Phosphate Recovery from Wastewater Using Red Mud-Modified Biochar Beads: Performance and Mechanism Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Red Mud-Modified Biochar Beads (RM/CSBC)
2.3. Phosphate Adsorption Experiments
2.3.1. Adsorption Kinetics
2.3.2. Adsorption Isotherm
2.3.3. Adsorption Thermodynamics
2.3.4. Effect of Solution pH
2.3.5. Effect of Co-Existing Ions
2.4. Characterization
2.5. Phosphate Release Experiments
3. Results and Discussion
3.1. Preparation Conditions of RM/CSBC
3.1.1. Effect of Mass Ratio of Red Mud and Biochar
3.1.2. Effect of Pyrolysis Temperature
3.2. Phosphate Adsorption Performance
3.2.1. Adsorption Kinetics Analysis
3.2.2. Adsorption Isotherm Analysis
3.2.3. Adsorption Thermodynamics Analysis
3.2.4. Effect of Solution pH
3.2.5. Effect of Co-Existing Ions
3.3. Phosphate Recovery Mechanisms
3.4. Phosphate Slow-Release Performance of RM/CSBC-P
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Biochar |
RM | Red mud |
RM/CSBC | Red mud-modified biochar beads |
RM/CSBC-P | P-loaded red mud modified biochar beads |
References
- Yi, X.-H.; Wang, T.-Y.; Chu, H.-Y.; Gao, Y.; Wang, C.-C.; Li, Y.-J.; Chen, L.; Wang, P.; Fu, H.; Zhao, C.; et al. Effective Elimination of Tetracycline Antibiotics via Photoactivated SR-AOP over Vivianite: A New Application Approach of Phosphorus Recovery Product from WWTP. Chem. Eng. J. 2022, 449, 137784. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Liu, Y.; Wei, W.; Ni, B.-J. Phosphorus Recovery from Wastewater and Sewage Sludge as Vivianite. J. Clean. Prod. 2022, 370, 133439. [Google Scholar] [CrossRef]
- Yu, S.-H.; Wang, Y.; Hua, L.; Fan, M.-Y.; Ren, X.-H.; Zhang, L. Mg-Fe Bimetallic Oxide Nanocomposite for Superior Phosphate Removal and Recovery from Aquatic Environment: Synergistic Effects of Sorption and Struvite Crystallization. J. Environ. Chem. Eng. 2024, 12, 112132. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Lee, X.; Wu, P.; Liu, F.; Zhang, X.; Li, L.; Chen, M. Environmental-Friendly Coal Gangue-Biochar Composites Reclaiming Phosphate from Water as a Slow-Release Fertilizer. Sci. Total Environ. 2021, 758, 143664. [Google Scholar] [CrossRef]
- Yuan, J.; Wen, Y.; Ruiz, G.; Sun, W.; Ma, X. Enhanced Phosphorus Removal and Recovery by Metallic Nanoparticles-Modified Biochar. Nanotechnol. Environ. Eng. 2020, 5, 26. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhao, Y.; Wang, L.; Feng, J.; Sun, F. Efficient Simultaneous Phosphate and Ammonia Adsorption Using Magnesium-Modified Biochar Beads and Their Recovery Performance. J. Environ. Chem. Eng. 2023, 11, 110875. [Google Scholar] [CrossRef]
- Wang, Y.; Kuntke, P.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J.N.; Lei, Y. Electrochemically Mediated Precipitation of Phosphate Minerals for Phosphorus Removal and Recovery: Progress and Perspective. Water Res. 2022, 209, 117891. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Mckay, G.; Kochkodan, V.; Atieh, M.A.; Al-Ansari, T. A State of the Art Review on Phosphate Removal from Water by Biochars. Chem. Eng. J. 2021, 409, 128211. [Google Scholar] [CrossRef]
- Khan, N.A.; Najam, T.; Shah, S.S.A.; Hussain, E.; Ali, H.; Hussain, S.; Shaheen, A.; Ahmad, K.; Ashfaq, M. Development of Mn-PBA on GO Sheets for Adsorptive Removal of Ciprofloxacin from Water: Kinetics, Isothermal, Thermodynamic and Mechanistic Studies. Mater. Chem. Phys. 2020, 245, 122737. [Google Scholar] [CrossRef]
- Zhou, Q.; Luo, J.; Wu, H.; Zhu, G.; Feng, J.; Dong, Z.; Sun, S. Fe-Modified Porous Biochar for Efficient Adsorption of Low-Concentration Phosphate from Municipal Wastewater: Performance, Mechanism, and Fixed-Bed Behavior Prediction. Sep. Purif. Technol. 2025, 379, 134903. [Google Scholar] [CrossRef]
- Han, M.; Wang, Y.; Zhan, Y.; Lin, J.; Bai, X.; Zhang, Z. Efficiency and Mechanism for the Control of Phosphorus Release from Sediment by the Combined Use of Hydrous Ferric Oxide, Calcite and Zeolite as a Geo-Engineering Tool. Chem. Eng. J. 2022, 428, 131360. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Zhao, Y.; Qi, M.; Wang, L.; Feng, J. Phosphate Recovery from Wastewater via Vivianite Crystallization Using Separable Ferrous Modified Biochar Beads. Chem. Eng. J. 2024, 498, 155453. [Google Scholar] [CrossRef]
- Suthakaran, V.; Thomas, R.; Guirard, M.; Meeroff, D.; Jahandar Lashaki, M. Developing Activated Carbon Adsorbent Materials Using Cyanobacterial Biomass as Precursor to Remove Phosphate from Surface Waters. Algal Res. 2025, 86, 103901. [Google Scholar] [CrossRef]
- Shaheen, J.; Fseha, Y.H.; Sizirici, B. Performance, Life Cycle Assessment, and Economic Comparison between Date Palm Waste Biochar and Activated Carbon Derived from Woody Biomass. Heliyon 2022, 8, e12388. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Pazos, M.; Rosales, E.; Sanromán, M.A. Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review. Appl. Sci. 2020, 10, 7810. [Google Scholar] [CrossRef]
- Alhashimi, H.A.; Aktas, C.B. Life Cycle Environmental and Economic Performance of Biochar Compared with Activated Carbon: A Meta-Analysis. Resour. Conserv. Recycl. 2017, 118, 13–26. [Google Scholar] [CrossRef]
- Huggins, T.M.; Haeger, A.; Biffinger, J.C.; Ren, Z.J. Granular Biochar Compared with Activated Carbon for Wastewater Treatment and Resource Recovery. Water Res. 2016, 94, 225–232. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.; Wang, Y.; Zhao, Y.; Wang, L.; Feng, J.; Sun, F. Cooperative Adsorption of Sb (V) in Water by Magnetic MgFe2O4-Biochar Composite Beads. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133133. [Google Scholar] [CrossRef]
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus Adsorption by Functionalized Biochar: A Review. Environ. Chem. Lett. 2023, 21, 497–524. [Google Scholar] [CrossRef]
- Zheng, Y.; Zimmerman, A.R.; Gao, B. Comparative Investigation of Characteristics and Phosphate Removal by Engineered Biochars with Different Loadings of Magnesium, Aluminum, or Iron. Sci. Total Environ. 2020, 747, 141277. [Google Scholar] [CrossRef]
- Shen, X.; Yan, F.; Zhang, Z.; Li, C.; Zhao, S.; Zhang, Z. Enhanced and Environment-Friendly Chemical Looping Gasification of Crop Straw Using Red Mud as a Sinter-Resistant Oxygen Carrier. Waste Manag. 2021, 121, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Heal, K.V.; Friesl-Hanl, W. The Use of Red Mud as an Immobiliser for Metal/Metalloid-Contaminated Soil: A Review. J. Hazard. Mater. 2017, 325, 17–30. [Google Scholar] [CrossRef]
- Yu, S.-H.; Feng, X.-Y.; Li, H.; Chong, H.-B.; Hua, L. Magnetic Lanthanum-Modified Ball-Milled Steel Slag Encapsulated Alginate Composite Hydrogel Beads for Low-Level Phosphate Removal. Int. J. Biol. Macromol. 2025, 321, 146308. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Liu, M.; Ren, H. Biochar Produced from the Co-Pyrolysis of Sewage Sludge and Walnut Shell for Ammonium and Phosphate Adsorption from Water. J. Environ. Manag. 2019, 249, 109410. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Liu, Z.; Ren, Z. Frontier Research and Prospect of Phosphate Adsorption in Wastewater by Red Mud: A Review. Desalination Water Treat. 2023, 310, 86–108. [Google Scholar] [CrossRef]
- Kang, K.; Loebsack, G.; Sarchami, T.; Klinghoffer, N.B.; Papari, S.; Yeung, K.K.-C.; Berruti, F. Production of a Bio-Magnetic Adsorbent via Co-Pyrolysis of Pine Wood Waste and Red Mud. Waste Manag. 2022, 149, 124–133. [Google Scholar] [CrossRef]
- Yang, J.; Ma, X.; Xiong, Q.; Zhou, X.; Wu, H.; Yan, S.; Zhang, Z. Functional Biochar Fabricated from Red Mud and Walnut Shell for Phosphorus Wastewater Treatment: Role of Minerals. Environ. Res. 2023, 232, 116348. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, B.; Feng, Q.; Chen, M.; Zhang, X.; Zhao, R. Recovery of Nitrogen and Phosphorus in Wastewater by Red Mud-Modified Biochar and Its Potential Application. Sci. Total Environ. 2023, 860, 160289. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Y.; Yang, D.; Jin, Q.; Lin, H. Synthesis of Co-Pyrolyzed Biochar Using Red Mud and Peanut Shell for Removing Phosphate from Pickling Wastewater: Performance and Mechanism. Chemosphere 2023, 331, 138841. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Li, X.; Cheng, W.; Ban, L. Preparation of Activated Red Mud Particle Adsorbent and Its Adsorption Mechanism for Phosphate Ions. Desalination Water Treat. 2020, 188, 169–184. [Google Scholar] [CrossRef]
- Yang, J.; Liang, T.; Pan, B.; Xu, X.; Guo, Y.; Shi, W.; Long, Q.; Deng, J.; Yao, Q.; Wang, Z. A Spherical Adsorbent Produced from a Bagasse Biochar Chitosan Assembly for Selective Adsorption of Platinum-Group Metals from Wastewater. Int. J. Biol. Macromol. 2024, 266, 131142. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Yan, W.; He, C.; Shi, Y. MgFe2O4-Biochar Based Lanthanum Alginate Beads for Advanced Phosphate Removal. Chem. Eng. J. 2020, 387, 123305. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Xu, Y.; Qian, G. Phosphate Adsorption on Metal Oxides and Metal Hydroxides: A Comparative Review. Environ. Rev. 2016, 24, 319–332. [Google Scholar] [CrossRef]
- Kim, T.; Lieberman, B.; Luta, G.; Peña, E.A. Prediction Intervals for Poisson-Based Regression Models. WIREs Comput. Stat. 2022, 14, e1568. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Y.; Pan, J.; Jiang, Y.; Zou, X.; Wang, Y. Low-Cost Ca/Mg Co-Modified Biochar for Effective Phosphorus Recovery: Adsorption Mechanisms, Resourceful Utilization, and Life Cycle Assessment. Chem. Eng. J. 2024, 502, 157993. [Google Scholar] [CrossRef]
- González, J.A.; Mengual, J. Enhanced Phosphate Adsorption Using Chemically Modified Walnut Shell Biochar: A Comparative Study of Activation Methods, Isotherm Uncertainty Analysis and Modelling. Water Process. Eng. 2025, 77, 108468. [Google Scholar] [CrossRef]
- Moradi, S.E.; Haji Shabani, A.M.; Dadfarnia, S.; Emami, S. Effective Removal of Ciprofloxacin from Aqueous Solutions Using Magnetic Metal–Organic Framework Sorbents: Mechanisms, Isotherms and Kinetics. J. Iran. Chem. Soc. 2016, 13, 1617–1627. [Google Scholar] [CrossRef]
- He, D.; Zhang, Z.; Zhang, W.; Zhang, H.; Liu, J. Municipal Sludge Biochar Skeletal Sodium Alginate Beads for Phosphate Removal. Int. J. Biol. Macromol. 2024, 261, 129732. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar Modification to Enhance Sorption of Inorganics from Water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, Y.; Sun, R.; Zhou, Y.; Tsang, D.C.W.; Chen, Q. Optimizing the Synthesis of Fe/Al (Hydr)Oxides-Biochars to Maximize Phosphate Removal via Response Surface Model. J. Clean. Prod. 2019, 237, 117770. [Google Scholar] [CrossRef]
- Haider, F.U.; Coulter, J.A.; Cai, L.; Hussain, S.; Cheema, S.A.; Wu, J.; Zhang, R. An Overview on Biochar Production, Its Implications, and Mechanisms of Biochar-Induced Amelioration of Soil and Plant Characteristics. Pedosphere 2022, 32, 107–130. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, X.; Grattieri, M.; Yuan, M.; Cai, R.; Macazo, F.C.; Minteer, S.D. Modified Biochar for Phosphate Adsorption in Environmentally Relevant Conditions. Chem. Eng. J. 2020, 380, 122375. [Google Scholar] [CrossRef]
- Sleiman, N.; Deluchat, V.; Wazne, M.; Mallet, M.; Courtin-Nomade, A.; Kazpard, V.; Baudu, M. Phosphate Removal from Aqueous Solutions Using Zero Valent Iron (ZVI): Influence of Solution Composition and ZVI Aging. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 1–10. [Google Scholar] [CrossRef]
- Ruan, R.; Hua, W.; Yang, W.; Jia, S.; Ma, J.; Zhao, X.; Wang, J.; Wang, X.; Tan, H. Improving Biochar’s Phosphate Adsorption Using Active Metal Substances in Byer Red Mud. J. Anal. Appl. Pyrolysis 2025, 187, 107006. [Google Scholar] [CrossRef]
- Jing, H.-P.; Li, Y.; Wang, X.; Zhao, J.; Xia, S. Simultaneous Recovery of Phosphate, Ammonium and Humic Acid from Wastewater Using a Biochar Supported Mg(OH)2/Bentonite Composite. Environ. Sci. Water Res. Technol. 2019, 5, 931–943. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Aihemaiti, A.; Meng, Y.; Yang, M.; Xu, Y.; Gao, Y.; Zou, Q.; Chen, X. Removal of Phosphate from Aqueous Solution Using MgO-Modified Magnetic Biochar Derived from Anaerobic Digestion Residue. J. Environ. Manag. 2019, 250, 109438. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhou, B.; Zhang, Z.; Liu, S.; Lei, S.; Xiao, R. Simultaneous Capture Removal of Phosphate, Ammonium and Organic Substances by MgO Impregnated Biochar and Its Potential Use in Swine Wastewater Treatment. J. Clean Prod. 2017, 147, 96–107. [Google Scholar] [CrossRef]
- Hsu, P.H. Precipitation of Phosphate from Solution Using Aluminum Salt. Water Res. 1975, 9, 1155–1161. [Google Scholar] [CrossRef]
- Li, H.; Shi, S.; lvshina, lrina; Wang, Z.; Gui, J.; Wang, R.; Pan, C.; Ning, Y.; Qu, J.; Han, S.; et al. Efficient Phosphate Removal from Wastewater Using Mg/Fe-Functionalized Tea Stalk Biochar through Green Synthesis and Bio-Assembly Method. Process Saf. Environ. Prot. 2025, 201, 107215. [Google Scholar] [CrossRef]
- Cheng, J.; Li, X.; Xiao, X.; Yuan, Y.; Liao, X.; Shi, B.; Zhang, S.; Ao, Z. Metal Oxide Loaded Biochars Derived from Chinese Bai Jiu Distillers’ Grains Used for the Adsorption and Controlled Release of Phosphate. Ind. Crops Prod. 2021, 173, 114080. [Google Scholar] [CrossRef]
- Ren, X.; Han, J.; Gu, P.; Zhang, Z.; Miao, H.; Ni, S.; Cao, Y.; Yang, K. Characteristics and Mechanisms of Phosphorus Adsorption by Blue Algae Biochar Modified with a Polyaluminum Chloride (PAC) Dehydrating Agent. J. Environ. Chem. Eng. 2025, 13, 116906. [Google Scholar] [CrossRef]
- Lǚ, J.; Liu, H.; Liu, R.; Zhao, X.; Sun, L.; Qu, J. Adsorptive Removal of Phosphate by a Nanostructured Fe–Al–Mn Trimetal Oxide Adsorbent. Powder Technol. 2013, 233, 146–154. [Google Scholar] [CrossRef]
- Ou, W.; Lan, X.; Guo, J.; Cai, A.; Liu, P.; Liu, N.; Liu, Y.; Lei, Y. Preparation of Iron/Calcium-Modified Biochar for Phosphate Removal from Industrial Wastewater. J. Clean. Prod. 2023, 383, 135468. [Google Scholar] [CrossRef]
- Gao, Z.; Wei, Y.; Tian, X.; Liu, Y.; Lan, X.; Zhang, D.; Han, S.; Huo, P. A Novel Ce/Fe Bimetallic Metal-Organic Framework with Ortho-Dodecahedral Multilevel Structure for Enhanced Phosphate Adsorption. Chem. Eng. J. 2024, 486, 150284. [Google Scholar] [CrossRef]
- Fu, W.; Yao, X.; Zhang, L.; Zhou, J.; Zhang, X.; Yuan, T.; Lv, S.; Yang, P.; Fu, K.; Huo, Y.; et al. Design Optimization of Bimetal-Modified Biochar for Enhanced Phosphate Removal Performance in Livestock Wastewater Using Machine Learning. Bioresour. Technol. 2025, 418, 131898. [Google Scholar] [CrossRef]
- Kang, J.-K.; Seo, E.-J.; Lee, C.-G.; Park, S.-J. Fe-Loaded Biochar Obtained from Food Waste for Enhanced Phosphate Adsorption and Its Adsorption Mechanism Study via Spectroscopic and Experimental Approach. J. Environ. Chem. Eng. 2021, 9, 105751. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, X.; Huang, Q.; Beiyuan, J.; Wang, J.; Liu, J.; Yuan, W.; Nie, C.; Wang, H. Phosphate Removal Mechanisms in Aqueous Solutions by Three Different Fe-Modified Biochars. Int. J. Environ. Res. Public Health 2023, 20, 326. [Google Scholar] [CrossRef]
Aspect | BC | AC | References |
---|---|---|---|
Characteristics | Derived from renewable biomass; meso–macroporous structure; abundant oxygen-containing functional groups; stable carbon backbone | Produced from biomass or fossil precursors; predominantly microporous; very high specific surface area | [13,14] |
Cost | ~USD 50–200 ton−1; some cases ~USD 1.06 kg−1 | ~USD 1000–3000 ton−1; some cases ~USD 1.34 kg−1 | [15,16] |
Environmental impact | CED: 20.3 MJ kg−1; GHG emissions: 1.53 kg CO2-eq kg−1; Meta-analysis: CED 6.1 MJ kg−1, GHG −0.9 kg CO2-eq kg−1 | CED: 119.5 MJ kg−1; GHG emissions: 8.96 kg CO2-eq kg−1; Meta-analysis: CED 97 MJ kg−1, GHG 6.6 kg CO2-eq kg−1 | [17] |
Performance | Comparable or superior removal for certain pollutants after modification; e.g., granular BC removed COD-T at 0.41 kg m−3 d−1 vs. 0.24 kg m−3 d−1 for GAC in high-COD wastewater | Generally faster kinetics and higher capacity for a wide range of pollutants | [18] |
Element | Oxide Form | Content (wt%) |
---|---|---|
Fe | Fe2O3 | 33.41 |
Al | Al2O3 | 22.52 |
Si | SiO2 | 16.16 |
Na | Na2O | 8.64 |
Ti | TiO2 | 5.50 |
Ca | CaO | 3.32 |
K | K2O | 0.19 |
Kinetic Model | Parameter | RM/CSBC |
---|---|---|
PFO model | qe/mg·g−1 | 41.35 |
k1/min−1 | 0.1310 | |
R2 | 0.9580 | |
PSO model | qe/mg·g−1 | 49.16 |
k2/g·mg−1·min−1 | 0.0030 | |
R2 | 0.9666 | |
Elovich model | α/mg·g−1·min−1 | 12.0390 |
β/g·mg−1 | 0.0875 | |
R2 | 0.9661 |
Isotherm Model | Parameter | 15 °C | 25 °C | 35 °C | 45 °C |
---|---|---|---|---|---|
Langmuir model | qm/mg·g−1 | 72.59 | 85.16 | 86.84 | 93.54 |
KL/L·mg−1 | 0.0048 | 0.0053 | 0.0058 | 0.0064 | |
R2 | 0.9976 | 0.9947 | 0.9983 | 0.9942 | |
Freundlich model | KF | 1.7158 | 1.5269 | 2.7139 | 3.2356 |
1/n | 0.5614 | 0.5951 | 0.5271 | 0.5157 | |
R2 | 0.9890 | 0.9944 | 0.9931 | 0.9907 |
T/K | ΔG/kJ·mol−1 | ΔH/kJ·mol−1 | ΔS/J·mol−1·K−1 | R2 |
---|---|---|---|---|
288.15 | −24.28 | 7.26 | 109.47 | 0.9989 |
298.15 | −25.38 | |||
308.15 | −26.47 | |||
318.15 | −27.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Wang, Y.; Qi, M.; Sun, R.; Zhao, Y.; Wang, L.; Wu, S. Phosphate Recovery from Wastewater Using Red Mud-Modified Biochar Beads: Performance and Mechanism Study. Water 2025, 17, 2699. https://doi.org/10.3390/w17182699
Tian F, Wang Y, Qi M, Sun R, Zhao Y, Wang L, Wu S. Phosphate Recovery from Wastewater Using Red Mud-Modified Biochar Beads: Performance and Mechanism Study. Water. 2025; 17(18):2699. https://doi.org/10.3390/w17182699
Chicago/Turabian StyleTian, Feng, Yiwen Wang, Man Qi, Ruyu Sun, Yawen Zhao, Li Wang, and Suqing Wu. 2025. "Phosphate Recovery from Wastewater Using Red Mud-Modified Biochar Beads: Performance and Mechanism Study" Water 17, no. 18: 2699. https://doi.org/10.3390/w17182699
APA StyleTian, F., Wang, Y., Qi, M., Sun, R., Zhao, Y., Wang, L., & Wu, S. (2025). Phosphate Recovery from Wastewater Using Red Mud-Modified Biochar Beads: Performance and Mechanism Study. Water, 17(18), 2699. https://doi.org/10.3390/w17182699