Quantification of Suspended Sediment Concentration Using Laboratory Experimental Data and Machine Learning Model
Abstract
1. Introduction
2. Experimental Runs and Observation Data
2.1. Experimental Set-Up
2.2. Image Collection
2.3. Image Processing
3. Methodology
3.1. Theoretical Basis
3.2. Machine Learning Models
3.2.1. Selection of ML Models Through Preliminary Analysis
3.2.2. Model Set-Up—Fine Tuning of Selected Models
- For Natural Light Images:
- For NIR Images:
3.2.3. Feature Selection and Model Optimization
3.2.4. Computational Environment
4. Results
4.1. Preliminary Model Evaluation
4.2. Final Model Evaluation
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008, 42, 2849–2861. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.K.; Kumar, A. Continuous Measurement of Suspended Sediment Concentration: Technological Advancement and Future Outlook. Measurement 2015, 76, 209–227. [Google Scholar] [CrossRef]
- Owens, P.N.; Batalla, R.J.; Collins, A.J.; Gomez, B.; Hicks, D.M.; Horowitz, A.J.; Wasson, R.J. Fine-grained sediment in river systems: Environmental significance and management issues. River Res. Appl. 2005, 21, 693–717. [Google Scholar] [CrossRef]
- Edwards, T.K.; Glysson, G.D. Field Methods for Measurement of Fluvial Sediment; U.S. Geological Survey Open-File Report 86–531; U.S. Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Mosbrucker, A.R.; Wood, M.S. Development of ‘SedCam’—A close-range remote sensing method of estimating suspended-sediment concentration in small rivers. Geomorphology 2025, 445, 109105. [Google Scholar] [CrossRef]
- Noh, H.; Kwon, S.; Park, Y.S.; Woo, S.-B. Application of RGB UAV Imagery to Sea Surface Suspended Sediment Concentration Monitoring in Coastal Construction Sites. Appl. Ocean Res. 2024, 145, 103940. [Google Scholar] [CrossRef]
- Tousi, E.G.; Duan, J.G.; Gundy, P.M.; Bright, K.R.; Gerba, C.P. Evaluation of E. coli in Sediment for Assessing Irrigation Water Quality Using Machine Learning. Sci. Total Environ. 2021, 799, 149286. [Google Scholar] [CrossRef]
- Xu, J.; Lin, X.; Chen, C.; Wu, X.; Jin, J.; Shen, Q. An Alternative to Laboratory Testing: Random Forest-Based Water Quality Prediction Framework for Inland and Nearshore Water Bodies. Water 2021, 13, 3262. [Google Scholar] [CrossRef]
- Modaresi, F.; Araghinejad, S. A Comparative Assessment of Support Vector Machines, Probabilistic Neural Networks, and K-Nearest Neighbor Algorithms for Water Quality Classification. Water Resour. Manag. 2014, 28, 4095–4111. [Google Scholar] [CrossRef]
- Khoi, D.N.; Quan, N.T.; Linh, D.Q.; Nhi, P.T.T.; Thuy, N.T.D. Using Machine Learning Models for Predicting the Water Quality Index in the La Buong River, Vietnam. Water 2022, 14, 1552. [Google Scholar] [CrossRef]
- Alshehri, M.; Kumar, M.; Bhardwaj, A.; Mishra, S.; Gyani, J. Deep Learning Based Approach to Classify Saline Particles in Sea Water. Water 2021, 13, 1251. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef]
- Li, L.; Qiao, J.; Yu, G.; Wang, L.; Li, H.-Y.; Liao, C.; Zhu, Z. Interpretable Tree-Based Ensemble Model for Predicting Beach Water Quality. Water Res. 2022, 211, 118078. [Google Scholar] [CrossRef]
- Khan, M.S.I.; Islam, N.; Uddin, J.; Islam, S.; Nasir, M.K. Water quality prediction and classification are based on principal component regression and a gradient-boosting classifier approach. J. King Saud Univ. Comput. Inf. Sci. 2021, 34, 4773–4781. [Google Scholar] [CrossRef]
- Rasmussen, P.P.; Gray, J.R.; Glysson, G.D.; Ziegler, A.C. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data; U.S. Geological Survey: Reston, VA, USA, 2009; Techniques and Methods 3–C4. [Google Scholar] [CrossRef]
- Landers, M.N.; Sturm, T.W. Hysteresis in Suspended Sediment to Turbidity Relations Due to Changing Particle Size Distributions. Water Resour. Res. 2013, 49, 5487–5500. [Google Scholar] [CrossRef]
- Downing, J. Twenty-five Years with OBS Sensors: The Good, the Bad, and the Ugly. Cont. Shelf Res. 2006, 26, 2299–2318. [Google Scholar] [CrossRef]
- Wang, J.-J.; Lu, X.X. Estimation of Suspended Sediment Concentrations Using Terra MODIS: An Example from the Lower Yangtze River, China. Sci. Total. Environ. 2010, 408, 1131–1138. [Google Scholar] [CrossRef]
- Zhang, P.; Wai, O.W.H.; Chen, X.; Lu, J.; Tian, L. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong. Water 2014, 6, 642–660. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994; Available online: https://www.researchgate.net/publication/234014400 (accessed on 31 July 2025).
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed.; Cambridge University Press: Cambridge, UK, 1994; ISBN 0-521-45353-4. [Google Scholar]
- Boss, E.; Pegau, W.S.; Lee, M.; Twardowski, M.; Shybanov, E.; Korotaev, G.; Baratange, F. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. J. Geophys. Res. Ocean 2004, 109, C01014. [Google Scholar] [CrossRef]
- Bowers, D.G.; Binding, C.E. The optical properties of mineral suspended particles: A review and synthesis. Estuar. Coast. Shelf Sci. 2006, 67, 219–230. [Google Scholar] [CrossRef]
- Khan, M.A.; Shah, M.I.; Javed, M.F.; Khan, M.I.; Rasheed, S.; El-Shorbagy, M.A.; El-Zahar, E.R.; Malik, M.Y. Application of Random Forest for Modelling of Surface Water Salinity. Ain Shams Eng. J. 2021, 13, 101635. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Singh, K. Modelling of Impact of Water Quality on Infiltration Rate of Soil by Random Forest Regression. Model. Earth Syst. Environ. 2017, 3, 999–1004. [Google Scholar] [CrossRef]
- Areerachakul, S.; Sanguansintukul, S. Classification and Regression Trees and MLP Neural Network to Classify Water Quality of Canals in Bangkok, Thailand. Int. J. Intell. Comput. Res. 2010, 1, 30–37. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; Singh, V.P.; Kahya, E.; Ruskeepää, H.; Saggi, M.K.; Sivakumar, B.; Kim, S.; Salmasi, F.; Kashani, M.H.; et al. Continuous Monitoring of Suspended Sediment Concentrations Using Image Analytics and Deriving Inherent Correlations by Machine Learning. Sci. Rep. 2020, 10, 8589. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H. Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Sattari, M.T.; Feizi, H.; Colak, M.S.; Ozturk, A.; Apaydin, H.; Ozturk, F. Estimation of Sodium Adsorption Ratio in a River with Kernel-Based and Decision-Tree Models. Environ. Monit. Assess. 2020, 192, 575. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Min, W.; Zhou, S.-D.; Bai, H.; Ma, N.; Ye, S. SAR Water Image Segmentation Based on GLCM and Wavelet Textures. In Proceedings of the 2010 International Conference on Electrical and Control Engineering (ICECE), Wuhan, China, 25–27 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2951–2954. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Feng, D.; Beck, H.; de Bruijn, J.; Sahu, R.K.; Satoh, Y.; Wada, Y.; Liu, J.; Pan, M.; Lawson, K.; Shen, C. Deep dive into hydrologic simulations at global scale: Harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL). Geosci. Model Dev. 2024, 17, 7181–7198. [Google Scholar] [CrossRef]
- Song, Y.; Chaemchuen, P.; Rahmani, F.; Zhi, W.; Li, L.; Liu, X.; Boyer, E.; Bindas, T.; Lawson, K.; Shen, C. Deep Learning Insights into Suspended Sediment Concentrations across the Conterminous United States: Strengths and Limitations. J. Hydrol. 2024, 639, 131573. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Gupta, H.V. A mass-conserving perceptron for machine-learning-based modeling of geoscientific systems. Water Resour. Res. 2024, 60, e2023WR036461. [Google Scholar] [CrossRef]
- Duan, J.G.; Nookala, S.R.; Qi, K.; Engel, F.; Pacheco, J.; Sen, H. Data Repository for Quantification of Suspended Sediment Concentration Using Machine Learning Model. University of Arizona Research Data Repository. 2025. Available online: https://arizona.figshare.com/ (accessed on 29 July 2025). [CrossRef]
Model | Key Parameters |
---|---|
RF | Estimators: 1200–2000; Max depth: 25–35 or unrestricted; Min samples split: 2–6; Min samples per leaf: 1–3; Max features: all or “sqrt”; Min impurity decrease: 0.0–0.005; Bootstrap: Disabled |
CNN | Layers: 3 convolutional (filter sizes: 32, 64, 128) with ReLU; Max-pooling layers; Learning rate: 0.001; Dropout: 0.2–0.5; Optimizer: Adam |
MLP | Hidden layers: (128, 64, 32 nodes); Learning rate: 0.001; Activation: ReLU; Regularization term (α): 0.001 |
SVM | Kernel: Radial Basis Function (RBF); Regularization term (C); Kernel coefficient (γ); Tolerance (ϵ), tuned via RandomizedSearchCV |
KNN | Number of neighbors: 3–15; Distance metrics: Euclidean, Manhattan |
GBM | Estimators: 1400; Learning rate: 0.05; Maximum tree depth: 20; Subsample ratio: 1.0 |
Model Type | Model | Input Features | No. of Input Features | Output Variable | Modeling Type |
---|---|---|---|---|---|
RGB | RFR | Mean Red, Mean Green, Mean Blue, Red Reflectance, Time of Capture, Temperature | 6 | Suspended Sediment Concentration (SSC) | Regression |
RGB | GBR | Mean Red, Mean Green, Mean Blue, Red Reflectance, Time of Capture, Temperature | 6 | Suspended Sediment Concentration (SSC) | Regression |
NIR | RFR | GLCM Texture Features (Contrast, Homogeneity, Energy, Correlation, Dissimilarity, Entropy) from 3 distances × 4 angles; Time; Temperature; Data Augmentation | 74 | Suspended Sediment Concentration (SSC) | Regression |
NIR | GBR | GLCM Texture Features (Contrast, Dissimilarity, Homogeneity, Energy, Correlation, ASM, Entropy) from 4 distances × 4 angles; Time; Temperature; Data Augmentation | 114 | Suspended Sediment Concentration (SSC) | Regression |
Model | Dataset | Features | Key Hyperparameters | Additional Details |
---|---|---|---|---|
RF | RGB | Avg. red, avg. green, avg. blue, red reflectance, time, temperature | n_estimators: [1200, 1500, 1800, 2000]; max_depth: [25, 30, 35, None]; min_samples_split: [2, 4, 6]; min_samples_leaf: [1, 2, 3]; max_features: [None, “sqrt”]; bootstrap: False; min_impurity_decrease: [0.0, 0.002, 0.005] | 6-fold CV using GridSearchCV; StandardScaler applied |
GBM | RGB | Avg. red, avg. green, avg. blue, red reflectance, time, temperature | n_estimators: [1400, 1600]; learning_rate: [0.03, 0.05]; max_depth: [18, 20]; min_samples_split: [2]; min_samples_leaf: [1]; subsample: 1.0; max_features: [None] | 10-fold CV using GridSearchCV; StandardScaler applied; log-transformed and min–max scaled target |
RF | NIR | GLCM features (72 features) + time, temperature | n_estimators: 200; max_depth: None; min_samples_split: 5; min_samples_leaf: 1; max_features: “log2”; random_state: 42 | Data augmentation applied; train–test split (70–30) |
GBM | NIR | GLCM features (112 features) + time, temperature | n_estimators: [100, 300, 500]; learning_rate: [0.01, 0.05, 0.1]; max_depth: [3, 4, 5]; min_samples_split: [2, 5, 10]; min_samples_leaf: [1, 2, 4] | Data augmentation applied; train–test split (70–30); 5-fold CV via GridSearchCV |
Model | Image Type | % Within 30% Relative Error |
---|---|---|
RFR | Natural Light (RGB) | 83.56% |
GBR | Natural Light (RGB) | 85.84% |
MLP | Natural Light (RGB) | 53.88% |
CNN | Natural Light (RGB) | 32% |
SVR | Natural Light (RGB) | 49.77% |
KNN | Natural Light (RGB) | 47.95% |
RFR | Infrared (GLCM) | 74.83% |
GBR | Infrared (GLCM) | 88.81% |
Model | Image Type | RMSE (ppm) | R2 |
---|---|---|---|
RFR | RGB | 22,091.14 ± 4541.42 | 0.5347 ± 0.1855 |
GBR | RGB | 20,695.49 ± 5633.33 | 0.5878 ± 0.1802 |
RFR | NIR | 13,702.18 ± 977.66 | 0.8223 ± 0.0226 |
GBR | NIR | 10,865.62 ± 633.55 | 0.8884 ± 0.0146 |
Model | Image Type | RMSE | MAE | R2 | KGE | % Within 10% Error | % Within 20% Error | % Within 30% Error |
---|---|---|---|---|---|---|---|---|
RFR | RGB | 22,562.77 | 10,063.95 | 0.55 | 0.76 | 52.92% | 63.62% | 72.18% |
GBR | RGB | 21,466.45 | 10,100.58 | 0.59 | 0.77 | 49.42% | 62.06% | 72.96% |
RFR | Infrared (GLCM) | 13,471.50 | 6781.57 | 0.82 | 0.78 | 53.59% | 70.90% | 78.72% |
GBR | Infrared (GLCM) | 9885.79 | 5151.68 | 0.90 | 0.89 | 60.51% | 74.87% | 83.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nookala, S.R.; Duan, J.G.; Qi, K.; Pacheco, J.; He, S. Quantification of Suspended Sediment Concentration Using Laboratory Experimental Data and Machine Learning Model. Water 2025, 17, 2301. https://doi.org/10.3390/w17152301
Nookala SR, Duan JG, Qi K, Pacheco J, He S. Quantification of Suspended Sediment Concentration Using Laboratory Experimental Data and Machine Learning Model. Water. 2025; 17(15):2301. https://doi.org/10.3390/w17152301
Chicago/Turabian StyleNookala, Sathvik Reddy, Jennifer G. Duan, Kun Qi, Jason Pacheco, and Sen He. 2025. "Quantification of Suspended Sediment Concentration Using Laboratory Experimental Data and Machine Learning Model" Water 17, no. 15: 2301. https://doi.org/10.3390/w17152301
APA StyleNookala, S. R., Duan, J. G., Qi, K., Pacheco, J., & He, S. (2025). Quantification of Suspended Sediment Concentration Using Laboratory Experimental Data and Machine Learning Model. Water, 17(15), 2301. https://doi.org/10.3390/w17152301