Numerical Simulations of Extratropical Storm Surge in the Bohai Bay Based on a Coupled Atmosphere–Ocean–Wave Model
Abstract
1. Introduction
2. Numerical Models
2.1. WRF
2.2. ROMS
2.3. SWAN
2.4. Coupled WRF–ROMS–SWAN Model
3. Model Application
3.1. Atmospheric Model Setup
3.2. Ocean Model Setup
3.3. SWAN Model Setup
4. Results and Discussion
4.1. Atmosphere Results
4.2. Ocean Results
4.3. Wave Results
5. Summary and Conclusions
- Minor differences in 10 m wind speed were observed between coupled and uncoupled runs, with sea surface temperature exerting a significant influence on wind simulation.
- During the cold-air outbreak, peak water-level timing was well reproduced when WRF–ROMS coupling was enabled, with the two-way configuration achieving the closest match. Although the three-way model accurately predicted maximum surge heights, it tended to overestimate water levels.
- A time lag of ~0.75 h was noted in the one-way ROMS run before the surge peak, and this configuration generally underestimated storm-surge magnitude. Inclusion of SWAN yielded small further improvements, indicating a limited impact of waves on water-level simulations in Bohai Bay for this event.
- Wind and tidal currents strongly modulated wave growth and, in turn, wave dynamics enhanced the effective wind stress driving the surge. The three-way coupling demonstrated the greatest improvement in wave prediction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Jiang, X.Y.; Tian, L.Z.; Li, J.F.; Wang, F. Storm surges on Bohai Sea. China Min. Mag. 2019, 28, 510–516. [Google Scholar]
- Li, Y.; Wen, M.Z.; Yu, H.; Yang, P.; Wang, F.C.; Wang, F. Changes of coastline and tidal flat and its implication for ecological protection under human activities: Take China’s Bohai Bay as an example. China Geol. 2024, 7, 26–35. [Google Scholar] [CrossRef]
- Li, Y.Y.; Feng, H.; Vigouroux, G.; Yuan, D.K.; Zhang, G.Y.; Ma, X.D.; Lei, K. Storm surges in the Bohai Sea: The role of waves and tides. Water 2020, 12, 1509. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.Z.; Li, Y.; Yu, H.; Wen, M.Z.; Hu, Y.Z. Risk assessment of coastal flooding disaster by storm surge based on Elevation-Area method and hydrodynamic models: Taking Bohai Bay as an example. China Geol. 2024, 7, 494–504. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef]
- Li, D.M.; Fu, Q.J.; Xie, Y.Y.; Bai, L. Numerical model of storm surge and inundation in Bohai Bay. Trans. Tianjin Univ. 2011, 17, 57–61. [Google Scholar] [CrossRef]
- Antony, C.; Testut, L.; Unnikrishnan, A.S. Observing storm surges in the Bay of Bengal from satellite altimetry. Estuar. Coast. Shelf Sci. 2014, 151, 131–140. [Google Scholar] [CrossRef]
- Liu, Q.; Ruan, C.; Zhong, S.; Li, J.; Yin, Z.; Lian, X. Risk assessment of storm surge disaster based on numerical models and remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 20–30. [Google Scholar] [CrossRef]
- Chao, W.T.; Young, C.C. Accurate Storm Surge Prediction with a Parametric Cyclone and Neural Network Hybrid Model. Water 2022, 14, 96. [Google Scholar] [CrossRef]
- Agulles, M.; Marcos, M.; Amores, A.; Toomey, T. Storm surge modelling along European coastlines: The effect of the spatio-temporal resolution of the atmospheric forcing. Ocean Model. 2024, 192, 102432. [Google Scholar] [CrossRef]
- Elahi, M.W.E.; Wang, X.H.; Ritchie, E.A. Cyclone-induced storm surge flooding in the Ganges-Brahmaputra-Meghna delta under different mean-sea level rise scenarios. Ocean Dyn. 2025, 75, 23. [Google Scholar] [CrossRef]
- Zhao, P.; Jiang, W.S. A numerical study of the effects of coastal geometry in the Bohai Sea on storm surges induced by cold-air outbreaks. J. Ocean Univ. China (Ocean. Coast. Sea Res.) 2011, 10, 9–15. [Google Scholar] [CrossRef]
- Mo, D.; Hou, Y.J.; Li, J.; Liu, Y.H. Study on the storm surges induced by cold waves in the Northern East China Sea. J. Mar. Syst. 2016, 160, 26–39. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhang, Y.H.; Cao, A.Z.; Liu, Q.; Lv, X.Q. Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. Sci. China Earth Sci. 2016, 59, 1308–1316. [Google Scholar] [CrossRef]
- Ding, Y.M.; Ding, L. A numerical simulation of extratropical storm surge and hydrodynamic response in the Bohai Sea. Discret. Dyn. Nat. Soc. 2014, 1, 282085. [Google Scholar] [CrossRef]
- Ding, Y.M.; Wei, H. Modeling the impact of land reclamation on storm surges in Bohai Sea, China. Nat. Hazards 2017, 85, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Tian, L.Z.; Pei, Y.D.; Wang, F.; Wang, H. Numerical simulation of storm surge inundation in the west zone of Bohai Bay. Geol. Bull. China 2016, 35, 1638–1645. [Google Scholar]
- Zambon, J.B.; He, R.; Warner, J.C. Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn. 2014, 64, 1535–1554. [Google Scholar] [CrossRef]
- Olabarrieta, M.; Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model. 2012, 43–44, 112–137. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, J.; Jiang, C.; Liu, X.; Xie, Z. Numerical investigation of typhoon kai-tak (1213) using a mesoscale coupled wrf-roms model—Part Ⅱ: Wave effects. Ocean Eng. 2020, 196, 106805. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Tian, L.Z.; Li, J.F. Numerical simulation of the storm surge in Bohai Bay based on a coupled ocean-atmosphere model. J. Shanghai Jiaotong Univ. 2017, 51, 1512–1519. [Google Scholar]
- Mo, D.; Hu, P.; Li, J.; Hou, Y.; Li, S. Effect of wave-dependent mechanisms on storm surge and current simulation during three extreme weather systems. J. Phys. Oceanogr. 2024, 54, 25. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Jiang, X.; Li, J.; Tian, L. Numerical simulations and comparative analysis for two types of storm surges in the Bohai Sea using a coupled atmosphere-ocean model. Acta Oceanol. Sin. 2019, 38, 35–47. [Google Scholar] [CrossRef]
- Ghanavati, M.; Young, I.R.; Kirezci, E.; Liu, J. The impact of long-term changes in ocean waves and storm surge on coastal shorelline change: A case study of Bass Strait and south-east Australia. Nat. Hazards Earth Syst. Sci. 2024, 24, 2175–2190. [Google Scholar] [CrossRef]
- Kwun, J.H.; Kin, Y.K.; Seo, J.W.; Jeong, J.H.; You, S.H. Sensitivity of MM5 and WRF mesoscale model predictions of surface winds in a typhoon to planetary boundary layer parameterizations. Nat. Hazards 2009, 51, 63–77. [Google Scholar] [CrossRef]
- Myksvoll, M.S.; Sandvik, A.D.; Skarðhamar, J.; Sundby, S. Importance of high resolution wind forcing on eddy activity and particle dispersion in a Norwegian fjord. Estuar. Coast. Shelf Sci. 2012, 113, 293–304. [Google Scholar] [CrossRef]
- Shiferaw, A.; Tadesse, T.; Rowe, C.; Oglesby, R. Weather research and forecasting model (wrf) sensitivity to choice of parameterization options over ethiopia. Atmosphere 2024, 15, 974. [Google Scholar] [CrossRef]
- Drennan, W.M.; Taylor, P.K.; Yelland, M.J. Parameterizing the sea surface roughness. J. Phys. Oceanogr. 2005, 35, 835–848. [Google Scholar] [CrossRef]
- Li, X.; Shen, D.; Zheng, G.; Zhou, L.; Liu, A. Comprehensive satellite observations and a numerical study of a wintertime shallow sea smoke event in the yellow sea. J. Atmos. Sci. 2022, 79, 3163–3179. [Google Scholar] [CrossRef]
- García-Sánchez, G.; Mancho, A.M.; Ramos, A.G.; Coca, J.; Jiménez Madrid, J.A. Dynamical systems for remote validation of very high-resolution ocean models. Nonlinear Dyn. 2024, 112, 8653–8673. [Google Scholar] [CrossRef]
- Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di Lorenzo, E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys. 2008, 227, 3595–3624. [Google Scholar] [CrossRef]
- Hong, X.; Ji, Y.; Yan, J.; Cheng, J.; Wu, S.; Li, Q. Study on the wave-dissipation effect of oyster reefs based on the swan numerical model. Water 2023, 15, 2884. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, H.; Chen, G.; Yang, J. Assessing the performance of swan model for wave simulations in the bay of bengal. Ocean Eng. 2023, 285, 115295. [Google Scholar] [CrossRef]
- Warner, J.C.; Perlin, N.; Skyllingstad, E. Using the model coupling toolkit to couple earth system models. Environ. Model. Softw. 2008, 23, 1240–1249. [Google Scholar] [CrossRef]
- Larson, J.; Jacob, R.; Ong, E. The model coupling toolkit: A new fortran90 toolkit for building multiphysics parallel coupled models. Int. J. High Perform. Comput. Appl. 2004, 19, 277–292. [Google Scholar] [CrossRef]
- Jones, P.W. A User Guide for Scrip: A Spherical Coordinate Remapping and Interpolation Package, Version 1.4; Los Alamos National Laboratory: Los Alamos, NM, USA, 1998.
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. Convective parameterization in mesoscale models: The Kain-Fritsch scheme. Meteorol. Monogr. 1993, 24, 165–170. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3, NCAR Technical Note, NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008.
- Choi, B.H.; Kim, K.O.; Eum, H.M. Digital bathymetric and topographic data for neighboring seas of Korea. J. Korean Soc. Coast. Ocean Eng. 2002, 14, 41–50. [Google Scholar]
- Komen, G.J.; Hasselmann, S.; Hasselmann, K. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, Q.H.; Jiang, C.B. A coupled wave-current numerical model on unstructured grids. Oceanol. Et Limnol. Sin. 2013, 44, 1451–1456. [Google Scholar]
- Peng, Z.; Wang, P. Surface Wave Effects on Storm Surge: A Case Study of Typhoon Doksuri (2023). J. Mar. Sci. Eng. 2025, 13, 478. [Google Scholar] [CrossRef]
- Yin, B.S.; Wang, T.; Hou, Y.J.; Cheng, M.H.; Fan, S.T.; Su, J.Z.; El-Sabh, M.I. Numerical study of the influence of waves and tide-surge interaction on waves in Bohai Sea. Oceanol. Limnol. Sin. 2001, 32, 109–116. [Google Scholar]
Experiment | Component |
---|---|
EXP1 (3-Way) | WRF–ROMS–SWAN coupling |
EXP2 (2-Way) | WRF–ROMS coupling |
EXP3 (2-Way) | WRF–SWAN coupling |
EXP4 (1-Way) | SWAN |
EXP5 (1-Way) | WRF |
EXP6 (1-Way) | ROMS |
Parameters | Value |
---|---|
Frequency range (Hz) | 0.05–1.0 |
Frequency bins | 24 |
Breaking constant | 0.75 |
Direction Full | circle |
Direction bins | 72 |
Bottom friction | Madsen formulation |
Friction parameter | 0.05 |
Minimum water depth (m) | 0.05 |
Experiment | Water Level (m) | |
---|---|---|
RMSE (NRMSE) | Bias | |
EXP1 | 0.18 (4.8%) | 0.025 |
EXP2 | 0.15 (4.0%) | −0.018 |
EXP6 | 0.15 (4.1%) | −0.064 |
Experiment | Significant Wave Height (m) | |
---|---|---|
RMSE (NRMSE) | Bias | |
EXP1 | 0.26 (9.6%) | −0.01 |
EXP3 | 0.33 (12.1%) | 0.17 |
EXP4 | 0.27 (9.8%) | −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, X.; Liu, J.; Xiong, G. Numerical Simulations of Extratropical Storm Surge in the Bohai Bay Based on a Coupled Atmosphere–Ocean–Wave Model. Water 2025, 17, 2364. https://doi.org/10.3390/w17162364
Li Y, Liu X, Liu J, Xiong G. Numerical Simulations of Extratropical Storm Surge in the Bohai Bay Based on a Coupled Atmosphere–Ocean–Wave Model. Water. 2025; 17(16):2364. https://doi.org/10.3390/w17162364
Chicago/Turabian StyleLi, Yong, Xuezheng Liu, Junjie Liu, and Guangsen Xiong. 2025. "Numerical Simulations of Extratropical Storm Surge in the Bohai Bay Based on a Coupled Atmosphere–Ocean–Wave Model" Water 17, no. 16: 2364. https://doi.org/10.3390/w17162364
APA StyleLi, Y., Liu, X., Liu, J., & Xiong, G. (2025). Numerical Simulations of Extratropical Storm Surge in the Bohai Bay Based on a Coupled Atmosphere–Ocean–Wave Model. Water, 17(16), 2364. https://doi.org/10.3390/w17162364