Nickel-Modified Orange Peel Biochar for the Efficient Adsorptive Removal of Eriochrome Black T from Aqueous Solution
Abstract
:1. Introduction
Adsorbent | Dye | Reference |
---|---|---|
Bentonite clay & sweet sorghum bagasse | Malachite green & toluidine blue | [10] |
Oleaster stones | Eriochrome Black T (EBT) dye | [11] |
Pongamia glabra seed cover | Methylene blue & thodamine | [16] |
Banana peel | Direct Blue 86 (DB86) | [17] |
Mangosteen peel | Methylene blue | [14] |
Wheat straw | Methylene blue (MB) | [18] |
Peanut stalks | Orange G dye | [19] |
Spirulina platensis algae | Congo red dye | [20] |
Empty fruit bunch | Methylene blue and orange-G | [6] |
Corn stalks | Crystal violet (CV) | [21] |
Bamboo | Metal complex dye acid black 172 | [22] |
Rice straw and charcoal/MgO nanocomposite | Reactive dye blue 221 (RB-221) | [23] |
Cistus ladanifer seeds (CLS) | Reactive red 23 (RR-23) | [24] |
Rice husk | Reactive dyes yellow (RY145), red (RR195), and blue (RB19) | [25] |
Wakame (undaria) | Methylene blue dye | [26] |
Hazelnut shell | Methylene blue (MB) | [27] |
2. Materials and Methods
2.1. Reagents and Material
2.2. Synthesis of Biochar and Modified Biochar
2.3. Preparation of EBT Solution
2.4. Characterization Techniques
2.5. Batch Adsorption Experiment
2.6. Adsorption Isotherm Model Studies
2.7. Adsorption Kinetic Model Studies
2.8. Thermodynamics of Adsorption
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Biochar and Magnetic Biochar Derived from Orange Peel
3.1.1. FTIR Analysis
3.1.2. SEM Analysis
3.1.3. XRD Analysis
3.2. Optimization of Adsorption Parameters
3.2.1. Removal Efficiency of OPB and MOPB for EBT at Different Doses
3.2.2. Removal Efficiency of OPB and MOPB for EBT at Different Contact Times
3.2.3. Removal Efficiency of OPB and MOPB for EBT at Different Concentration of Dye
3.2.4. Removal Efficiency of OPB and MOPB for EBT at Different pH Values
3.2.5. Removal Efficiency of OPB and MOPB for EBT at Different Temperatures
3.3. Adsorption Isotherm Model Study
3.4. Kinetic Isotherm Model Study
3.5. Thermodynamic Isotherm Model Study
3.6. Comparative Analysis with Existing Literature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mater. 2009, 171, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Dou, G.; Jiang, Z. Preparation of Sodium Humate-Modified Biochar Absorbents for Water Treatment. ACS Omega 2019, 4, 16536–16542. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Liang, H.; Chen, T.; Yang, W.; Ding, C. Influence of long-term irrigation with treated papermaking wastewater on soil ecosystem of a full-scale managed reed wetland. J. Soils Sediments 2016, 16, 1352–1359. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, J.; Wang, G.; Deng, S.; Bao, R.; Zhang, C.; Syed, T.N.; Wang, B.; Zhou, R.; et al. Plastic Pollution in Agriculture as a Threat to Food Security, the Ecosystem, and the Environment: An Overview. Agronomy 2024, 14, 548. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Fo, Y.T.; Al-Salim, H.S.; Sahu, J.N.; Abdullah, E.C.; Nizamuddin, S.; Ganesan, P. Removal of Methylene Blue and Orange-G from Waste Water Using Magnetic Biochar. Int. J. Nanosci. 2015, 14, 1550009. [Google Scholar] [CrossRef]
- Kansal, S.K.; Swati Sood, S.; Umar, A.; Mehta, S.K. Photocatalytic degradation of Eriochrome Black T dye using well crystalline anatase TiO2 nanoparticles. J. Alloys Compd. 2013, 581, 392–397. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012, 110, 50–56. [Google Scholar] [CrossRef]
- Barka, N.; Abdennouri, M.; El Makhfouk, M. Removal of Methylene Blue and Eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. J. Taiwan Inst. Chem. Eng. 2011, 42, 320. [Google Scholar] [CrossRef]
- Fosso-Kankeu, E.; Potgieter, J.; Waanders, F.B. Removal of malachite green and toluidine blue dyes from aqueous solution using a clay-biochar composite of bentonite and sweet sorghum bagasse. Int. J. Appl. Eng. Res. 2019, 14, 1324–1333. [Google Scholar]
- Akbarnezhad, A.A.; Safa, F. Biochar-Based Magnetic Nanocomposite for Dye Removal from Aqueous Solutions: Response Surface Modeling and Kinetic Study. Russ. J. Appl. Chem. 2018, 91, 1856–1866. [Google Scholar] [CrossRef]
- Jing, Z.; Ding, J.; Zhang, T.; Yang, D.; Qiu, F.; Chen, Q.; Xu, J. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod. Process. 2019, 115, 134–142. [Google Scholar] [CrossRef]
- Syeda, S.R.; Ferdousi, S.A.; Ahmmed, K.M.T. Decolorization of textile wastewater by adsorption in a fluidized bed of locally available activated carbon. J. Environ. Sci. Health A 2012, 47, 210–220. [Google Scholar] [CrossRef]
- Ruthiraan, M.; Abdullah, E.C.; Mubarak, N.M.; Nizamuddin, S. Adsorptive removal of methylene blue using magnetic biochar derived from agricultural waste biomass: Equilibrium, Isotherm, Kinetic study. Int. J. Nanosci. 2018, 17, 1850002. [Google Scholar] [CrossRef]
- Michael-Igolima, U.; Abbey, S.J.; Ifelebuegu, A.O.; Eyo, E.U. Modified Orange Peel Waste as a Sustainable Material for Adsorption of Contaminants. Materials 2023, 16, 1092. [Google Scholar] [CrossRef]
- Bordoloi, N.; Dey, M.D.; Mukhopadhyay, R.; Kataki, R. Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover. Water Sci. Technol. 2017, 77, 638–646. [Google Scholar] [CrossRef]
- Ding, F.; Luo, Z.; Xiao, Z.; Wu, T.; Zhong, H. Degradation of printing and dyeing wastewater by modified biochar catalyzed persulfate. E3S Web Conf. 2019, 118, 04040. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Li, J.; Ma, D.; Han, R. Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalin. Water Treat. 2012, 46, 115–123. [Google Scholar] [CrossRef]
- Tan, W.; Wang, L.; Yu, H.; Zhang, H.; Zhang, X.; Jia, Y.; Li, T.; Dang, Q.; Cui, D.; Xi, B. Accelerated Microbial Reduction of Azo Dye by Using Biochar from Iron-Rich-Biomass Pyrolysis. Materials 2019, 12, 1079. [Google Scholar] [CrossRef]
- Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J. Environ. Manag. 2016, 182, 187–197. [Google Scholar] [CrossRef]
- Sun, P.; Hui, C.; Azim Khan, R.; Du, J.; Zhang, Q.; Zhao, Y.H. Efficient removal of crystal violet using Fe3O4-coated biochar: The role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Sci. Rep. 2015, 5, 12638. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lin, X.; Wei, B.; Zhao, Y.; Wang, J. Evaluation of adsorption potential of bamboo biochar for metal-complex dye: Equilibrium, kinetics and artificial neural network modeling. Int. J. Environ. Sci. Technol. 2014, 11, 1093–1100. [Google Scholar] [CrossRef]
- Moazzam, A.; Jamil, N.; Nadeem, F.; Qadir, A.; Ahsan, N.; Zameer, M. Reactive dye removal by a novel biochar/MgO nanocomposite. J. Chem. Soc. Pak. 2017, 39, 26–34. [Google Scholar]
- El Farissi, H.; Lakhmiri, R.; Albourine, A.; Safi, M.; Cherkaoui, O. Removal of RR-23 dye from industrial textile wastewater by adsorption on Cistus ladaniferus seeds and their biochar. J. Environ. Earth Sci. 2017, 7, 105–118. [Google Scholar]
- Trinh, B.; Le, P.; Werner, D.; Nguyen, P.; Luu, T. Rice Husk Biochars Modified with Magnetized Iron Oxides and Nano Zero Valent Iron for Decolorization of Dyeing Wastewater. Processes 2019, 7, 660. [Google Scholar] [CrossRef]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Cai, L.; Wang, Y.; Song, W.; Zhang, H. Magnetic Activated Biochar Nanocomposites Derived from Wakame and its Application in Methylene Blue Adsorption. Bioresour. Technol. 2020, 302, 122842. [Google Scholar] [CrossRef]
- Kaya, N.; Yıldız, Z.; Ceylan, S. Preparation and characterisation of biochar from hazelnut shell and its adsorption properties for methylene blue dye. J. Polytechnic. 2018, 21, 765–776. [Google Scholar] [CrossRef]
- Alamzeb, M.; Tullah, M.; Ali, S.; Ihsanullah; Khan, B.; Setzer, W.N.; Al-Zaqri, N.; Ibrahim, M.N.M. Kinetic, Thermodynamic and Adsorption Isotherm Studies of Detoxification of Eriochrome Black T Dye from Wastewater by Native and Washed Garlic Peel. Water 2022, 14, 3713. [Google Scholar] [CrossRef]
- Hanafiah, M.A.K.M.; Wan, N.W.S.; Zolkafly, S.H.; Teong, L.C.; Majid, Z.A.A. Acid blue25 adsorption on base treated Shorea dasyohylla sawdust: Kinetic, isotherm, thermodynamics and spectroscopic analysis. J. Environ. Sci. 2012, 24, 261. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918, 40, 1361. [Google Scholar] [CrossRef]
- Freundlich, H. Uber die adsorption in Losungen. J. Phys. Chem. 1907, 57, 385. [Google Scholar] [CrossRef]
- Ho, Y. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451. [Google Scholar] [CrossRef]
- Badraoui, A.E.; Miyah, Y.; Nahali, L.; Zerrouq, F. Fast adsorption for removal of methylene blue from aqueuous solutions using of local clay. Mor. J. Chem. 2019, 7, 416–423. [Google Scholar]
- Subhash, D.K.; Vinod, S.S. Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: A comparative study. J. Taibah. Univ. Sci. 2019, 13, 1108–1118. [Google Scholar] [CrossRef]
- Felicia, O.A.; Paul, M. Synthesis, Characterization, and Biosorption of Cu2+ and Pb2+ Ions from an Aqueous Solution Using Biochar Derived from Orange Peels. Molecules 2023, 28, 7050. [Google Scholar] [CrossRef]
- Dey, S.; Basha, S.R.; Babu, G.V.; Nagendra, T. Characteristic and biosorption capacities of orange peels biosorbents for removal of ammonia and nitrate from contaminated water. Clean. Mater. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Luk, C.J.; Yip, J.; Yuen, C.M.; Kan, C.; Lam, K. A comprehensive study on adsorption behaviour of direct, reactive and acid dyes on crosslinked and non-crosslinked chitosan beads. J. Fiber Bioeng. Inform. 2014, 7, 35–52. [Google Scholar]
- Chakraborty, S.; Chowdhury, S.; Saha, P. Adsorption of crystal violet from aqueous solution onto NaOH modified rice husk. Carbohydr. Polym. 2011, 86, 1533–1541. [Google Scholar] [CrossRef]
- Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I. Insight into adsorption equilibrium, kinetics and thermodynamics of malachite green onto clayey soil of Indian origin. Chem. Eng. J. 2010, 165, 874–882. [Google Scholar] [CrossRef]
- Fu, Y.; Viraraghavan, T. Fungal decolorization of dye wastewaters: A review. Bioresour. Technol. 2001, 79, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Waranusantigul, P.; Pokethitiyook, P.; Kruatrachue, M.; Upatham, E.S. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ. Pollut. 2013, 125, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Namasivayam, C.; Kavitha, D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dye Pigment. 2002, 54, 47–58. [Google Scholar] [CrossRef]
- Saleem, J.; Moghal, Z.K.B.; Pradhan, S.; McKay, G. High-performance activated carbon from coconut shells for dye removal: Study of isotherm and thermodynamics. RSC Adv. 2024, 14, 33797–33808. [Google Scholar] [CrossRef]
- Jain, R.; Shrivastava, M. Adsorptive studies of hazardous dye Tropaeoline 000 from an aqueous phase on to coconut-husk. J Hazard Mater. 2008, 158, 549–556. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Ahmad, A.; Shekher Giri, B.; Chaturvedi, P. Hydrothermal liquefaction of rice husk and cow dung in Mixed-Bed-Rotating Pyrolyzer and application of biochar for dye removal. Bioresour. Technol. 2020, 309, 123294. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, N.; Giri, B.S.; Chowdhary, P.; Chaturvedi, P. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresour. Technol. 2020, 306, 123202. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Fatah, N.M.; Muhammad, K.T. Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. R. Soc. Open Sci. 2024, 11, 232033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, D.L.T.; Binh, Q.A.; Nguyen, X.C.; Huyen Nguyen, T.T.; Vo, Q.N.; Nguyen, T.D.; Phuong Tran, T.C.; Hang Nguyen, T.A.; Kim, S.Y.; Nguyen, T.P.; et al. Metal salt-modified biochars derived from agro-waste for effective congo red dye removal. Environ. Res. 2021, 200, 111492. [Google Scholar] [CrossRef]
No. | Variable | Range |
---|---|---|
1. | pH | 1, 4, 7, 10, 13 |
2. | Contact time (min) | 30, 60, 90, 120, 150 |
3. | Temperature (°C) | 25, 30, 35, 40, 45 |
4. | Dosages of biochar (g) | 0.01, 0.025, 0.05, 0.075, 0.1 |
5. | Concentration of dye (ppm) | 5, 25, 50, 75, 100 |
a. Isothermic Parameters | |||||||
---|---|---|---|---|---|---|---|
Langmuir | Freundlich | ||||||
qmax (mg/g) | 71.94 | Kf | 3.38 | ||||
KL (L/mg) | 0.055 | 1/n | 1.88 | ||||
RL | 0.25 | R2 | 0.96 | ||||
R2 | 0.98 | ||||||
b. Thermodynamic Parameters | |||||||
Temp (°C) | ∆G° (k Jmol−1) | ∆H° (k Jmol−1) | ∆S° (Jmol−1 K1) | R2 | |||
30 | −4.46 | −21.89 | 87.43 | 0.99 | |||
60 | −4.63 | ||||||
90 | −4.82 | ||||||
120 | −5.01 | ||||||
150 | −5.20 | ||||||
c. Kinetic Parameters | |||||||
Order of Reaction | Parameters | ||||||
qe, exp (mg/g) | |||||||
71.54 | |||||||
Pseudo-first order | Qe, cal (mg/g) | k1 (min−1) | R2 | ||||
1.34 | 0.008 | 0.97 | |||||
Pseudo-second order | Qe, cal (mg/g) | k2 (min−1) | R2 | ||||
71.42 | 0.072 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, A.; Abid, J.; Waqar-Un-Nisa; Gul, S.; Nouman, M.; Idris, A.M.; Ullah, H. Nickel-Modified Orange Peel Biochar for the Efficient Adsorptive Removal of Eriochrome Black T from Aqueous Solution. Water 2025, 17, 1484. https://doi.org/10.3390/w17101484
Kanwal A, Abid J, Waqar-Un-Nisa, Gul S, Nouman M, Idris AM, Ullah H. Nickel-Modified Orange Peel Biochar for the Efficient Adsorptive Removal of Eriochrome Black T from Aqueous Solution. Water. 2025; 17(10):1484. https://doi.org/10.3390/w17101484
Chicago/Turabian StyleKanwal, Ayesha, Jawaria Abid, Waqar-Un-Nisa, Seema Gul, Muhammad Nouman, Abubakr M Idris, and Habib Ullah. 2025. "Nickel-Modified Orange Peel Biochar for the Efficient Adsorptive Removal of Eriochrome Black T from Aqueous Solution" Water 17, no. 10: 1484. https://doi.org/10.3390/w17101484
APA StyleKanwal, A., Abid, J., Waqar-Un-Nisa, Gul, S., Nouman, M., Idris, A. M., & Ullah, H. (2025). Nickel-Modified Orange Peel Biochar for the Efficient Adsorptive Removal of Eriochrome Black T from Aqueous Solution. Water, 17(10), 1484. https://doi.org/10.3390/w17101484