Sources, Water Quality, and Potential Risk Assessment of Heavy Metal Contamination in Typical Megacity River: Insights from Monte Carlo Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Chemical Analysis
2.3. Assessment Methods
2.3.1. Water Quality Index
2.3.2. Health Risk Assessment
2.3.3. Statistical Methods
3. Results and Discussion
3.1. Metal Content in Urban River
3.2. Source Identification
3.3. Water Quality in Megacity River
3.4. Non-Carcinogenic Risks of Metals in Urban Water
Water Ingestion
3.5. Carcinogenic Risks of Metals in Urban Water
Water Ingestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arslan, H.; Ayyildiz Turan, N. Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey. Environ. Monit. Assess. 2015, 187, 516. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Islam, A.R.M.T.; Hasanuzzaman, M.; Salam, R.; Khan, R.; Islam, M.S. Preliminary assessment of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. J. Environ. Manag. 2021, 298, 113517. [Google Scholar] [CrossRef]
- Zhuang, Q.; Li, G.; Liu, Z. Distribution, source and pollution level of heavy metals in river sediments from South China. CATENA 2018, 170, 386–396. [Google Scholar] [CrossRef]
- Custodio, M.; Peñaloza, R.; Chanamé, F.; Hinostroza-Martínez, J.L.; De la Cruz, H. Water quality dynamics of the Cunas River in rural and urban areas in the central region of Peru. Egypt. J. Aquat. Res. 2021, 47, 253–259. [Google Scholar] [CrossRef]
- Han, R.; Zhang, Q.; Xu, Z. Tracing Fe cycle isotopically in soils based on different land uses: Insight from a typical karst catchment, Southwest China. Sci. Total Environ. 2023, 856, 158929. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, S.T.A.; Luo, F.; Ye, R.; Younas, H.; Hu, X.-f.; Chen, L.-z. The Extent of Heavy Metal Pollution and Their Potential Health Risk in Topsoils of the Massively Urbanized District of Shanghai. Arch. Environ. Contam. Toxicol. 2017, 73, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Liu, J.; Han, G. Tracing Riverine Particulate Black Carbon Sources in Xijiang River Basin: Insight from Stable Isotopic Composition and Bayesian Mixing Model. Water Res. 2021, 194, 116932. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Assessment of heavy metal pollution and water quality characteristics of the reservoir control reaches in the middle Han River, China. Sci. Total Environ. 2021, 799, 149472. [Google Scholar] [CrossRef]
- Auerbach, D.A.; Deisenroth, D.B.; McShane, R.R.; McCluney, K.E.; Poff, N.L. Beyond the concrete: Accounting for ecosystem services from free-flowing rivers. Ecosyst. Serv. 2014, 10, 1–5. [Google Scholar] [CrossRef]
- Chen, W.Y.; Li, X.; Hua, J. Environmental amenities of urban rivers and residential property values: A global meta-analysis. Sci. Total Environ. 2019, 693, 133628. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, Y.-p.; Lin, Y. Heavy Rainfall Events Following the Dry Season Elevate Metal Contamination in Mining-Impacted Rivers: A Case Study of Wenyu River, Qinling, China. Arch. Environ. Contam. Toxicol. 2021, 81, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Wang, H. Control of urban river water pollution is studied based on SMS. Environ. Technol. Innov. 2021, 22, 101468. [Google Scholar] [CrossRef]
- Ali, M.M.; Rahman, S.; Islam, M.S.; Rakib, M.R.J.; Hossen, S.; Rahman, M.Z.; Kormoker, T.; Idris, A.M.; Phoungthong, K. Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment. Int. J. Sediment Res. 2022, 37, 173–187. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ahmed, M.K.; Sarker, S.; Rahman, M.S. Seasonal variations of trace metals from water and sediment samples in the northern Bay of Bengal. Ecotoxicol. Environ. Saf. 2020, 193, 110347. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol Environ. Saf 2019, 168, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Zhang, Y.; Li, Y.; Fang, Q.; Zhou, Y. Implementation of an integrated health risk assessment coupled with spatial interpolation and source contribution: A case study of soil heavy metals from an abandoned industrial area in Suzhou, China. Stoch. Environ. Res. Risk Assess. 2022, 36, 2633–2647. [Google Scholar] [CrossRef]
- Shen, L.; Zeng, J.; Guo, E.; Cheng, Y.; Li, L.; Niu, C.; Yuan, Y.; Ma, L. Source apportionment and risk assessment of heavy metals in urban soils from a central China city by using positive matrix factorization model coupled with Monte Carlo simulation. Stoch. Environ. Res. Risk Assess. 2023, 37, 291–304. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Aghadadashi, V.; Neyestani, M.R.; Mehdinia, A.; Riyahi Bakhtiari, A.; Molaei, S.; Farhangi, M.; Esmaili, M.; Rezai Marnani, H.; Gerivani, H. Spatial distribution and vertical profile of heavy metals in marine sediments around Iran’s special economic energy zone; Arsenic as an enriched contaminant. Mar. Pollut. Bull. 2019, 138, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Liu, W.; Zhang, J.; Zhao, T.; Sun, H.; Xu, Z. Hydrogeochemical characteristics and recharge sources identification based on isotopic tracing of alpine rivers in the Tibetan Plateau. Environ. Res. 2023, 229, 115981. [Google Scholar] [CrossRef]
- Zhang, S.; Han, G.; Gao, X. The urbanization impacts on potentially toxic metals: The distribution, sources and contamination risks in river situated in typical megacity, China. Sustain. Cities Soc. 2023, 97, 104784. [Google Scholar] [CrossRef]
- Zhi, X.; Chen, L.; Shen, Z. Impacts of urbanization on regional nonpoint source pollution: Case study for Beijing, China. Environ. Sci. Pollut. Res. 2018, 25, 9849–9860. [Google Scholar] [CrossRef]
- World Health Organization. Manganese in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Gao, X.; Han, G.; Liu, J.; Zhang, S.; Zeng, J. Heavy Metal Accumulation and Source Apportionment in Urban River under Ecological Restoration: Relationships with Land Use and Risk Assessment Based on Monte Carlo Simulation. ACS Earth Space Chem. 2023, 7, 642–652. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Gao, X.; Han, G.; Zhang, S.; Liu, J.; Wang, D.; Ma, S.; Zhao, Y. Anthropogenic gadolinium sources and remediation in highly urbanized river in the Beijing-Tianjin-Hebei (BTH) region, China: Insights from buffer zone and three-dimensional tracer system. Process Saf. Environ. Prot. 2024, 186, 37–48. [Google Scholar] [CrossRef]
- Bitton, G.; Jung, K.; Koopman, B. Evaluation of a microplate assay specific for heavy metal toxicity. Arch. Environ. Contam. Toxicol. 1994, 27, 25–28. [Google Scholar] [CrossRef]
- De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Han, G. Potassium isotopes of fertilizers as potential markers of anthropogenic input in ecosystems. Environ. Chem. Lett. 2023, 21, 41–45. [Google Scholar] [CrossRef]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef]
- Chiu, W.A.; Barton, H.A.; DeWoskin, R.S.; Schlosser, P.; Thompson, C.M.; Sonawane, B.; Lipscomb, J.C.; Krishnan, K. Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J. Appl. Toxicol. 2007, 27, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhao, Q.; Zheng, L.; Chen, X.; Li, C.; Ren, M. Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities, China. Ecotoxicol. Environ. Saf. 2021, 224, 112679. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.; Li, M.; Liu, L.; Yang, J.L.; Zhao, H.J. [Evaluation and Source Analysis of Heavy Metal Pollution in Sediments of the Yellow River Basin Based on Monte Carlo Simulation and PMF Model]. Huan Jing Ke Xue 2022, 43, 4008–4017. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, C.; Luo, Y.; Liu, C.; Kyzas, G.Z.; Luo, Y.; Zhao, D.; An, S.; Zhu, H. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. J. Hazard. Mater. 2014, 270, 102–109. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Song, L.; Wu, J.; Sun, W.; Teng, Y. Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. J. Hazard. Mater. 2021, 409, 124472. [Google Scholar] [CrossRef] [PubMed]
- Paul, D. Research on heavy metal pollution of river Ganga: A review. Ann. Agrar. Sci. 2017, 15, 278–286. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, G. Green development efficiency of urban agglomerations in a developing country: Evidence from Beijing-Tianjin-Hebei in China. Environ. Dev. Sustain. 2023, 25, 6939–6962. [Google Scholar] [CrossRef]
- Yang, L.; He, J.; Liu, Y.; Wang, J.; Jiang, L.; Wang, G. Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China. J. Environ. Sci. 2016, 50, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Jing, L.; Teng, Y. Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Sci. Total Environ. 2020, 731, 139128. [Google Scholar] [CrossRef] [PubMed]
- He, B.; He, J.; Wang, J.; Li, J.; Wang, F. Characteristics of GHG flux from water-air interface along a reclaimed water intake area of the Chaobai River in Shunyi, Beijing. Atmos. Environ. 2018, 172, 102–108. [Google Scholar] [CrossRef]
- Li, X.; Yu, X.; Wu, K.; Feng, Z.; Liu, Y.; Li, X. Land-use zoning management to protecting the Regional Key Ecosystem Services: A case study in the city belt along the Chaobai River, China. Sci. Total Environ. 2021, 762, 143167. [Google Scholar] [CrossRef]
- GB5749-2006; Standard for Drinking Water Quality. Standard Press of China: Beijing, China, 2006.
- Namieśnik, J.; Rabajczyk, A. The speciation and physico-chemical forms of metals in surface waters and sediments. Chem. Speciat. Bioavailab. 2010, 22, 1–24. [Google Scholar] [CrossRef]
- Neal, C.; Williams, R.J.; Neal, M.; Bhardwaj, L.C.; Wickham, H.; Harrow, M.; Hill, L.K. The water quality of the River Thames at a rural site downstream of Oxford. Sci. Total Environ. 2000, 251–252, 441–457. [Google Scholar] [CrossRef]
- Ouyang, T.P.; Zhu, Z.Y.; Kuang, Y.Q.; Huang, N.S.; Tan, J.J.; Guo, G.Z.; Gu, L.S.; Sun, B. Dissolved trace elements in river water: Spatial distribution and the influencing factor, a study for the Pearl River Delta Economic Zone, China. Environ. Geol. 2006, 49, 733–742. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Pu, X.; Liu, X.-L.; Zhang, R.-N.; Zhang, Y.-H.; Gao, J.; Dong, X.; Wang, Z.-K. Tempo-spatial variations of dissolved organic carbon and heavy metals in Miyun section of Chaobai River. J. Ecol. Rural Environ. 2020, 36, 1177–1184. [Google Scholar]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace Elements in River Waters. Treatise Geochem. 2003, 5, 605. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standard for Surface Water. State Environmental Protection Administration: Beijing, China, 2006.
- Liu, S.; Pan, G.; Zhang, Y.; Xu, J.; Ma, R.; Shen, Z.; Dong, S. Risk assessment of soil heavy metals associated with land use variations in the riparian zones of a typical urban river gradient. Ecotoxicol. Environ. Saf. 2019, 181, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K.S. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Emenike, P.C.; Tenebe, I.; Ogarekpe, N.; Omole, D.; Nnaji, C. Probabilistic risk assessment and spatial distribution of potentially toxic elements in groundwater sources in Southwestern Nigeria. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Guo, X.; Tang, M.; Zhu, D.; Wang, H.; Yang, X.; Chen, B. Variation in pollution status, sources, and risks of soil heavy metals in regions with different levels of urbanization. Sci. Total Environ. 2023, 866, 161355. [Google Scholar] [CrossRef]
- Fallahzadeh, R.A.; Khosravi, R.; Dehdashti, B.; Ghahramani, E.; Omidi, F.; Adli, A.; Miri, M. Spatial distribution variation and probabilistic risk assessment of exposure to chromium in ground water supplies; a case study in the east of Iran. Food Chem Toxicol. 2018, 115, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.Z.; Lu, L.; Cheng, K.; Hao, J.M.; Zhao, D.; Wang, Y.; Jia, W.X.; Qiu, P.P. Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Sci. Total Environ. 2012, 417–418, 148–157. [Google Scholar] [CrossRef]
- Wang, X.; Lu, C.; Cao, Y.; Chen, L.; Abedin, M.Z. Decomposition, decoupling, and future trends of environmental effects in the Beijing-Tianjin-Hebei region: A regional heterogeneity-based analysis. J. Environ. Manag. 2023, 331, 117124. [Google Scholar] [CrossRef] [PubMed]
- Binkowitz, B.S.; Wartenberg, D. Disparity in quantitative risk assessment: A review of input distributions. Risk Anal. 2001, 21, 75–90. [Google Scholar] [CrossRef]
- USDOE. The Risk Assessment Information System (RAIS); U.S. Department of Energy's Oak Ridge Operations Office (ORO): Washington, DC, USA, 2011. [Google Scholar]
- Wang, B.; Yu, G.; Huang, J.; Hu, H. Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches. Ecotoxicology 2008, 17, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Bi, B.; Lu, S.; Liu, X.; Ni, B. Occurrence and risk assessment of heavy metals in urban water systems of Beijing, China. Desalin. Water Treat 2020, 208, 312–321. [Google Scholar] [CrossRef]
- Wang, J.; Pu, X.; Zhang, R.; Liu, X.; Zhang, Y.; Wang, J.; Wang, Y.; Meng, M.; Li, S. Spatial-temporal distribution and source apportionment of riverine dissolved organic carbon in the Miyun section of the Chaobai River in Beijing, China. Water-Energy Nexus 2023, 6, 160–166. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, L.; Li, B.; Yang, Y.; Guo, M. Effects of reclaimed water use for scenic water on groundwater environment in a multilayered aquifer system beneath the Chaobai River, Beijing, China: Case study. J. Hydrol. Eng. 2015, 20, B5014003. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S.K. Application of Monte Carlo simulation for carcinogenic and non-carcinogenic risks assessment through multi-exposure pathways of heavy metals of river water and sediment, India. Environ. Geochem. Health 2023, 45, 3465–3486. [Google Scholar] [CrossRef] [PubMed]
- Kattel, G.; Reeves, J.; Western, A.; Zhang, W.; Jing, W.; McGowan, S.; Cuo, L.; Scales, P.; Dowling, K.; He, Q. Healthy waterways and ecologically sustainable cities in Beijing-Tianjin-Hebei urban agglomeration (northern China): Challenges and future directions. Wiley Interdiscip. Rev. Water 2021, 8, e1500. [Google Scholar] [CrossRef]
- Li, X.; Yan, C.; Wang, C.; Ma, J.; Li, W.; Liu, J.; Liu, Y. PM2.5-bound elements in Hebei Province, China: Pollution levels, source apportionment and health risks. Sci. Total Environ. 2022, 806, 150440. [Google Scholar] [CrossRef]
- Liu, X.; Guo, C.; Wu, Y.; Huang, C.; Lu, K.; Zhang, Y.; Duan, L.; Cheng, M.; Chai, F.; Mei, F.; et al. Evaluating cost and benefit of air pollution control policies in China: A systematic review. J. Environ. Sci. 2023, 123, 140–155. [Google Scholar] [CrossRef]
- Ren, J.; Han, G.; Liu, J.; Gao, X. Assessing wet season water quality and health risks of Chaobai River: Impacts of natural weathering and anthropogenic activities in a small urban watershed. Urban Water J. 2024, 21, 393–405. [Google Scholar] [CrossRef]
- Yushin, N.; Jakhu, R.; Chaligava, O.; Grozdov, D.; Zinicovscaia, I. Evaluation of the potentially toxic elements and radionuclides in the soil sample of Novaya Zemlya in the Arctic Circle. Environ. Pollut. 2024, 361, 124871. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.; Schoeny, R.; Gallagher, K.; Deener, K.; Dockins, C.; Firestone, M.; Jordan, W.; McDonough, M.; Murphy, D.; Olsen, M. US environmental protection Agency's framework for human health risk assessment to inform decision making. Int. J. Risk Assess. Manag. 2017, 20, 3–20. [Google Scholar] [CrossRef]
- USEPA. Supplemental guidance for developing soil screening levels for superfund sites. US Environmental Protection Agency. 2002. Available online: https://nepis.epa.gov/ (accessed on 30 June 2022).
Unit | Chaobai River | Seine River 1 | Yellow River 1 | Thames River 2 | Pearl River 3 | World Mean 1 | Drinking Water Guidelines | Water Standard 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Median | China 4 | WHO 5 | ||||||||
V | μg/L | 0.82 | 4.17 | 2.31 | 0.98 | 2.26 | 1.51 | 0.71 | ||||||
Cr | μg/L | 0.05 | 0.44 | 0.12 | 0.11 | 0.09 | 11.46 | 0.42 | 15.94 | 0.7 | 50 | 50 | ||
Ni | μg/L | 0.24 | 1.95 | 0.83 | 0.54 | 0.55 | 5.06 | 0.30–0.59 | 2.94 | 28.57 | 0.80 | 20 | 70 | |
Cu | μg/L | 0.59 | 1.46 | 0.82 | 0.28 | 0.67 | 3.53 | 0.96–1.6 | 4.38 | 13.96 | 1.48 | 1000 | 2000 | 10 |
Zn | μg/L | 0.46 | 2.91 | 1.19 | 0.73 | 0.92 | 4.98 | 0.07–0.32 | 8.09 | 61.84 | 0.6 | 1000 | 50 | |
As | μg/L | 0.69 | 3.52 | 1.65 | 0.86 | 1.43 | 2.71 | 2 | 2.03 | 0.15 | 0.62 | 10 | 10 | 50 |
Mo | μg/L | 1.36 | 4.67 | 3.12 | 1.12 | 3.67 | 35.12 | 2.41 | 0.42 | 70 | 70 | |||
Pb | μg/L | 0.01 | 0.08 | 0.02 | 0.02 | 0.01 | 0.22 | 0.01–4.1 | 0.40 | 0.58 | 0.079 | 10 | 10 | 10 |
T | °C | 23.7 | 31.0 | 27.8 | 2.6 | 28.0 | ||||||||
pH 1 | 7.70 | 9.30 | 8.40 | 0.50 | 8.30 | 8.3 | 6.5–8.5 | |||||||
EC 1 | μS/cm | 277.0 | 1050 | 577.6 | 245.2 | 560.0 | ||||||||
TDS1 | mg/L | 154.0 | 591.0 | 323.7 | 138.3 | 315.0 | 460 | 100 |
T | EC | pH | TDS | V | Cr | Ni | Cu | Zn | As | Mo | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | 1 | |||||||||||
EC | −0.12 | 1 | ||||||||||
pH | 0.70 * | −0.62 | 1 | |||||||||
TDS | −0.15 | 1.00 ** | −0.60 | 1 | ||||||||
V | 0.40 | 0.57 | −0.02 | 0.57 | 1 | |||||||
Cr | −0.39 | −0.01 | −0.17 | −0.01 | −0.12 | 1 | ||||||
Ni | 0.39 | 0.62 * | −0.12 | 0.63 * | 0.81 ** | −0.10 | 1 | |||||
Cu | −0.46 | 0.04 | −0.35 | 0.04 | 0.21 | 0.57 | −0.12 | 1 | ||||
Zn | 0.24 | 0.38 | 0.01 | 0.39 | 0.36 | −0.01 | 0.74 ** | −0.19 | 1 | |||
As | 0.42 | 0.67 * | −0.09 | 0.67 * | 0.91 ** | −0.34 | 0.84 ** | −0.13 | 0.32 | 1 | ||
Mo | 0.87 ** | 0.20 | 0.48 | 0.20 | 0.72 * | −0.47 | 0.69 * | −0.36 | 0.42 | 0.76 ** | 1 | |
Pb | 0.10 | 0.49 | −0.32 | 0.48 | 0.70 * | −0.17 | 0.44 | 0.21 | −0.22 | 0.76 ** | 0.38 | 1 |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Eigenvalues | 4.14 | 1.75 | 1.37 |
Variance (%) | 51.7 | 21.9 | 17.2 |
V | 0.92 | 0.33 | 0.09 |
Cr | −0.23 | 0.13 | 0.88 |
Ni | 0.67 | 0.71 | −0.06 |
Cu | 0.17 | −0.20 | 0.88 |
Zn | 0.05 | 0.98 | −0.05 |
As | 0.92 | 0.27 | −0.22 |
Mo | 0.64 | 0.42 | −0.48 |
Pb | 0.92 | −0.29 | 0.05 |
Cr | Ni | Cu | Zn | As | Mo | Pb | V | |
---|---|---|---|---|---|---|---|---|
Cultivated land | −0.20 | −0.35 | −0.23 | −0.19 | −0.15 | 0.35 | −0.26 | −0.03 |
Woodland | 0.19 | 0.06 | −0.11 | 0.30 | −0.38 | −0.09 | −0.51 | −0.32 |
Grassland | 0.14 | −0.32 | −0.08 | −0.57 | −0.17 | −0.46 | 0.03 | −0.29 |
Water | 0.46 | −0.20 | 0.73 * | −0.62 | 0.04 | −0.48 | 0.61 | 0.03 |
Urban land | −0.39 | 0.57 | −0.45 | 0.82 ** | 0.29 | 0.34 | −0.18 | 0.21 |
Parameters | Drinking Water Guidelines 1 | Weight (wi) | Relative Weight (Wi) |
---|---|---|---|
pH | 8 | 5 | 0.116 |
EC (μS/cm) | 1500 | 4 | 0.093 |
TDS (mg/L) | 600 | 4 | 0.093 |
Cr (μg/L) | 50 | 5 | 0.116 |
Ni (μg/L) | 70 | 5 | 0.116 |
Cu (μg/L) | 2000 | 2 | 0.047 |
Zn (μg/L) | 3000 | 3 | 0.070 |
As (μg/L) | 10 | 5 | 0.116 |
Mo (μg/L) | 70 | 5 | 0.116 |
Pb (μg/L) | 10 | 5 | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Han, G.; Zhang, S.; Zeng, J. Sources, Water Quality, and Potential Risk Assessment of Heavy Metal Contamination in Typical Megacity River: Insights from Monte Carlo Simulation. Water 2025, 17, 224. https://doi.org/10.3390/w17020224
Gao X, Han G, Zhang S, Zeng J. Sources, Water Quality, and Potential Risk Assessment of Heavy Metal Contamination in Typical Megacity River: Insights from Monte Carlo Simulation. Water. 2025; 17(2):224. https://doi.org/10.3390/w17020224
Chicago/Turabian StyleGao, Xi, Guilin Han, Shitong Zhang, and Jie Zeng. 2025. "Sources, Water Quality, and Potential Risk Assessment of Heavy Metal Contamination in Typical Megacity River: Insights from Monte Carlo Simulation" Water 17, no. 2: 224. https://doi.org/10.3390/w17020224
APA StyleGao, X., Han, G., Zhang, S., & Zeng, J. (2025). Sources, Water Quality, and Potential Risk Assessment of Heavy Metal Contamination in Typical Megacity River: Insights from Monte Carlo Simulation. Water, 17(2), 224. https://doi.org/10.3390/w17020224