Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Area Characterization
2.2. Hydrological Modelling
2.3. Hydraulic Analysis
2.4. Economic and Environmental Analysis
3. Results
3.1. Hydrological Modeling
3.2. Energy Generation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BEP | Best Efficiency Point |
IRR | Internal Rate of Return |
MHP | Micro-Hydropower |
PAT | Pump as Turbine |
SDG | Sustainable Development Goals |
SUDS | Sustainable Urban Drainage Systems |
References
- Carlsen, L.; Bruggemann, R. The 17 United Nations’ sustainable development goals: A status by 2020. Int. J. Sustain. Dev. World Ecol. 2022, 29, 219–229. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Y.; Bourke, R. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat. Hazards 2021, 106, 613–627. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Ma, B.; Mu, X. Rapid urbanization impact on the hydrological processes in Zhengzhou, China. Water 2020, 12, 1870. [Google Scholar] [CrossRef]
- Marsalek, J.; Barnwell, T.O.; Geiger, W.; Grottker, M.; Huber, W.C.; Saul, A.J.; Torno, H.C. Urban drainage systems: Design and operation. Water Sci. Technol. 1993, 27, 31–70. [Google Scholar] [CrossRef]
- Monachese, A.P.; Gómez-Villarino, M.T.; López-Santiago, J.; Sanz, E.; Almeida-Ñauñay, A.F.; Zubelzu, S. Challenges and Innovations in Urban Drainage Systems: Sustainable Drainage Systems Focus. Water 2024, 17, 76. [Google Scholar] [CrossRef]
- Francisco, T.H.S.; Menezes, O.V.C.; Guedes, A.L.A.; Maquera, G.; Neto, D.C.V.; Longo, O.C.; Chinelli, C.K.; Soares, C.A.P. The Main challenges for improving urban drainage systems from the perspective of Brazilian professionals. Infrastructures 2022, 8, 5. [Google Scholar] [CrossRef]
- Bellu, A.; Fernandes, L.F.S.; Cortes, R.M.; Pacheco, F.A. A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. J. Hydrol. 2016, 533, 567–580. [Google Scholar] [CrossRef]
- Jacob, A.C.P.; Rezende, O.M.; de Sousa, M.M.; de França Ribeiro, L.B.; de Oliveira, A.K.B.; Arrais, C.M.; Miguez, M.G. Use of detention basin for flood mitigation and urban requalification in Mesquita, Brazil. Water Sci. Technol. 2019, 79, 2135–2144. [Google Scholar] [CrossRef]
- Ackerman, F.; Fisher, J. Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States. Energy Policy 2013, 59, 235–241. [Google Scholar] [CrossRef]
- Souza, R.G.; Barbosa, A.; Meirelles, G. The water–energy nexus of leakages in water distribution systems. Water 2023, 15, 3950. [Google Scholar] [CrossRef]
- Hamidov, A.; Daedlow, K.; Webber, H.; Hussein, H.; Abdurahmanov, I.; Dolidudko, A.; Helming, K. Operationalizing water-energy-food nexus research for sustainable development in social-ecological systems: An interdisciplinary learning case in Central Asia. Ecol. Soc. 2022, 27, 12. [Google Scholar] [CrossRef]
- Arnbjerg-Nielsen, K. Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design. Urban Water J. 2012, 9, 57–65. [Google Scholar] [CrossRef]
- Kreibich, H.; Van Loon, A.F.; Schröter, K.; Ward, P.J.; Mazzoleni, M.; Sairam, N.; Abeshu, G.W.; Agafonova, S.; AghaKouchak, A.; Aksoy, H.; et al. The challenge of unprecedented floods and droughts in risk management. Nature 2022, 608, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Ashley, R.M.; Balmforth, D.J.; Saul, A.J.; Blanskby, J.D. Flooding in the future–predicting climate change, risks and responses in urban areas. Water Sci. Technol. 2005, 52, 265–273. [Google Scholar] [CrossRef]
- Trenberth, K.E. The impact of climate change and variability on heavy precipitation, floods, and droughts. Encycl. Hydrol. Sci. 2005, 17, 1–11. [Google Scholar]
- Galaitsi, S.E.; Russell, R.; Bishara, A.; Durant, J.L.; Bogle, J.; Huber-Lee, A. Intermittent domestic water supply: A critical review and analysis of causal-consequential pathways. Water 2016, 8, 274. [Google Scholar] [CrossRef]
- Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Kang, N.; Kim, S.; Kim, Y.; Noh, H.; Hong, S.J.; Kim, H.S. Urban drainage system improvement for climate change adaptation. Water 2016, 8, 268. [Google Scholar] [CrossRef]
- Mailhot, A.; Duchesne, S. Design criteria of urban drainage infrastructures under climate change. J. Water Resour. Plan. Manag. 2010, 136, 201–208. [Google Scholar] [CrossRef]
- García, A.I.A.; Santamarta, J.C. Scientific evidence behind the ecosystem services provided by sustainable urban drainage systems. Land 2022, 11, 1040. [Google Scholar] [CrossRef]
- Ashley, R.M.; Gersonius, B.; Digman, C.; Horton, B.; Bacchin, T.; Smith, B.; Baylis, A. Demonstrating and monetizing the multiple benefits from using SuDS. J. Sustain. Water Built Environ. 2018, 4, 05017008. [Google Scholar] [CrossRef]
- Ramos, H.M.; Teyssier, C.; Samora, I.; Schleiss, A.J. Energy recovery in SUDS towards smart water grids: A case study. Energy Policy 2013, 62, 463–472. [Google Scholar] [CrossRef]
- Duan, H.F.; Gao, X. Flooding control and hydro-energy assessment for urban stormwater drainage systems under climate change: Framework development and case study. Water Resour. Manag. 2019, 33, 3523–3545. [Google Scholar] [CrossRef]
- Rahimi, H.; Ardakani, M.K.; Ahmadian, M.; Tang, X. Multi-reservoir utilization planning to optimize hydropower energy and flood control simultaneously. Environ. Process. 2020, 7, 41–52. [Google Scholar] [CrossRef]
- Rafique, A.; Burian, S.; Hassan, D.; Bano, R. Analysis of operational changes of Tarbela Reservoir to improve the water supply, hydropower generation, and flood control objectives. Sustainability 2020, 12, 7822. [Google Scholar] [CrossRef]
- McNabola, A.; Mérida García, A.; Rodríguez Díaz, J.A. The role of micro-hydropower energy recovery in the water-energy-food nexus. Environ. Sci. Proc. 2022, 21, 27. [Google Scholar]
- Perché, E.A.; Amaral, L.P. Simulação Hidrológica Da Bacia De Detenção Santa Lúcia, Na Cidade De Belo Horizonte; Centro Federal de Educação Tecnológica de Minas Gerais: Belo Horizonte, Brazil, 2015. [Google Scholar]
- Rosa, D.W.; Nascimento, N.O.; Moura, P.M.; Macedo, G.D. Assessment of the hydrological response of an urban watershed to rainfall-runoff events in different land use scenarios–Belo Horizonte, MG, Brazil. Water Sci. Technol. 2020, 81, 679–693. [Google Scholar] [CrossRef]
- Rosa, D.W.B. Hydrological Response of an Urban Watershed to the Implementation of Compensatory Drainage Techniques—Leitão Creek Basin, Belo Horizonte, Minas Gerais, Brazil. 2017. 218 f. Master’s Dissertation, School of Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2017. [Google Scholar]
- Laipelt, L.; de Andrade, B.C.C.; Collischonn, W.; Amorim, A.; Paiva, R.C.D.; Ruhoff, A. ANADEM: A Digital Terrain Model for South America. Remote Sensing 2024. Submitted for Publication. Available online: https://www.preprints.org/manuscript/202404.1305/v1 (accessed on 25 May 2025).
- Instituto Nacional de Meteorologia (INMET). Portal Oficial do Instituto Nacional de Meteorologia. 2025. Available online: https://portal.inmet.gov.br/ (accessed on 23 May 2025).
- Ottoni, M.V.; Ottoni Filho, T.B.; Schaap, M.G.; Lopes-Assad, M.L.R.; Rotunno Filho, O.C. Hydrophysical database for Brazilian soils (HYBRAS) and pedotransfer functions for water retention. Vadose Zone J. 2018, 17, 1–17. [Google Scholar] [CrossRef]
- BELO HORIZONTE. Subsecretariat of Urban Planning—SUPLAN. Soil Permeability Rate—BHMap. Data Dictionary—Master Plan of the Municipality of Belo Horizonte (Law No. 11.181/2019). Available online: http://bhgeo.pbh.gov.br/sites/geoportal.pbh.gov.br/files/BHGEO/DICIONARIO_DADOS/taxa_permeabilidade_11181.pdf (accessed on 15 May 2025).
- Mello, C.R.D.; Curi, N. Hydropedology. Ciência E Agrotecnologia 2012, 36, 137–146. [Google Scholar] [CrossRef]
- Pinheiro, M.C. Guidelines for the Development of Hydrological Studies and Hydraulic Designs in Mining Projects; Brazilian Water Resources Association (ABRH): Porto Alegre, Brazil, 2011; ISBN 978-85-8868-632-8. [Google Scholar]
- Balacco, G.; Fiorese, G.D.; Alfio, M.R.; Totaro, V.; Binetti, M.; Torresi, M.; Stefanizzi, M. PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network. Energy 2023, 282, 128366. [Google Scholar] [CrossRef]
- Stefanizzi, M.; Capurso, T.; Balacco, G.; Binetti, M.; Camporeale, S.M.; Torresi, M. Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks. Renew. Energy 2020, 162, 1292–1306. [Google Scholar] [CrossRef]
- Novara, D.; McNabola, A. The development of a decision support software for the design of micro-hydropower schemes utilizing a pump as turbine. Proceedings 2018, 2, 678. [Google Scholar] [CrossRef]
- Perez-Sanchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López-Jiménez, P.A. Improved planning of energy recovery in water systems using a new analytic approach to PAT performance curves. Water 2020, 12, 468. [Google Scholar] [CrossRef]
- Meirelles, G.; Brentan, B.; Izquierdo, J.; Ramos, H.; Luvizotto, E., Jr. Trunk network rehabilitation for resilience improvement and energy recovery in water distribution networks. Water 2018, 10, 693. [Google Scholar] [CrossRef]
- Brasil, Ministério da Ciência e Tecnologia. Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil, 6th ed.; Ministério da Ciência e Tecnologia: Brasília, Brazil, 2022.
- Yang, L.; Smith, J.A.; Baeck, M.L.; Zhang, Y. Flash flooding in small urban watersheds: Storm event hydrologic response. Water Resour. Res. 2016, 52, 4571–4589. [Google Scholar] [CrossRef]
- McNabola, A.; Coughlan, P.; Corcoran, L.; Power, C.; Williams, A.P.; Harris, I.M.; Taylor, R.; Packwood, A. Energy recovery in the water & waste water industry using micro-hydropower: A review. In Proceedings of the IASTED International Conference on Power and Energy Systems, Naples, Italy, 25–27 June 2012. [Google Scholar]
Watershed Characteristics | Detention Basin Characteristics | ||
---|---|---|---|
Area [m2] | 3,500,000 | Dam height [m] | 18 |
Runoff coefficient | 85 | Dam length [m] | 115 |
Time of Concentration [s] | 2000 | Dead Storage [m3] | 42,700 |
Reservoir area [m2] | 30,800 | ||
Maximum level [m] | 903 | ||
Spillway capacity [m3/s] | 39 |
PAT | Rainfall | HP [m] | QP [m3/s] | ηT [%] | PT [kW] | Cost [BRL] |
---|---|---|---|---|---|---|
A | 5 min | 2.10 | 0.22 | 48 | 2.16 | 8955 |
B | 10 min | 3.25 | 1.52 | 74 | 35.61 | 20,344 |
C | 30 min | 3.98 | 2.61 | 77 | 78.23 | 34,853 |
D | 60 min | 5.18 | 7.61 | 83 | 321.45 | 64,152 |
PAT | EA [kWh/year] | EC [BRL/kWh] | Benefit [BRL/year] | Payback [years] | IRR | Carbon [kg/year] |
---|---|---|---|---|---|---|
A | 755 | 11.87 | 400 | 22.35 | 3.77 | 29 |
B | 4127 | 4.93 | 2191 | 9.29 | 10.70 | 159 |
C | 11,586 | 3.01 | 6149 | 5.67 | 17.64 | 446 |
Total | 16,468 | 3.90 | 8740 | 7.34 | 13.60 | 634 |
Local | System | Sites | Minimum Power [kW] | Maximum Power [kW] | Average Power [kW] |
---|---|---|---|---|---|
United States | WDN-PRV | 6 | 5 | 15 | - |
Brazil | WDN-PRV | 23 | 2.6 | 40.27 | - |
Ireland | WDN-BPT | 7 | 2 | 27 | 12 |
Portugal | WDN-SR | 1 | - | - | 260 |
Ireland | WDN-SR | - | 12 | 115 | - |
Switzerland | WWP | 1 | - | 210 | - |
India | WWP | 1 | 0 | 0.19 | |
Australia | WWP | 1 | - | - | 1370 |
United Kingdom | WWP | 1 | 149 | 193 | 177 |
Portugal | SUDS | 2 | 0.13 | 0.80 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroll, A.S.G.; Bezerra, R.P.G.; Rodrigues, A.F.; Brentan, B.M.; Izquierdo, J.; Meirelles, G. Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil. Water 2025, 17, 2219. https://doi.org/10.3390/w17152219
Koroll ASG, Bezerra RPG, Rodrigues AF, Brentan BM, Izquierdo J, Meirelles G. Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil. Water. 2025; 17(15):2219. https://doi.org/10.3390/w17152219
Chicago/Turabian StyleKoroll, Azuri Sofia Gally, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo, and Gustavo Meirelles. 2025. "Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil" Water 17, no. 15: 2219. https://doi.org/10.3390/w17152219
APA StyleKoroll, A. S. G., Bezerra, R. P. G., Rodrigues, A. F., Brentan, B. M., Izquierdo, J., & Meirelles, G. (2025). Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil. Water, 17(15), 2219. https://doi.org/10.3390/w17152219