learning studies. Water 2024, 16, 243. [Google Scholar] [CrossRef]
- Shiferraw, B.T.; Mengesha, D.N.; Kim, H. Enhanced adsorption capacity of phosphoric acid-modified montmorillonite clay and ground coffee waste-derived carbon-based functional composite beads for the effective removal of methylene blue. Colloids Surf. A 2024, 695, 134243. [Google Scholar] [CrossRef]
- Hayfron, J.; Jääskeläinen, S.; Tetteh, S. Synthesis of zeolite from rice husk ash and kaolinite clay for the removal of methylene blue from aqueous solution. Heliyon 2025, 11, e41325. [Google Scholar] [CrossRef] [PubMed]
- Hamad, H.N.; Idrus, S.; Yusuf, B.; Jamali, N.S.; Ahsan, A.; Suhartini, S.; Wahab, A.M.A. Optimized bentonite clay adsorbents for methylene blue removal. Processes 2024, 12, 738. [Google Scholar] [CrossRef]
- Figueiredo, V.V.D.; Vianna, E.L.F.; Lima, B.S.; Jesus, T.C.L.D.; García-Villén, F.; Bertolino, L.C.; Spinelli, L.S.; Viseras, C. Brazilian palygorskite as an alternative to commercial adsorbents for methylene blue: A discussion about composition, morphology and pore profile. Microp. Mesop. Mater. 2024, 366, 112957. [Google Scholar] [CrossRef]
- Acar, E.T. An experimental and theoretical investigation of cationic azine dye adsorption on natural sepiolite in single and multi-component systems. Chem. Eng. Res. Design 2022, 187, 507–515. [Google Scholar] [CrossRef]
- Chinoune, K.; Mekki, A.; Boukoussa, B.; Mokhtar, A.; Sardi, A.; Hachemaoui, M.; Iqbal, J.; Ismail, I.; Abboud, M.; Aboneama, W.A. Adsorption behavior of MB dye on alginate-sepiolite biocomposite beads: Adsorption, kinetics, and modeling. Inorg. Chem. Commun. 2024, 165, 112558. [Google Scholar] [CrossRef]
- Yang, F.; Wang, A. Recent researches on antimicrobial nanocomposite and hybrid materials based on sepiolite and palygorskite. Appl. Clay Sci. 2022, 219, 106454. [Google Scholar] [CrossRef]
- Cheng, Z.; Yang, R.; Zhu, X. Adsorption behaviors of the methylene blue dye onto modified sepiolite from its aqueous solutions. Desalin. Water Treat. 2016, 57, 25207–25215. [Google Scholar] [CrossRef]
- Pardo, L.; Cecilia, J.A.; López-Moreno, C.; Hernández, V.; Pozo, M.; Bentabol, M.J.; Franco, F. Influence of the structure and experimental surfaces modifications of 2:1 clay minerals on the adsorption properties of methylene blue. Minerals 2018, 8, 359. [Google Scholar] [CrossRef]
- Moreira, M.A.; Ciuffi, K.J.; Rives, V.; Vicente, M.A.; Trujillano, R.; Gil, A.; Korili, S.A.; de Faria, E.H. Effect of chemical modification of palygorskite and sepiolite by 3-aminopropyltriethoxisilane on adsorption of cationic and anionic dyes. Appl. Clay Sci. 2017, 135, 394–404. [Google Scholar] [CrossRef]
- Grządka, E.; Godek, E.; Le, T.A.; Maciołek, U.; Galaburda, M.; Orzeł, J.; Leskinen, T.; Huynh, T.P. Synthesis, properties and applications of new hybrid material based on native/magnetically modified sepiolite and chitosans. Sep. Purif. Technol. 2024, 348, 127671. [Google Scholar] [CrossRef]
- Yonar, S.; Ugwu, E.L.; Sabah, E. Modelling and optimization of sepiolite activation with citric acid using factorial experimental design and response surface methodology. Silicon 2021, 13, 2185–2194. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Muhammad, Y.; Tang, R.; Liu, K.; Zhu, Y.; Tong, Z. Citric acid modified bentonite for Congo red adsorption. Front. Mater. 2019, 6, 5. [Google Scholar] [CrossRef]
- Wen, L.; Ye, C.; Gan, F.; Ao, F.; Luo, Y.; Deng, J.; Chen, X. Citric acid-modified bentonite for enhanced dye removal in cutoff walls. Mater. Chem. Phys. 2025, 332, 130286. [Google Scholar] [CrossRef]
- Le, T.P.; Luong, H.V.T.; Nguyen, H.N.; Pham, T.K.T.; Le, T.L.T.; Tran, T.B.Q.; Ngo, T.N.M. Insight into adsorption-desorption of methylene blue in water using zeolite NaY: Kinetic, isotherm and thermodynamic approaches. Results Surf. Interf. 2024, 16, 100281. [Google Scholar] [CrossRef]
- Miura, A.; Nakazawa, K.; Takei, T.; Kumada, N.; Kinomura, N.; Ohki, R.; Koshiyama, H. Acid-, base-, and heat-induced degradation behavior of Chinese sepiolite. Ceram. Int. 2012, 38, 4677–4684. [Google Scholar] [CrossRef]
- Wu, C.R.; Hong, Z.Q.; Zhan, B.J.; Tang, W.; Cui, S.C.; Kou, S.C. Effect of acid treatment on the reactivity of natural sepiolite used as a supplementary cementitious material. Constr. Build. Mater. 2022, 316, 125860. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Sun, D.; Li, Y.; Wu, T. Effective removal of emulsified oil from oily wastewater using surfactant-modified sepiolite. Appl. Clay Sci. 2018, 157, 227–236. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, G. Sepiolite nanofiber-supported platinum nanoparticle catalysts toward the catalytic oxidation of formaldehyde at ambient temperature: Efficient and stable performance and mechanism. Chem. Eng. J. 2016, 288, 70–78. [Google Scholar] [CrossRef]
- Zhang, Q.T.; Li, S.X.; Hu, X.P.; Wang, P.J.; Zeng, J.B.; Wang, X.L.; Wang, Y.Z. Structure, morphology, and properties of LDPE/sepiolite nanofiber nanocomposite. Polym. Adv. Technol. 2017, 28, 958–964. [Google Scholar] [CrossRef]
- Ma, S.; Wei, S.; Li, S.; Wei, W.; Huang, Y. Facile activation of natural calcium-rich sepiolite with oxalic acid for selective Pb(II) removal: Highly-efficient performance, mechanisms and site energy distribution. Chemosphere 2023, 342, 140201. [Google Scholar] [CrossRef]
- Sajab, M.S.; Chia, C.H.; Zakaria, S.; Jani, S.M.; Ayob, M.K.; Chee, K.L.; Khiew, P.S.; Chiu, W.S. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresour. Technol. 2011, 102, 7237–7243. [Google Scholar] [CrossRef]
- Sun, C.; Qiu, J.; Zhang, Z.; Marhaba, T.F.; Zhang, Y.; Zhang, W. Characterization of citric acid-modified clam shells and application for aqueous lead(II) removal. Water Air Soil Pollut. 2016, 227, 298. [Google Scholar] [CrossRef]
- Wu, Z.; Zhong, H.; Yuan, X.; Wang, H.; Wang, L.; Chen, X.; Zeng, G.; Wu, Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330–344. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Zhang, J.; Liu, P.; Wang, A. A comparative study about adsorption of natural palygorskite for methylene blue. Chem. Eng. J. 2015, 262, 390–398. [Google Scholar] [CrossRef]
- Zou, Y.; Ren, B.; He, Z.; Deng, X. Enhanced removal of Sb(III) by hydroxy-iron/acid–base-modified sepiolite: Surface structure and adsorption mechanism. Water 2022, 14, 3806. [Google Scholar] [CrossRef]
- Song, N.; Hursthouse, A.; McLellan, I.; Wang, Z. Treatment of environmental contamination using sepiolite: Current approaches and future potential. Environ. Geochem. Health 2021, 43, 2679–2697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, W.; Kang, Y.; Zong, L.; Wang, A. Tailoring the properties of palygorskite by various organic acids via a one-pot hydrothermal process: A comparative study for removal of toxic dyes. Appl. Clay Sci. 2016, 120, 28–39. [Google Scholar] [CrossRef]
- Chouaybi, I.; Ouassif, H.; Matbout, O.; Bettach, M.; Moujahid, E.M. Highly efficient removal of alizarin yellow R dye from aqueous solution using a synthetic hydrocalumite-type LDH (CaAl-NO3). J. Inorg. Organomet. Polym. Mater. 2023, 33, 1517–1526. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.R. Production of coffee-dyed bacterial cellulose as a bio-leather and using it as a dye adsorbent. PLoS ONE 2022, 17, e0265743. [Google Scholar] [CrossRef]
- Ataei-Germi, T.; Nematollahzadeh, A. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. J. Colloid Interface Sci. 2016, 470, 172–182. [Google Scholar] [CrossRef]
- Yao, J.; Yang, H.; Zuo, D.; Xu, J.; Zhang, H. Facile preparation and adsorption behavior studies of poly(acrylic acid)-based hydrogels reinforced by hydrogen bonds for methylene blue dye. J. Polym. Environ. 2023, 31, 552–564. [Google Scholar] [CrossRef]
- Turp, S.M.; Turp, G.A.; Ekinci, N.; Özdemir, S. Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Water Sci. Technol. 2020, 82, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, X.; Zhou, J.; Peng, Z.; Shen, L.; Li, W. Insights of the adsorption mechanism of methylene blue on biochar from phytoextraction residues of Citrus aurantium L.: Adsorption model and DFT calculations. J. Environ. Chem. Eng. 2023, 11, 110496. [Google Scholar] [CrossRef]
- Pei, P.; Xu, Y.; Wang, L.; Liang, X.; Sun, Y. Thiol-functionalized montmorillonite prepared by one-step mechanochemical grafting and its adsorption performance for mercury and methylmercury. Sci. Total Environ. 2022, 806, 150510. [Google Scholar] [CrossRef]
- Alam, S.; Ullah, B.; Khan, M.S.; Rahman, N.U.; Khan, L.; Shah, L.A.; Zekker, I.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; et al. Adsorption kinetics and isotherm study of basic red 5 on synthesized silica monolith particles. Water 2021, 13, 2803. [Google Scholar] [CrossRef]
- Luoyang, Y.; Wang, H.; Li, J.; Chen, B.; Li, X.; Guotao, Z. Microstructural tuning and high-efficiency adsorption performance of carbonaceous porous adsorbents from coal gasification fine slag for methylene blue removal. Sep. Purif. Technol. 2025, 357, 130135. [Google Scholar] [CrossRef]
- Huang, Q.; Chai, K.; Zhou, L.; Ji, H. A phenyl-rich β-cyclodextrin porous crosslinked polymer for efficient removal of aromatic pollutants: Insight into adsorption performance and mechanism. Chem. Eng. J. 2020, 387, 124020. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Zahir, A.; Meunier, L.; Zhang, J.; Dada, A.O.; Rahman, M.M. Removing methylene blue from water: A study of sorption effectiveness onto nanoparticles-doped activated carbon. Chemosphere 2023, 313, 137533. [Google Scholar] [CrossRef]
- Marrakchi, F.; Khanday, W.A.; Asif, M.; Hameed, B.H. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int. J. Biol. Macromol. 2016, 93, 1231–1239. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Fang, J.; Zhang, M.; Chen, H.; Zhou, Y.; Creamer, A.E.; Sun, Y.; Yang, L. Characterization and environmental applications of clay–biochar composites. Chem. Eng. J. 2014, 242, 136–143. [Google Scholar] [CrossRef]
- Zeng, L.; Xie, M.; Zhang, Q.; Kang, Y.; Guo, X.; Xiao, H.; Peng, Y.; Luo, J. Chitosan/organic rectorite composite for the magnetic uptake of methylene blue and methyl orange. Carbohydr. Polym. 2015, 123, 89–98. [Google Scholar] [CrossRef]
- Aysan, H.; Edebali, S.; Ozdemir, C.; Karakaya, M.C.; Karakaya, N. Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous Mesoporous Mater. 2016, 235, 78–86. [Google Scholar] [CrossRef]
- Xie, J.; Li, C.; Chi, L.; Wu, D. Chitosan modified zeolite as a versatile adsorbent for the removal of different pollutants from water. Fuel 2013, 103, 480–485. [Google Scholar] [CrossRef]
- Gao, S.; Wang, D.; Huang, Z.; Su, C.; Chen, M.; Lin, X. Recyclable NiO/sepiolite as adsorbent to remove organic dye and its regeneration. Sci. Rep. 2022, 12, 2895. [Google Scholar] [CrossRef]
- Su, C.; Wang, L.; Chen, M.; Huang, Z.; Lin, X. Adsorptive removal of methylene blue by CuO-acid modified sepiolite as effective adsorbent and its regeneration with high-temperature gas stream. Water Sci. Technol. 2016, 74, 844–851. [Google Scholar] [CrossRef]
- Soyer-Uzun, S.; Yu, P.; Oner, F.K.; Sen, S. Mechanistic Understanding of Superior Methylene Blue Adsorption Capacity in a Novel g-C3N4 Modified Amorphous Na–Ca–Mg Silicate Adsorbent: Insights from Multinuclear Solid-State NMR Spectroscopy. J. Phys. Chem. B 2024, 128, 12638–12650. [Google Scholar] [CrossRef]
- Yasir, H.A.; Zein, S.H.; Holliday, M.C.; Jabbar, K.J.; Ahmed, U.; Jalil, A.A. Comparison of activated carbon and low-cost adsorbents for removal of 2,4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology. Environ. Technol. 2024, 45, 3029–3047. [Google Scholar] [CrossRef] [PubMed]
- GB 4287-2012; Discharge Standards of Water Pollutants for Dyeing and Finishing of Textile Industry. Ministry of Ecology and Environment: Beijing, China, 2013. Available online: https://english.mee.gov.cn/Resources/standards/water_environment/Discharge_standard/201301/t20130107_244749.shtml (accessed on 14 October 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Chen, Z.; Wang, Q.; Gao, X.; Wei, W. Citric Acid-Modified Sepiolite as an Efficient and Sustainable Adsorbent for the Removal of Methylene Blue from Aqueous Solutions. Water 2025, 17, 2998. https://doi.org/10.3390/w17202998
Tian Z, Chen Z, Wang Q, Gao X, Wei W. Citric Acid-Modified Sepiolite as an Efficient and Sustainable Adsorbent for the Removal of Methylene Blue from Aqueous Solutions. Water. 2025; 17(20):2998. https://doi.org/10.3390/w17202998
Chicago/Turabian StyleTian, Zhuangzhuang, Ziyi Chen, Qing Wang, Xin Gao, and Wei Wei. 2025. "Citric Acid-Modified Sepiolite as an Efficient and Sustainable Adsorbent for the Removal of Methylene Blue from Aqueous Solutions" Water 17, no. 20: 2998. https://doi.org/10.3390/w17202998
APA StyleTian, Z., Chen, Z., Wang, Q., Gao, X., & Wei, W. (2025). Citric Acid-Modified Sepiolite as an Efficient and Sustainable Adsorbent for the Removal of Methylene Blue from Aqueous Solutions. Water, 17(20), 2998. https://doi.org/10.3390/w17202998