Status and Progress of Determining the Variability and Controls on Chemical Denudation Rates in Glacierized Basins Around the World
Abstract
1. Introduction
2. Synthesis and Analysis of CDRs Across Global Glacier Basins
2.1. Synthesis of CDR Across Global Glacier Basins
Site No | Field Area/Basin | Geology/Mineralogy | CDR (meq m−2 yr−1) | Specific Discharge (m yr−1) | References |
---|---|---|---|---|---|
Northwest America | |||||
1 | South Cascade, USA * | Plutonic Metamorphic | 930 | 3.28 | [21] |
2 | South Cascade, USA * | Plutonic Metamorphic | 676 | 3.9 | [23] |
3 | Berendon, Canada | Conglomerate/siltstone | 1650 | 3.7 | [22] |
4 | Berendon, Canada | Granodiorite/volcanic | 947 | 3.7 | [22] |
5 | Worthington, USA | Plutonic Metamorphic | 1600 | 7.68 | [11] |
Svalbard/Arctic Canada | |||||
6 | Longyearbreen, Svalbard | Sedimentary rocks | 322 | 0.3 | [15] |
7 | Austre Brøggerbreen, Svalbard | Sedimentary mix | 240–260 | 0.8–1.3 | [12] |
8 | Bayelva, Svalbard | Metamorphic rocks | 470–574 | 0.82–0.88 | [7] |
9 | Brøggerbreane, Svalbard | Carbonate-rich | 480–510 | 0.8–1.0 | [12] |
10 | Hannabreen, Svalbard | Sedimentary mix | 320 | 0.8 | [7] |
11 | Erikbreen, Svalbard | Sedimentary mix | 320 | 0.5 | [7] |
12 | Erdmannbreen, Svalbard | Sedimentary mix | 190 | 0.8 | [7] |
13 | Finsterwalderbreen, Svalbard | Metamorphic rocks | 210–440 | 0.35–0.84 | [7] |
14 | Scoot Turnerbreen, Svalbard * | Shale-rich | 160 | 0.52 | [24] |
15 | Scoot Turnerbreen, Svalbard | Shale-rich | 350 | 0.5 | [12] |
16 | Werenskioldbreen, Svalbard | Metamorphic rocks | 1601–1762 | 1.83–1.83 | [16] |
17 | Finsterwalserbreen, Svalbard | Shale-rich | 790 | 1.1 | [25] |
18 | Rieperbreen, Svalbard | Shale-rich | 292 | 0.4 | [12] |
19 | Midtre Lovénbreen, Svalbard | Plutonic Metamorphic | 450–560 | 1.3–1.5 | [7] |
20 | Lewis River, Barnes Ice Cap, Canada | Plutonic Metamorphic | 94 | 0.71 | [11] |
Iceland | |||||
21 | Tungufljot * | Basalt | 718 | 2.1 | [26] |
22 | Hvita-S | Basalt | 1100 | 2.1 | [26] |
23 | Hvita-W | Basalt | 630 | 1.8 | [26] |
Greenland | |||||
24 | Kuannersuit Glacier | Basalt-rich | 683–860 | 2.5–2.5 | [27] |
25 | Watson River | Plutonic Metamorphic | 46 | 0.373 | [28] |
Europe/Alpine | |||||
26 | Haut Glacier d’Arolla, Switzerland * | Plutonic Metamorphic | 640–685 | 1.71–2.31 | [32] |
27 | Gornergletschler, Switzerland | Plutonic Metamorphic | 1010 | 1.38 | [30] |
28 | Gornergletschler, Switzerland | Plutonic Metamorphic | 478.1 | 1.35 | [29] |
29 | Tsidjiore Nouve, Switzerland | Plutonic Metamorphic | 510 | 1.2 | [31] |
China-Tibet/Alpine | |||||
30 | Urumi Glacier No. 1, China | Schist-Granodiorite | 577–703 | 1.12–0.96 | [33] |
31 | Dongkemadi Glacier, Tibet | Metamorphic | 189 | 0.98 | [34] |
32 | Hailuogou Glacier, Tibet | Metamorphic | 2850–3108 | 4.37–4.63 | [14] |
Antarctica | |||||
33 | Tuva Glacier | Plutonic Metamorphic | 163 | 0.53 | [12] |
Himalaya | |||||
34 | Batura Glacier, Pakistan | Carbonate-rich | 1460 | 1.95 | [36] |
35 | Batura Glacier, Pakistan | Carbonate-rich | 1600 | 1.6 | [38] |
36 | Chhota-Shigri, India | Plutonic Metamorphic | 750 | 3.5 | [35] |
37 | Dokriani Glacier (Bamak), India | Plutonic Metamorphic | 462 | 1.12 | [37] |
38 | Dokriani Glacier, India | Plutonic Metamorphic | 4160 | 6.5 | [17] |
39 | Lirung Glacier, Nepal | Plutonic Metamorphic | 746 | 0.567 | [18] |
40 | Langtang Glacier, Nepal * | Plutonic Metamorphic | 764 | 0.60 | [10] |
41 | Trishuli River, Nepal * | Plutonic Metamorphic | 1639 | 1.27 | [10] |
42 | Narayani River, Nepal * | Plutonic Metamorphic | 4032 | 1.45 | [10] |
43 | Global Average | Mixed | 390 | nd | [39] |
2.2. Descriptive Statistics of Global Glaciers for CDR
2.2.1. ANOVA Test for H01: Equality of Average CDR Across Seven Global Glacierized Regions
2.2.2. Trends in Cationic Denudation Rate
2.3. Descriptive Statistics of Discharge for Glaciers
2.3.1. ANOVA Test for H02: Equality of Average Discharge or Runoff Across Seven Global Glacierized Regions
2.3.2. Variations in Discharge of Glaciers
2.4. Descriptive Statistics of Chemical Weathering Intensity (CWI)
2.4.1. ANOVA Test for H03: Equality of Average CWI Across Regions
2.4.2. Variations in CWI
3. Predictive Modeling of CDR over Glacier Specific Discharge
4. Summary of Research Findings
4.1. Variations in CDR
4.2. Variations in Glacier Discharge
4.3. Predictive Modeling of CDR Based on Specific Discharge
4.4. Integrating of Findings
5. Future Research
5.1. Enhanced Data Collection and Granularity
5.2. Integration of Climate and Geological Factors
5.3. Basin-Specific Modeling
5.4. Impacts of Climate Change
5.5. Broader Environmental Impacts
5.6. Comparative Studies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodson, A.J.; Yde, J.C. The geochemistry of glacier meltwaters. In Treatise on Geomorphology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 290–304. [Google Scholar]
- Dyurgerov, M.; Meier, M.F. Mass balance of mountain and sub-polar glaciers: A new global assessment for 1961–1990. Arct. Alp. Res. 1997, 29, 379–391. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kaab, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in early 21st century. J. Glaciol. 2015, 61, 745–761. [Google Scholar] [CrossRef]
- Bhatt, M.P.; Takeuchi, N.; Acevedo, M.F. Chemistry of supraglacial ponds in the debris covered area of Lirung Glacier in Central Nepal Himalayas. Aquat. Geochem. 2016, 22, 35–64. [Google Scholar] [CrossRef]
- Anderson, S.P.; Blum, J.; Brantley, S.L.; Chadwick, O.; Chorover, J.; Derry, L.A.; Drever, J.I.; Hering, J.G.; Kirchner, J.W.; Kump, L.R.; et al. Proposed initiative would study earth’s weathering engine. AGU Eos Trans. 2004, 85, 265–269. [Google Scholar] [CrossRef]
- Hodson, A.J.; Tranter, M.; Vatne, G. Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: An Arctic perspective. Earth Surf. Process. Landf. 2000, 25, 1447–1471. [Google Scholar] [CrossRef]
- McDowell, W.H.; Sanchez, C.G.; Asbury, C.E.; Ramos Perez, C.R. Influence of sea salt aerosols and long-range transport on precipitation chemistry at El Verde, Puerto Rico. Atmos. Environ. 1990, 24, 2813–2821. [Google Scholar] [CrossRef]
- Millot, R.; Gaillardet, J.; Dupre, B.; Allegre, C.J. The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 2002, 196, 83–98. [Google Scholar] [CrossRef]
- Bhatt, M.P.; Hartmann, J.; Acevedo, M.F. Seasonal variations of biogeochemical matter export along Langtang-Narayani River System in Central Nepal Himalaya. Geochem. Cosmochim. Acta 2018, 238, 208–234. [Google Scholar] [CrossRef]
- Anderson, S.; Drever, J.; Humphrey, N. Chemical weathering in glacial environments. Geology 1997, 25, 399–402. [Google Scholar] [CrossRef]
- Hodson, A.; Heaton, T.; Langford, H.; Newsham, K. Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry 2010, 98, 9–27. [Google Scholar] [CrossRef]
- Krawczyk, W.E.; Lefauconnier, B.; Pettersson, L.-E. Chemical denudation rates in Bayelva catchment, Svalbard in the fall of 2000. Phys. Chem. Earth 2003, 28, 1261–1275. [Google Scholar] [CrossRef]
- Li, X.; Ding, Y.; Liu, Q.; Zhang, Y.; Han, T.; Jing, Z.; Li, Q.; Liu, S. Intense chemical weathering at glacial meltwater-dominated Hailuogou Basin in the Southeast Tibetan Plateau. Water 2019, 11, 1209. [Google Scholar] [CrossRef]
- Yde, J.C.; Riger-Kusk, M.; Christiansen, H.H.; Knudsen, N.T.; Humlum, O. Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. J. Glaciol. 2008, 54, 259–272. [Google Scholar] [CrossRef]
- Stachnik, L.; Majchrowska, E.; Yde, J.C.; Nawrot, A.P.; Cichala-Kamrowska, K.; Ignatiuk Piechota, A. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. J. Hydrol. 2016, 538, 177–193. [Google Scholar] [CrossRef]
- Hasnain, S.I.; Thayyen, R. Controls on the major-ion chemistry of the Dokriani Glacier meltwaters, Ganga basin, Garhwal Himalaya, India. J. Glaciol. 1999, 45, 87–92. [Google Scholar] [CrossRef][Green Version]
- Bhatt, M.P.; Masuzawa, T.; Yamamoto, M.; Sakai, A.; Fujita, K. Seasonal Changes in Dissolved Chemical Composition and Flux of Melt Water Draining from Lirung Glacier in the Nepal Himalayas; International Association of Hydrological Sciences: Seattle, WA, USA, 2000; Volume 264, pp. 277–288. [Google Scholar][Green Version]
- Torres, M.A.; Baronas, J.J.; Clark, K.E.; Feakins, S.J.; West, A.J. Mixing as a driver of temporal variations in river chemistry: 1. Insights from conservative tracers in the Andes-Amazon transition. Water Resour. Res. 2017, 53, 3102–3119. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Ding, Y.; Hawkings, J.R.; Yde, J.C.; Raiswell, R.; Liu, J.; Zhang, S.; Kang, S.; Wang, R.; et al. Globally elevated chemical weathering rates beneath glaciers. Nat. Commun. 2022, 13, 407. [Google Scholar] [CrossRef]
- Reynolds, R.C.; Johnson, N.M. Chemical weathering in the temperate glacial environment of the Northen Cascade Mountains. Geochim. Cosmochim. Acta 1972, 36, 537–554. [Google Scholar] [CrossRef]
- Eyles, N.; Sasseville, D.R.; Slatt, R.M.; Rogerson, R.J. Geochemical denudation rates and solute transport mechanisms. Can. J. Earth Sci. 1982, 19, 1570–1581. [Google Scholar] [CrossRef]
- Axtmann, E.; Stallard, R. Chemical weathering in the South Cascade Glacier basin, comparison of subglacial and extra-glacial weathering. In Proceedings of Biogeochemistry of Seasonally Snow-Covered Catchments; Tonnessen, K., William, M.W., Tranter, M., Eds.; IAHS: Boulder, CO, USA, 1995; Volume 228, pp. 431–439. [Google Scholar]
- Hodgkins, R.; Tranter, M.; Dowdeswell, J.A. Solute Provenance, transport, and denudation in a high Arctic glacierized catchment. Hydrol. Process. 1998, 11, 1813–1832. [Google Scholar] [CrossRef]
- Wadham, J.L.; Cooper, R.J.; Tranter, M.; Hodgkins, R. Enhancement of glacial solute fluxes in the proglacial zone of a polythermal glacier. J. Glaciol. 2001, 47, 378–386. [Google Scholar] [CrossRef]
- Gislason, S.R.; Arnorsson, S.; Armannsson, H. Chemical weathering of basalt in Southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. Am. J. Sci. 1996, 96, 837–907. [Google Scholar] [CrossRef]
- Yde, J.C.; Knudsen, N.T.; Nielsen, O.B. Glacier hydrochemistry, solute provenance, and chemical denudation at a surge-type glacier in Kuannersuit Kuussuat, Disko Island, West Greenland. J. Hydrol. 2005, 300, 172–187. [Google Scholar] [CrossRef]
- Yde, J.C.; Knudsen, N.T.; Hasholt, B.; Mikkelsen, A.B. Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland. J. Hydrol. 2014, 519, 2165–2179. [Google Scholar] [CrossRef]
- Collins, D.N. Solute yield from a glacierized high mountain basin. In Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships; Webb, B.W., Ed.; International Association of Hydrological Sciences: Hamburg, Germany, 1983; Volume 141, pp. 41–50. [Google Scholar]
- Metcalf, R.C. The cationic denudation rate of an alpine glacier catchment: Gornergletscher, Switzerland. Z. Für Gletscherkunde Glazialgeol. 1986, 22, 19–32. [Google Scholar]
- Souchez, R.A.; Lemmens, M.M. Solutes. In Glacio-Fluvial Sediment Transfer: An Alpine Perspective; Gurnell, A.M., Clark, M.J., Eds.; John Wiley: New York, NY, USA, 1987; pp. 285–303. [Google Scholar]
- Sharp, M.; Tranter, M.; Brown, G.H.; Skidmore, M. Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology 1995, 23, 61–64. [Google Scholar]
- Feng, F.; Zhongqin, L.I.; Jin, S.; Dong, Z.; Wang, F. Hydrochemical characteristics and solute dynamics of meltwater runoff of Urumqi Glacier No. 1, Eastern Tianshan, Northwest China. J. Mt. Sci. 2012, 9, 472–482. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Kang, S.; Mika, S.; Ding, Y.; Han, T.; Wu, Q.; Yu, Z. Corrigendum to: Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. J. Hydrol. 2017, 541, 1104–1118. [Google Scholar]
- Hasnain, S.I.; Subramanian, V.; Dhanpal, K. Chemical characteristics and suspended sediment load of meltwaters from a Himalayan glacier in India. J. Hydrol. 1989, 106, 99–108. [Google Scholar] [CrossRef]
- Collins, D.N.; Lowe, A.T.; Boult, S. Solute fluxes in meltwaters draining from glacierized high mountain basins. In Proceedings of the Fourth International Symposium on the Geochemistry of the Earth’s Surface, Ilkley, UK, 22–28 July 1996; Bottrell, S.H., Ed.; University of Leeds: Leeds, UK, 1996; pp. 728–732. [Google Scholar]
- Hasnain, S.I.; Thayyen, R.J. Variation of discharge and solute concentration in the meltwater of Dokriani glacier, Garhwal Himalaya, India. J. Geol. Soc. India 1996, 47, 89–93. [Google Scholar] [CrossRef]
- Hodson, A.; Porter, P.; Lowe, A.; Mumford, P. Chemical denudation and silicate weathering in Himalayan glacier basin: Batura Glacier, Pakistan. J. Hydrol. 2002, 262, 193–208. [Google Scholar] [CrossRef]
- Livingston, D.A. Chemical Composition of Rivers and Lakes: Professional Paper 440-G; United States Geological Survey: Washington, DC, USA, 1963; 64p.
Region | N | Mean | SD | Min | Max | 95% CI for Mean | |
---|---|---|---|---|---|---|---|
Lower B | Upper B | ||||||
Northwest America | 5 | 1161 | 438 | 676 | 1650 | 617 | 1704 |
Svalbard/Arctic Canada | 20 | 512 | 431 | 94 | 1762 | 310 | 414 |
Iceland | 3 | 816 | 250 | 630 | 1100 | 195 | 1437 |
Greenland | 3 | 530 | 428 | 46 | 860 | −534 | 1593 |
Alpine-Europe | 5 | 665 | 212 | 478 | 1010 | 478 | 1010 |
Alpine-China-Tibet | 5 | 1485 | 1380 | 189 | 3108 | −228 | 3198 |
Himalaya | 7 | 1420 | 1278 | 462 | 4160 | 239 | 2602 |
Antarctica | 1 | 163 | - | - | - | - | - |
Total | 49 | 835 | 796 | 46 | 4160 | 607 | 1064 |
Region | n | Mean | SD | Min | Max | 95% CI for Mean | |
---|---|---|---|---|---|---|---|
Lower B | Upper B | ||||||
Northwest America | 5 | 4.45 | 1.82 | 3.28 | 7.68 | 2.19 | 6.71 |
Svalbard/Arctic Canada | 20 | 0.92 | 0.45 | 0.30 | 1.83 | 0.71 | 1.13 |
Iceland | 3 | 2.00 | 0.17 | 1.80 | 2.10 | 1.57 | 2.43 |
Greenland | 3 | 1.79 | 1.23 | 0.37 | 2.50 | −1.26 | 4.84 |
Alpine-Europe | 5 | 1.59 | 0.44 | 1.20 | 2.31 | 1.04 | 2.14 |
Alpine-China-Tibet | 5 | 2.41 | 1.91 | 0.96 | 4.63 | 0.04 | 4.78 |
Himalaya | 7 | 2.26 | 2.12 | 0.57 | 6.50 | 0.30 | 4.22 |
Antarctica | 1 | 0.53 | - | - | - | - | - |
Total | 49 | 1.80 | 1.57 | 0.30 | 7.68 | 1.35 | 2.26 |
(I) Region | (J) Region | Mean Difference (I − J) | p-Value |
---|---|---|---|
Northwest America | Svalbard/Arctic Canada | 3.53 | <0.001 * |
Iceland | 2.45 | 0.200 | |
Greenland | 2.66 | 0.109 | |
Alpine-Europe | 2.86 * | 0.015 * | |
Alpine-China-Tibet | 2.04 | 0.261 | |
Himalaya | 2.19 | 0.088 | |
Svalbard/Arctic Canada | Northwest America | −3.53 * | <0.001 * |
Iceland | −1.08 | 1.000 | |
Greenland | −0.87 | 1.000 | |
Alpine-Europe | −0.67 | 1.000 | |
Alpine-China-Tibet | −1.49 | 0.419 | |
Himalaya | −1.34 | 0.363 | |
Iceland | Northwest America | −2.45 | 0.200 |
Svalbard/Arctic Canada | 1.08 | 1.000 | |
Greenland | 0.21 | 1.000 | |
Alpine-Europe | 0.41 | 1.000 | |
Alpine-China-Tibet | −0.41 | 1.000 | |
Himalaya | −0.26 | 1.000 | |
Greenland | Northwest America | −2.66 | 0.109 |
Svalbard/Arctic Canada | 0.87 | 1.000 | |
Iceland | −0.21 | 1.000 | |
Alpine-Europe | 0.20 | 1.000 | |
Alpine-China-Tibet | −0.62 | 1.000 | |
Himalaya | −0.47 | 1.000 | |
Alpine-Europe | Northwest America | −2.86 * | 0.015 * |
Svalbard/Arctic Canada | 0.67 | 1.000 | |
Iceland | −0.41 | 1.000 | |
Greenland | −0.20 | 1.000 | |
Alpine-China-Tibet | −0.82 | 1.000 | |
Himalaya | −0.67 | 1.000 | |
Alpine-China-Tibet | Northwest America | −2.04 | 0.26 |
Svalbard/Arctic Canada | 1.49 | 0.419 | |
Iceland | 0.41 | 1.000 | |
Greenland | 0.62 | 1.000 | |
Alpine-Europe | 0.82 | 1.000 | |
Himalaya | 0.15 | 1.000 | |
Himalaya | Northwest America | −2.19 | 0.088 |
Svalbard/Arctic Canada | 1.34 | 0.363 | |
Iceland | 0.26 | 1.000 | |
Greenland | 0.47 | 1.000 | |
Alpine-Europe | 0.67 | 1.000 | |
Alpine-China-Tibet | −0.15 | 1.000 |
Region | n | Mean | SD | Min | Max | 95% CI for Mean | |
---|---|---|---|---|---|---|---|
Lower B | Upper B | ||||||
Northwest America | 5 | 273 | 105 | 173 | 446 | 143 | 404 |
Svalbard/Arctic Canada | 20 | 557 | 252 | 132 | 1073 | 439 | 676 |
Iceland | 3 | 405 | 103 | 342 | 524 | 150 | 661 |
Greenland | 3 | 247 | 113 | 123 | 344 | −33 | 527 |
Alpine-Europe | 5 | 436 | 172 | 297 | 732 | 223 | 650 |
Alpine-China-Tibet | 5 | 553 | 216 | 193 | 732 | 284 | 821 |
Himalaya | 7 | 801 | 419 | 214 | 1316 | 414 | 1188 |
Antarctica | 1 | 308 | - | - | - | - | - |
Total | 49 | 517 | 285 | 123 | 1316 | 435 | 599 |
(I) Region | (J) Region | Mean Difference (I – J) | p-Value |
---|---|---|---|
Northwest America | Svalbard/Arctic Canada | −284 | 0.655 |
Iceland | −132 | 1.000 | |
Greenland | 27 | 1.000 | |
Alpine-Europe | −163 | 1.000 | |
Alpine-China-Tibet | −279 | 1.000 | |
Himalaya | −527 | 0.021 * | |
Svalbard/Arctic Canada | Northwest America | 284 | 0.655 |
Iceland | 152 | 1.000 | |
Greenland | 311 | 1.000 | |
Alpine-Europe | 121 | 1.000 | |
Alpine-China-Tibet | 5 | 1.000 | |
Himalaya | −243 | 0.745 | |
Iceland | Northwest America | 132 | 1.000 |
Svalbard/Arctic Canada | −152 | 1.000 | |
Greenland | 158 | 1.000 | |
Alpine-Europe | −31 | 1.000 | |
Alpine-China-Tibet | −148 | 1.000 | |
Himalaya | −395 | 0.627 | |
Greenland | Northwest America | −27 | 1.000 |
Svalbard/Arctic Canada | −311 | 1.000 | |
Iceland | −158 | 1.000 | |
Alpine-Europe | −190 | 1.000 | |
Alpine-China-Tibet | −306 | 1.000 | |
Himalaya | −554 | 0.064 | |
Alpine-Europe | Northwest America | 163 | 1.000 |
Svalbard/Arctic Canada | −121 | 1.000 | |
Iceland | 31 | 1.000 | |
Greenland | 190 | 1.000 | |
Alpine-China-Tibet | −116 | 1.000 | |
Himalaya | −364 | 0.398 | |
Alpine-China-Tibet | Northwest America | 279 | 1.000 |
Svalbard/Arctic Canada | −5 | 1.000 | |
Iceland | 148 | 1.000 | |
Greenland | 306 | 1.000 | |
Alpine-Europe | 116 | 1.000 | |
Himalaya | −248 | 1.000 | |
Himalaya | Northwest America | 527 | 0.021 * |
Svalbard/Arctic Canada | 243 | 0.745 | |
Iceland | 395 | 0.627 | |
Greenland | 558 | 0.064 | |
Alpine-Europe | 364 | 0.398 | |
Alpine-China-Tibet | 248 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatt, M.P.; Malla, G.B.; Yde, J.C. Status and Progress of Determining the Variability and Controls on Chemical Denudation Rates in Glacierized Basins Around the World. Water 2025, 17, 2811. https://doi.org/10.3390/w17192811
Bhatt MP, Malla GB, Yde JC. Status and Progress of Determining the Variability and Controls on Chemical Denudation Rates in Glacierized Basins Around the World. Water. 2025; 17(19):2811. https://doi.org/10.3390/w17192811
Chicago/Turabian StyleBhatt, Maya P., Ganesh B. Malla, and Jacob C. Yde. 2025. "Status and Progress of Determining the Variability and Controls on Chemical Denudation Rates in Glacierized Basins Around the World" Water 17, no. 19: 2811. https://doi.org/10.3390/w17192811
APA StyleBhatt, M. P., Malla, G. B., & Yde, J. C. (2025). Status and Progress of Determining the Variability and Controls on Chemical Denudation Rates in Glacierized Basins Around the World. Water, 17(19), 2811. https://doi.org/10.3390/w17192811