Towards Integrated Water–Energy Systems in Mountain Environments: Insights from a Systematic Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Planning the Review
(WE nexus” OR “water-energy nexus” OR “water and energy management” OR “energy and water management” OR “energy management” OR “water management”) AND (system* OR “integrated system” OR “integrated systems”) AND (mountain* OR alp* OR alpine). |
2.2. Parameters of the Study and Data Extraction
2.3. Thematic Analysis Methodology
3. Results
Thematic Analysis
4. Discussion
4.1. Water Management
4.1.1. Precipitation
4.1.2. Water Balance
4.1.3. Groundwater
4.1.4. Strategies
4.2. Energy Management
4.3. Integration of Water and Energy Management
5. Conclusions
5.1. Research Gaps and Future Perspectives
5.2. Limitations of the Review
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dainese, M.; Crepaz, H.; Bottarin, R.; Fontana, V.; Guariento, E.; Hilpold, A.; Obojes, N.; Paniccia, C.; Scotti, A.; Seeber, J.; et al. Global Change Experiments in Mountain Ecosystems: A Systematic Review. Ecol. Monogr. 2024, 94, e1632. [Google Scholar] [CrossRef]
- Snethlage, M.A.; Geschke, J.; Ranipeta, A.; Jetz, W.; Yoccoz, N.G.; Körner, C.; Spehn, E.M.; Fischer, M.; Urbach, D. A Hierarchical Inventory of the World’s Mountains for Global Comparative Mountain Science. Sci. Data 2022, 9, 149. [Google Scholar] [CrossRef]
- IPCC Sixth Assessment Cross-Chapter Paper 5: Mountains. Available online: https://www.ipcc.ch/report/ar6/wg2/chapter/ccp5/ (accessed on 1 May 2025).
- Thornton, J.M.; Snethlage, M.A.; Sayre, R.; Urbach, D.R.; Viviroli, D.; Ehrlich, D.; Muccione, V.; Wester, P.; Insarov, G.; Adler, C. Human Populations in the World’s Mountains: Spatio-Temporal Patterns and Potential Controls. PLoS ONE 2022, 17, e0271466. [Google Scholar] [CrossRef]
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing Dependence of Lowland Populations on Mountain Water Resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Rasul, G.; Molden, D. The Global Social and Economic Consequences of Mountain Cryospheric Change. Front. Environ. Sci. 2019, 7, 91. [Google Scholar] [CrossRef]
- Harrison, S. Impact of Global Changes on Mountains: Responses and Adaptation. Mt. Res. Dev. 2016, 36, 247. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward Mountains without Permanent Snow and Ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Schweizer-Ries, P. Decentralized Energy Use in Mountain Regions: Solar-Electric Stand-Alone Systems. Mt. Res. Dev. 2001, 21, 25–29. [Google Scholar] [CrossRef]
- Zandler, H.; Mislimshoeva, B.; Samimi, C. Scenarios of Solar Energy Use on the “Roof of the World”: Potentials and Environmental Benefits. Mt. Res. Dev. 2016, 36, 256–266. [Google Scholar] [CrossRef]
- Mountain Partnership Renewable Energy. Available online: https://www.fao.org/mountain-partnership/our-work/thematic-areas/renewable-energy/en (accessed on 2 July 2025).
- Scott, C.A.; Khaling, S.; Shrestha, P.P.; Riera, F.S.; Choden, K.; Singh, K. Renewable Electricity Production in Mountain Regions: Toward a People-Centered Energy Transition Agenda. Mt. Res. Dev. 2023, 43, A1–A8. [Google Scholar] [CrossRef]
- Papada, L.; Kaliampakos, D. Quantifying Energy Demand in Mountainous Areas. In Creating Economic Space for Social Innovation; Oosterlynck, S., Kazepov, Y., Novy, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 31–43. [Google Scholar] [CrossRef]
- Nnamchi, S.N.; Natukunda, F.; Wanambwa, S.; Musiime, E.B.; Tukamuhebwa, R.; Wanazusi, T.; Ogwal, E. Effects of Tropospheric Height and Wind Speed on Solar Power Generation: Energy Exploration Above Ground Level. Energy Rep. 2023, 9, 5166–5182. [Google Scholar] [CrossRef]
- Grilli, G.; De Meo, I.; Garegnani, G.; Paletto, A. A multi-criteria framework to assess the sustainability of renewable energy development in the Alps. J. Environ. Plan. Manag. 2017, 60, 1756–1776. [Google Scholar] [CrossRef]
- Zakariazadeh, A.; Ahshan, R.; Al Abri, R.; Al-Abri, M. Renewable Energy Integration in Sustainable Water Systems: A Review. Clean. Eng. Technol. 2024, 18, 100722. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Tang, H.; Dong, Y.; Liu, K.; Jiang, P.; Liu, Y. Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. Int. J. Environ. Res. Public Health 2021, 18, 13065. [Google Scholar] [CrossRef]
- Wang, J.; Kim, H.-S. Visualizing the Landscape of Home IoT Research: A Bibliometric Analysis Using VOSviewer. Sensors 2023, 23, 3086. [Google Scholar] [CrossRef]
- Barnes, C.; MacDonald, R.J.; Hopkinson, C. Montane Seasonal and Elevational Precipitation Gradients in the Southern Rockies of Alberta, Canada. Hydrol. Process. 2025, 39, e70061. [Google Scholar] [CrossRef]
- Girotto, M.; Formetta, G.; Azimi, S.; Bachand, C.; Cowherd, M.; De Lannoy, G.; Lievens, H.; Modanesi, S.; Raleigh, M.S.; Rigon, R.; et al. Identifying Snowfall Elevation Patterns by Assimilating Satellite-Based Snow Depth Retrievals. Sci. Total Environ. 2024, 906, 167312. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Dong, C.; Shao, D.; Wang, X. Development and Evaluation of a Cloud-Gap-Filled MODIS Normalized Difference Snow Index Product over High Mountain Asia. Remote Sens. 2024, 16, 192. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, Y.; Gao, H. Development of a Daily Cloud-Free Snow-Cover Dataset Using MODIS-Based Snow-Cover Probability for High Mountain Asia during 2000–2020. Remote Sens. 2024, 16, 2956. [Google Scholar] [CrossRef]
- Fleming, S.W.; Rittger, K.; Oaida Taglialatela, C.M.; Graczyk, I. Leveraging Next-Generation Satellite Remote Sensing-Based Snow Data to Improve Seasonal Water Supply Predictions in a Practical Machine Learning-Driven River Forecast System. Water Resour. Res. 2024, 60, e2023WR035785. [Google Scholar] [CrossRef]
- Khosravi, K.; Golkarian, A.; Omidvar, E.; Hatamiafkoueieh, J.; Shirali, M. Snow Water Equivalent Prediction in a Mountainous Area Using Hybrid Bagging Machine Learning Approaches. Acta Geophys. 2022, 71, 1015–1031. [Google Scholar] [CrossRef]
- Sourp, L.; Gascoin, S.; Jarlan, L.; Pedinotti, V.; Bormann, K.J.; Baba, M.W. Evaluation of High-Resolution Snowpack Simulations from Global Datasets and Comparison with Sentinel-1 Snow Depth Retrievals in the Sierra Nevada, USA. Hydrol. Earth Syst. Sci. 2025, 29, 597–611. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, W.; Zhang, S.; Sun, Z.; Li, Y.; Huang, Y.; Wang, W.; Qi, P.; Zou, Y.; Jiang, M. The Role of Snowmelt Discharge to Runoff of an Alpine Watershed: Evidence from Water Stable Isotopes. J. Hydrol. 2022, 604, 127209. [Google Scholar] [CrossRef]
- Liu, Z.; Cuo, L.; Sun, N. Tracking Snowmelt during Hydrological Surface Processes Using a Distributed Hydrological Model in a Mesoscale Basin on the Tibetan Plateau. J. Hydrol. 2023, 616, 128796. [Google Scholar] [CrossRef]
- Lapides, D.A.; Hahm, W.J.; Rempe, D.M.; Whiting, J.; Dralle, D.N. Causes of Missing Snowmelt Following Drought. Geophys. Res. Lett. 2022, 49, e2022GL100505. [Google Scholar] [CrossRef]
- Rhoades, A.M.; Zarzycki, C.M.; Hatchett, B.J.; Inda-Diaz, H.; Rudisill, W.; Bass, B.; Dennis, E.; Heggli, A.; McCrary, R.; McGinnis, S.; et al. Anticipating How Rain-on-Snow Events Will Change through the 21st Century: Lessons from the 1997 New Year’s Flood Event. Clim. Dyn. 2024, 62, 8615–8637. [Google Scholar] [CrossRef]
- Jianqiao, H.; Xiaodong, H.; Xi, J.; Wei, Z. Quantitative Study of Snow Sublimation in the Altai Mountains. Atmos. Res. 2025, 321, 108109. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, Y.; Jiang, B.; Bailey, R.T.; Masud, B.; Smerdon, B.; Faramarzi, M. Modelling Impacts of Climate Change on Snow Drought, Groundwater Drought, and Their Feedback Mechanism in a Snow-Dominated Watershed in Western Canada. J. Hydrol. 2024, 636, 131342. [Google Scholar] [CrossRef]
- Li, Q.; Duan, W.; Yang, T.; Fan, Y.; Li, L. Contribution of Snow Water Equivalent to the Terrestrial Water Storage Changes in High Mountain Asia Based on Multiple Datasets. J. Hydrol. Reg. Stud. 2025, 59, 102401. [Google Scholar] [CrossRef]
- Terzago, S.; Bongiovanni, G.; Von Hardenberg, J. Seasonal Forecasting of Snow Resources at Alpine Sites. Hydrol. Earth Syst. Sci. 2023, 27, 519–542. [Google Scholar] [CrossRef]
- Kumar, A.; Malla, M.K.; Arya, D.S. Spatiotemporal Variation and Teleconnections of Extreme Precipitation in the Upper Indus Basin: Insights for Natural Hazard Assessment. J. Water Clim. Change 2024, 15, 4952–4967. [Google Scholar] [CrossRef]
- Guo, B.; Xu, T.; Yang, Q.; Zhang, J.; Dai, Z.; Deng, Y.; Zou, J. Multiple Spatial and Temporal Scales Evaluation of Eight Satellite Precipitation Products in a Mountainous Catchment of South China. Remote Sens. 2023, 15, 1373. [Google Scholar] [CrossRef]
- Prajapati, R.; Silwal, P.; Duwal, S.; Shrestha, S.; Kafle, A.S.; Talchabhadel, R.; Kumar, S. Detectability of Rainfall Characteristics over a Mountain River Basin in the Himalayan Region from 2000 to 2015 Using Ground- and Satellite-Based Products. Theor. Appl. Climatol. 2022, 147, 185–204. [Google Scholar] [CrossRef]
- Miao, M.; Zhang, M.; Wang, S.; Sun, Z.; Li, X.; Yuan, X.; Yang, G.; Hu, Z.; Zhang, S. Effect of Oasis and Irrigation on Mountain Precipitation in the Northern Slope of Tianshan Mountains Based on Stable Isotopes. J. Hydrol. 2024, 635, 131151. [Google Scholar] [CrossRef]
- Yuan, Y.; Gan, Y.; Xu, Y.; Xie, Q.; Shen, Y.; Yin, Y. SWMM-Based Assessment of Urban Mountain Stormwater Management Effects under Different LID Scenarios. Water 2022, 14, 78. [Google Scholar] [CrossRef]
- Singh, A. Sustainable Snowmelt Water Harvesting Technology: An Irrigation Water Solution under Climate Change Effect in the Dry Cold Deserts, Indian Himalayan Region—A Case Study. Sustain. Water Resour. Manag. 2022, 8, 103. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Shi, J.; Zhu, B.; Jiang, F.; Chen, Y.; Liu, Y. Accelerated Hydrological Cycle on the Tibetan Plateau Evidenced by Ensemble Modeling of Long-Term Water Budgets. J. Hydrol. 2022, 615, 128710. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Chhetri, R. Evaluation of Long-Term Changes in Water Balances in the Nepal Himalayas. Theor. Appl. Climatol. 2024, 155, 439–450. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X.; He, Y.; Cao, Y.; Hu, J. Opposing Industrial Era Moisture Patterns between Basins and Mountains in Southern Arid Central Asia. CATENA 2022, 215, 106367. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite Observed Spatiotemporal Variability of Snow Cover and Snow Phenology over High Mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Larco, K.; Mosquera, G.M.; Jacobs, S.R.; Cardenas, I.; Crespo, P. Factors Controlling the Temporal Variability of Streamflow Transit Times in Tropical Alpine Catchments. J. Hydrol. 2023, 617, 128990. [Google Scholar] [CrossRef]
- Yu, Q.; Shi, C.; Bai, Y.; Zhang, J.; Lu, Z.; Xu, Y.; Li, W.; Liu, C.; Soomro, S.; Tian, L.; et al. Interpretable Baseflow Segmentation and Prediction Based on Numerical Experiments and Deep Learning. J. Environ. Manag. 2024, 360, 121089. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.I.; Elias, E.; Carroll, K.C.; Brown, C. Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed. Remote Sens. 2023, 15, 3999. [Google Scholar] [CrossRef]
- Smolenaars, W.J.; Dhaubanjar, S.; Jamil, M.K.; Lutz, A.; Immerzeel, W.; Ludwig, F.; Biemans, H. Future Upstream Water Consumption and Its Impact on Downstream Water Availability in the Transboundary Indus Basin. Hydrol. Earth Syst. Sci. 2022, 26, 861–883. [Google Scholar] [CrossRef]
- Dong, T.; Wei, Y.; Jin, J.; Zhou, P.; Hu, Y.; Chen, M.; Zhou, Y. Evaluation and Diagnosis of Water Resources Spatial Equilibrium Under the High-Quality Development of Water Conservancy. J. Am. Water Resour. Assoc. 2025, 61, e70014. [Google Scholar] [CrossRef]
- Wang, X.; Tan, M.; Xiao, X. Estimation of Unplanned Water Use Based on System Dynamics Model in Arid Areas. Agric. Water Manag. 2025, 312, 109448. [Google Scholar] [CrossRef]
- Bole, N.; Chiphang, N.; Bandyopadhyay, A.; Bhadra, A. Assessment of Suitability of Gridded Precipitation Data for Hydrological Simulation in Eastern Himalaya: A Case Study. J. Water Manag. Model. 2025, 33, C537. [Google Scholar] [CrossRef]
- Morlot, M.; Rigon, R.; Formetta, G. Hydrological Digital Twin Model of a Large Anthropized Italian Alpine Catchment: The Adige River Basin. J. Hydrol. 2024, 629, 130587. [Google Scholar] [CrossRef]
- Ehteram, M.; Barzegari Banadkooki, F.; Afshari Nia, M. Gaussian Mutation-Alpine Skiing Optimization Algorithm-Recurrent Attention Unit-Gated Recurrent Unit-Extreme Learning Machine Model: An Advanced Predictive Model for Predicting Evaporation. Stoch. Environ. Res. Risk Assess. 2024, 38, 1803–1830. [Google Scholar] [CrossRef]
- Morin, S.; François, H.; Réveillet, M.; Sauquet, E.; Crochemore, L.; Branger, F.; Leblois, É.; Dumont, M. Simulated Hydrological Effects of Grooming and Snowmaking in a Ski Resort on the Local Water Balance. Hydrol. Earth Syst. Sci. 2023, 27, 4257–4277. [Google Scholar] [CrossRef]
- Brussolo, E.; Palazzi, E.; Von Hardenberg, J.; Masetti, G.; Vivaldo, G.; Previati, M.; Canone, D.; Gisolo, D.; Bevilacqua, I.; Provenzale, A.; et al. Aquifer Recharge in the Piedmont Alpine Zone: Historical Trends and Future Scenarios. Hydrol. Earth Syst. Sci. 2022, 26, 407–427. [Google Scholar] [CrossRef]
- Liu, M.; Pei, H.; Shen, Y. Evaluating Dynamics of GRACE Groundwater and Its Drought Potential in Taihang Mountain Region, China. J. Hydrol. 2022, 612, 128156. [Google Scholar] [CrossRef]
- Guerrón-Orejuela, E.J.; Rains, K.C.; Brigino, T.M.; Kleindl, W.J.; Landry, S.M.; Spellman, P.; Walker, C.M.; Rains, M.C. Mapping Groundwater Recharge Potential in High Latitude Landscapes Using Public Data, Remote Sensing, and Analytic Hierarchy Process. Remote Sens. 2023, 15, 2630. [Google Scholar] [CrossRef]
- Zimik, H.V.; Angchuk, T.; Misra, A.K.; Ranjan, R.K.; Wanjari, N.; Basnett, S. GIS-Based Identification of Potential Watershed Recharge Zones Using Analytic Hierarchy Process in Sikkim Himalayan Region. Appl. Water Sci. 2022, 12, 248. [Google Scholar] [CrossRef]
- Khemmal, H.Y.; Hani, A.; Benmarce, K. Exploring Groundwater Recharge Potential Zones Mapping in the Northern Upper Boussellam Region: A Novel Approach Integrating TDS Levels. Appl. Water Sci. 2025, 15, 103. [Google Scholar] [CrossRef]
- Redaelli, A.; Bonomi, T.; Sartirana, D.; Sinatra, G.; Rotiroti, M.; Zanotti, C. The Dual Role of Irrigation in the Groundwater Budget under Baseline Conditions versus the 2022 Drought: Lessons for Future Climate Adaptation. J. Hydrol. 2025, 658, 133211. [Google Scholar] [CrossRef]
- Koh, E.-H.; Lee, E.; Lee, K.-K.; Moon, D.-C. Integrated Application of a Bayesian Mixing Model, Numerical Model, and Environmental Tracers to Characterize Groundwater Recharge Sources in a Mountainous Area. Sci. Total Environ. 2022, 853, 158619. [Google Scholar] [CrossRef]
- Lin, J.-J.; Liang, C.-H. Terrain-Based Evaluation of Groundwater Potential and Long-Term Monitoring at the Catchment Scale in Taiwan. Adv. Geosci. 2024, 64, 13–17. [Google Scholar] [CrossRef]
- Vremec, M.; Burek, P.; Guillaumot, L.; Radolinski, J.; Forstner, V.; Herndl, M.; Stumpp, C.; Bahn, M.; Birk, S. Sensitivity of Montane Grassland Water Fluxes to Warming and Elevated CO2 from Local to Catchment Scale: A Case Study from the Austrian Alps. J. Hydrol. Reg. Stud. 2024, 56, 101970. [Google Scholar] [CrossRef]
- Llena, M.; Nadal-Romero, E.; Zabalza-Martínez, J.; Cortijos-López, M.; Lasanta, T. Effects of Post-Abandonment Management on Surface Runoff in a Mediterranean Mid-Mountain Basin. CATENA 2024, 237, 107775. [Google Scholar] [CrossRef]
- Mentzafou, A.; Papadopoulos, A.; Dimitriou, E. Assessing the Impacts of Climatic and Water Management Scenarios in a Small Mountainous Greek River. Hydrology 2025, 12, 13. [Google Scholar] [CrossRef]
- Muñoz, R.; Vaghefi, S.A.; Drenkhan, F.; Santos, M.J.; Viviroli, D.; Muccione, V.; Huggel, C. Assessing Water Management Strategies in Data-Scarce Mountain Regions under Uncertain Climate and Socio-Economic Changes. Water Resour. Manag. 2024, 38, 4083–4100. [Google Scholar] [CrossRef]
- DongGe, N.; Yan, J.; Liu, P.; Van Den Toorn, M.; Fekete, A. Historical Water Management Strategies—Case Study of Traditional Villages in Southern China, Hunan Province. Land 2022, 11, 2107. [Google Scholar] [CrossRef]
- Jódar, J.; Martos-Rosillo, S.; Custodio, E.; Mateos, L.; Cabello, J.; Casas, J.; Salinas-Bonillo, M.J.; Martín-Civantos, J.M.; González-Ramón, A.; Zakaluk, T.; et al. The Recharge Channels of the Sierra Nevada Range (Spain) and the Peruvian Andes as Ancient Nature-Based Solutions for the Ecological Transition. Water 2022, 14, 3130. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, S.; Cao, G.; Hou, Y.; Wang, Y.; Kang, L. Implications for Water Management in Alpine Inland River Basins: Evidence from Stable Isotopes and Remote Sensing. Ecol. Indic. 2023, 154, 110580. [Google Scholar] [CrossRef]
- Siegfried, T.; Mujahid, A.U.H.; Marti, B.; Molnar, P.; Karger, D.N.; Yakovlev, A. Unveiling the Future Water Pulse of Central Asia: A Comprehensive 21st Century Hydrological Forecast from Stochastic Water Balance Modeling. Clim. Change 2024, 177, 141. [Google Scholar] [CrossRef]
- Huang, P.; Sauquet, E.; Vidal, J.-P.; Riba, N.D. Vulnerability of Water Resource Management to Climate Change: Application to a Pyrenean Valley. J. Hydrol. Reg. Stud. 2022, 44, 101241. [Google Scholar] [CrossRef]
- Eyring, N.; Kittner, N. High-Resolution Electricity Generation Model Demonstrates Suitability of High-Altitude Floating Solar Power. iScience 2022, 25, 104394. [Google Scholar] [CrossRef]
- Oberascher, M.; Schartner, L.; Sitzenfrei, R. Optimisation of Small Hydropower Units in Water Distribution Systems by Demand Forecasting. Water 2023, 15, 3998. [Google Scholar] [CrossRef]
- Cirone, D.; Bruno, R.; Bevilacqua, P.; Perrella, S.; Arcuri, N. Techno-Economic Analysis of an Energy Community Based on PV and Electric Storage Systems in a Small Mountain Locality of South Italy: A Case Study. Sustainability 2022, 14, 13877. [Google Scholar] [CrossRef]
- Baratgin, L.; Polcher, J.; Dumas, P.; Quirion, P. Modeling Hydropower Operations at the Scale of a Power Grid: A Demand-Based Approach. Hydrol. Earth Syst. Sci. 2024, 28, 5479–5509. [Google Scholar] [CrossRef]
- Bektaş, E.; Bayındır, K.Ç.; Terciyanlı, A.; Aydın, R.A.; Baykal, Ş.; Yılmaz, H. Energy Management Integrated Volt Var Optimization for Distribution Systems with SVR, PV Inverter, and BESS: A Case Study in Distribution System of Elazığ/Turkey. Electr. Eng. 2023, 105, 663–680. [Google Scholar] [CrossRef]
- Viesi, D.; Baldessari, G.; Polderman, A.; Sala, S.; Zanetti, A.; Bolognese, M.; Pellegrini, C.; Crema, L. Developing and Testing an “Integrated Energy Management System” in a Ski Resort: The “Living Lab Madonna Di Campiglio”. Clean. Energy Syst. 2023, 4, 100050. [Google Scholar] [CrossRef]
- Ma, Q.; Gourbesville, P. Integrated Water Resources Management: A New Strategy for DSS Development and Implementation. River 2022, 1, 189–206. [Google Scholar] [CrossRef]
- Wheater, H.S.; Pomeroy, J.W.; Pietroniro, A.; Davison, B.; Elshamy, M.; Yassin, F.; Rokaya, P.; Fayad, A.; Tesemma, Z.; Princz, D.; et al. Advances in Modelling Large River Basins in Cold Regions with Modélisation Environmentale Communautaire—Surface and Hydrology (MESH), the Canadian Hydrological Land Surface Scheme. Hydrol. Process. 2022, 36, e14557. [Google Scholar] [CrossRef]
- González-Zeas, D.; Rosero-López, D.; Muñoz, T.; Osorio, R.; De Bièvre, B.; Dangles, O. Making Thirsty Cities Sustainable: A Nexus Approach for Water Provisioning in Quito, Ecuador. J. Environ. Manag. 2022, 320, 115880. [Google Scholar] [CrossRef]
- Yaykiran, S.; Ekdal, A. Sustainable Water Optimization Tool (SUWO): An Optimization Framework for the Water–Energy–Food–Ecosystem Nexus. Water 2025, 17, 1280. [Google Scholar] [CrossRef]
- Zakeri, B.; Hunt, J.D.; Laldjebaev, M.; Krey, V.; Vinca, A.; Parkinson, S.; Riahi, K. Role of Energy Storage in Energy and Water Security in Central Asia. J. Energy Storage 2022, 50, 104587. [Google Scholar] [CrossRef]
- Kostner, M.K.; Zanfei, A.; Alberizzi, J.C.; Renzi, M.; Righetti, M.; Menapace, A. Micro Hydro Power Generation in Water Distribution Networks through the Optimal Pumps-as-Turbines Sizing and Control. Appl. Energy 2023, 351, 121802. [Google Scholar] [CrossRef]
- Zanoli, S.M.; Pepe, C.; Astolfi, G.; Luzi, F. Reservoir Advanced Process Control for Hydroelectric Power Production. Processes 2023, 11, 300. [Google Scholar] [CrossRef]
Water management | Precipitation | 30 | |
Water balance | 17 | ||
Groundwater | 14 | ||
Strategies | 8 | ||
Cryosphere | 5 | ||
TOT: 74 | |||
Energy management | Energy systems | 2 | |
Renewable energy sources | 3 | ||
TOT: 5 | |||
Integration of water and energy management | Sectoral integration | 4 | |
Water–energy nexus | 5 | ||
TOT: 9 |
Water |
|
Energy |
|
Integration |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gaetano, F.; Duglio, S.; Beltramo, R. Towards Integrated Water–Energy Systems in Mountain Environments: Insights from a Systematic Literature Review. Water 2025, 17, 2857. https://doi.org/10.3390/w17192857
De Gaetano F, Duglio S, Beltramo R. Towards Integrated Water–Energy Systems in Mountain Environments: Insights from a Systematic Literature Review. Water. 2025; 17(19):2857. https://doi.org/10.3390/w17192857
Chicago/Turabian StyleDe Gaetano, Flavio, Stefano Duglio, and Riccardo Beltramo. 2025. "Towards Integrated Water–Energy Systems in Mountain Environments: Insights from a Systematic Literature Review" Water 17, no. 19: 2857. https://doi.org/10.3390/w17192857
APA StyleDe Gaetano, F., Duglio, S., & Beltramo, R. (2025). Towards Integrated Water–Energy Systems in Mountain Environments: Insights from a Systematic Literature Review. Water, 17(19), 2857. https://doi.org/10.3390/w17192857