Comparative Account of Tolerance of Different Submerged Macrophytes to Ammonia Nitrogen in the Water Column: Implications for Remediation and Ecological Rehabilitation of Nutrient-Enriched Aquatic Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Test Material
2.3. Experimental Design
2.4. Assay of Ammonia Nitrogen Concentration and Chlorophyll Content
2.5. Assay of Malondialdehyde Content and Enzyme Activity
2.6. Assay of Relative Growth Rate and Dry-Wet Ratio
2.7. Statistical Analysis
3. Results
3.1. Effect of Ammonia Nitrogen Concentration on Relative Growth Rate of Submerged Plants
3.2. Effect of Ammonia Nitrogen Concentration on Dry-Wet Ratio of Submerged Plants
3.3. Effect of Ammonia Nitrogen Concentration on Chlorophyll of Submerged Plants
3.4. Effect of Ammonia Nitrogen Concentration on Malondialdehyde (MDA) in Submerged Plants
3.5. Effect of Ammonia Concentration on Superoxide Dismutase (SOD) and Catalase (CAT) in Submerged Plants
3.6. Analysis of Various Physiological (Chemical) Indicators of Submerged Plants Under Ammonia Stress
4. Discussion
5. Conclusions
- (1)
- The optimal and maximum tolerance concentrations of ammonia nitrogen for Vallisneria natans, Myriophyllum verticillatum, and Elodea nuttallii were 2 mg/L, 4 mg/L, and 4 mg/L (optimal) and 4 mg/L, 12 mg/L, and 8 mg/L (tolerance). Submerged plants were able to grow normally within their maximum ammonia nitrogen tolerance concentrations. However, once these concentrations were exceeded, the peak enzyme activity in the antioxidant defense systems of the submerged plants occurred earlier, indicating that their growth was under severe stress from the elevated ammonia nitrogen levels.
- (2)
- The relative growth rate, chlorophyll content, MDA levels, and SOD and CAT activities in the three submerged plants initially increased and then declined with rising ammonia nitrogen concentrations, while the dry-wet ratio showed the opposite trend. Low ammonia nitrogen levels promoted biomass growth, chlorophyll synthesis, and dry matter accumulation, whereas high concentrations caused irreversible damage, limiting antioxidant defenses and preventing the removal of excess lipid peroxidation products.
- (3)
- Ammonia nitrogen tolerance among the three submerged plants was ranked as follows: Myriophyllum verticillatum > Elodea nuttallii > Vallisneria natans. Based on the ability of high ammonia nitrogen tolerance, we conclude that Myriophyllum verticillatum is a good candidate aquatic plant for treating high ammonia nitrogen wastewater in constructed wetland systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.X.; Zhang, X.; Huang, K.X.; Yang, L.; Gao, F. Study on salinity tolerance and its mechanism of submerged plant Ruppia maritima. Acta Sci. Circumstantiae 2023, 43, 487–496. [Google Scholar] [CrossRef]
- He, Y.S.; Wang, X.P.; He, T.H.; Zhao, M.T.; Wang, C.Q. Effects of water depth and light on the growth characteristics and nitrogen removal efficiency of three submerged plants. N. Hortic. 2022, 22, 81–90. [Google Scholar]
- Janssen, A.B.G.; Hilt, S.; Kosten, S.; de Klein, J.J.M.; Paerl, H.W.; Van de Waal, D.B. Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshw. Biol. 2021, 66, 1–12. [Google Scholar] [CrossRef]
- Losapio, G.; Schmid, B.; Bascompte, J.; Michalet, R.; Cerretti, P.; Germann, C.; Haenni, J.P.; Neumeyer, R.; Ortiz-Sánchez, F.J.; Pont, A.C.; et al. An experimental approach to assessing the impact of ecosystem engineers on biodiversity and ecosystem functions. Ecology 2021, 102, e03243. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, J.; Gupta, A.; Chandra, H. Managing water quality with aquatic macrophytes. Rev. Environ. Sci. Bio/Technol. 2008, 7, 255–266. [Google Scholar] [CrossRef]
- Song, Y.Z.; Yang, M.J.; Qin, B.Q. Physiological response of Vallisneria natans to nitrogen and phosphorus contents in eutrophic waterbody. Environ. Sci. 2011, 32, 2569–2575. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Q.F.; Li, J.Y.; Guo, B.B.; Liu, T.; Li, L. Comparison of purification ability of aquatic plants under different concentrations of nitrogen and phosphorus in tailrace of livestock wastewater. J. Agro-Environ. Sci. 2020, 39, 2397–2408. [Google Scholar] [CrossRef]
- Yang, J.S.; Jiang, L.; Lu, J.; Chen, K.N.; Xie, S.T.; Zhang, M.; Shi, X.L. Effects of controlling heavy cyanobacterial blooms through flocculation on water quality and submerged macrophyte restoration. China Environ. Sci. 2023, 43, 561–567. [Google Scholar] [CrossRef]
- Morgane, L.M.; Chantal, G.O.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2018, 651, 1–11. [Google Scholar] [CrossRef]
- Cheng, T.H.; Zhou, X.Y.; Cao, Y.C.; Yu, J.M. Effects of nitrogen forms on nitrogen and phosphorus removal efficiency of submerged plants and microbial community structure in sediments. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2022, 53, 560–567. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.H.; Li, W.; Wang, P.F.; Li, L. Nitric oxide supplementation alleviates ammonium toxicity in the submerged macrophyte Hydrilla verti-cillata Royle. Ecotoxicol. Environ. Saf. 2011, 71, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.X.; Fu, H.; Zhong, J.Y.; Cao, T.; Ni, L.Y.; Zhu, T.S.; Li, W.; Song, X. Nitrogen/carbon metabolism in response to NH4+ pulse for two submersed macrophytes. Aquat. Bot. 2015, 121, 76–82. [Google Scholar] [CrossRef]
- Jampeetong, A.; Brix, H.; Kantawanichkul, S. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullate, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aquat. Bot. 2012, 97, 10–16. [Google Scholar] [CrossRef]
- Dai, Y.R.; Jia, C.R.; Liang, W.; Liang, W.; Hu, S.H.; Wu, Z.B. Effects of the submerged macrophyte Ceratophyllum demersum L. on restoration of a eutrophic waterbody and its optimal coverage. Ecol. Eng. 2012, 40, 113–116. [Google Scholar] [CrossRef]
- Chang, Z.F.; Xian, L.; Samuel, W.M.; Liu, F.; Yan, X. Physiological Response of Three Common Submerged Plateau Plants to Ammonia Nitrogen. J. Hydroecol. 2022, 43, 108–115. [Google Scholar] [CrossRef]
- Zhou, J.B.; Jin, S.Q.; Bao, W.H.; Luo, Y.; Hu, Y. Comparison of Effects of Ammonia-nitrogen Concentrations on Growth of Four Kinds of Submerged Macrophytes. J. Agric. Resour. Environ. 2018, 35, 74–81. [Google Scholar] [CrossRef]
- Ma, Y.F.; Yang, X.Z.; Zhao, X.H.; Hu, C.X.; Tan, Q.L.; Sun, X.C.; Wu, J.S. Effect of sewage nitrogen concentration on nitrogen removal ability of Myriophyllum verticillatum. Environ. Sci. 2017, 38, 1093–1101. [Google Scholar] [CrossRef]
- Wu, M.Q.; Jian, Y.Y.; Yang, J.; Wang, L.J.; Yang, Q.H.; Ou, Y.K.X. Nitrogen and phosphorus polution characteristics and europhication risk assessment of urban lake reservoir type drinking water sources in Qiandongnan Prefecture. GuizhouProvince. J. Guizhou Normal Univ. 2024, 42, 55–67. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yan, Z.W.; Wang, F.; Wang, X.; Xu, H.; Hu, R.G.; Yan, C.; Lin, S. Effects of Microplastics Addition on Soil Organic Carbon Mineralization inCitrus Orchard. Environ. Sci. 2021, 42, 4558–4565. [Google Scholar] [CrossRef]
- Wu, H.L.; Hu, Z.B.; Chai, X.S.; Yang, Z.M. Rapid detection of ammonia nitrogen in water with dual-wavelength Spectroscopy. Spectrosc. Spectr. Anal. 2016, 36, 1396–1399. [Google Scholar]
- Liu, S.B.; Ran, B.; Zeng, G.J.; Li, B.Z.; Zhu, H.M.; Liu, F.; Xiao, R.L.; Wu, J.S. Physiologicalcharacteristics and nitrogen and phosphorus uptake of Myriophyllum verticillatum under high ammonium conditions. Environ. Sci. 2017, 38, 3731–3737. [Google Scholar] [CrossRef]
- Fan, S.X.; Zhang, N.; Sun, M.H.; Hou, X.D. Screening and stress response characteristics of potential hyperaccumulators of Pb, Zn and Cd combined heavy metals. Environ. Sci. 2024, 45, 4870–4882. [Google Scholar] [CrossRef]
- Li, Q.; Ding, W.Q.; Zhu, Q.H.; Song, L. Influence of simulated sand burial on recovery growth of Cynodon dactylon in low-water level-fluctuating zone of the Three Gorges Reservoir. Chin. J. Ecol. 2015, 34, 919–924. [Google Scholar] [CrossRef]
- Wang, R.; He, L.; Zhang, M.; Cao, T.; Zhang, X.L.; Liu, Y.; Ni, L.Y.; Ge, G. Factors on seed germination, tuber sprout and plant growth of Vallisnera natans species in China. J. Lake Sci. 2021, 33, 1315–1333. [Google Scholar] [CrossRef]
- Lu, J.J.; Zhang, M.; Quan, S.Q.; Liu, Z.G.; Chen, H.; Yin, Q.; Ou, Y.C.Y. Integrated effects of hypoxia, high ammonia and low light on the growth and physiologicalC-N metabolism indices of Vallisneria natans. J. Lake Sci. 2018, 30, 1064–1074. [Google Scholar] [CrossRef]
- Gao, Q.Y.; Zhu, W.J.; Liu, X.B.; Lan, Y.Q.; Mo, J.N.; Shen, W.G. Effect of Ammonia Nitrogen Concentration on the Growth of FiveSubmerged Vegetation Species. J. Hydroecol. 2019, 40, 67–72. [Google Scholar] [CrossRef]
- Zhao, F.B.; Wang, L.Q.; Ji, G.H.; Li, W.X. Effects of NaCl stress on plant biology indicators and MDA content of 3 submerged plants. Environ. Pollut. Control 2012, 34, 40–44. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, D.; Wang, C.H.; Jin, X.; Chen, Y.J.; Dai, Z.B.; Feng, L.D.; Yang, J.S. The Effect of Melatonin on the Subcellular Reactive Oxygen Species Metabolism During Development and Senescence in Grape Leaves. Acta Hortic. Sin. 2024, 51, 103–120. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, L.; Ma, S.Z.; Wu, Y.; Ye, Q.; Chang, Y.H.; Ye, Y.; Chen, K.N. Response of a submerged macrophyte (Vallisneria natans) to water depth gradients and sediment nutrient concentrations. Sci. Total Environ. 2024, 912, 169154. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Xu, Z.H.; Cheng, P.F.; Xu, J.L.; Zhou, C.X. Effects of different concentrations of ammonia nitrogen on the growth and enzyme activity of four common algae strains. Environ. Sci. 2019, 40, 3642–3649. [Google Scholar] [CrossRef]
- Shao, X.L.; Meng, X.S.; Gao, L.; Wei, Q. Effects of Chaetomorpha growth on alkaline phosphatase activity and phosphorus concentrations in water and sediments. Res. Environ. Sci. 2015, 28, 890–898. [Google Scholar] [CrossRef]
- Souza, F.A.; Dziedzic, M.; Cubas, S.A.; Maranho, L.T. Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc. Haloragaceae. J. Environ. Manag. 2013, 120, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Hu, W.P.; Deng, J.C.; Hu, C.H. Responses of Physiological Indices of Typical Submerged Macrophytes to Water Quality in Taihu Lake. Environ. Sci. 2016, 37, 4570–4576. [Google Scholar] [CrossRef]
- Wang, A.L.; Sun, X.; Chen, Q.K.; Yang, L.Y. Effect of ammonia in the tailwater from wastewater treatment plant on the growth of Myriophyllum spicatum. Chin. J. Ecol. 2015, 34, 1367–1372. [Google Scholar] [CrossRef]
- Wen, M.Z.; Li, K.Y.; Wang, C.H. Effects of nutrient level on growth of Vallisneria natans in water. Res. Environ. Sci. 2008, 21, 74–77. [Google Scholar] [CrossRef]
- Bittsanszky, A.; Pilinszky, K.; Gyulai, G.; Komives, T. Overcoming ammonium toxicity. Plant Sci. 2015, 231, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.M.; Li, Y.B.; Chen, W.F.; Wang, H.; Hu, G.Q.; Zhu, G.Y.P. Effects of biochar on the physicochemical properties of coastal saline soil and the antioxidant system activity in maize seedlings. J. Soil Water Conserv. 2019, 33, 196–200. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Q.X. Research advances in an tioxilant enzymes for diagnosing environmental contamnation. Chin. J. Ecol. 2008, 10, 1791–1798. [Google Scholar] [CrossRef]
- Luo, Y.; Li, C.; Wang, P.; Tian, L.H.; Wang, H.; Zhou, Q.P.; Lei, Y.X. Responses of different oat cultivars to low-nitrogen stress. Acta Prataculturala Sin. 2024, 33, 164–184. [Google Scholar] [CrossRef]
- Song, L.P.; Xu, X.Y.; Hong, W.Y.; Ai, Y.M.; Wang, Y.; Zang, Z.K.; Zhou, J.H. Effect of cadmium-tolerant bacteria on Lolium perenne growth and its cadmium enrichment. China Environ. Sci. 2023, 43, 1386–1396. [Google Scholar] [CrossRef]
- Li, F.L.; Luo, C.K.; Lu, X.P.; Tian, L.; Li, P.F. Current Status and Prospect of Research on Physiology and Genetic Mechanism of Alkali Tolerance in Rice. J. Plant Genet. Resour. 2021, 22, 283–292. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.S.; Xu, C.Y.; Zou, M.; Bao, W.T.; Xi, L.Q.; Xin, L.; Chen, Y.L. Efficacy and Action Mechanism of Bacillus velezensis on Controlling Postharvest Soft Rot of Sweet Cherry Fruits. Food Sci. 2023, 44, 229–239. [Google Scholar] [CrossRef]
Reagent | Concentration/mg·L−1 | Reagent | Concentration/mg·L−1 |
---|---|---|---|
CaCl2 | 22.20 | H3BO3 | 0.830 |
MgSO4 | 24.65 | MnSO4 | 22.300 |
NH4CI | 6.80 | ZnSO4 | 8.600 |
KH2PO4 | 2.65 | CuSO4 | 0.025 |
EDTA | 18.65 | CoCI2 | 0.025 |
FeSO4·7H2O | 13.90 | Na2MoO4·2H2O | 0.250 |
Submerged Plants | Parameter | Relative Growth Rate | Dry-Wet Ratio | Chlorophyll | MDA | SOD | CAT |
---|---|---|---|---|---|---|---|
Vallisneria natans | Relative growth rate | 1 | |||||
dry-wet ratio | −0.901 ** | 1 | |||||
Chlorophyll | 0.936 ** | −0.991 ** | 1 | ||||
MDA | 0.176 | −0.453 | 0.342 | 1 | |||
SOD | 0.113 | −0.431 | 0.343 | 0.797 * | 1 | ||
CAT | 0.803 * | −0.930 ** | 0.917 ** | 0.505 | 0.589 | 1 | |
Myriophyllum verticillatum | Relative growth rat | 1 | |||||
dry-wet ratio | −0.964 ** | 1 | |||||
Chlorophyll | 0.819 * | −0.761 * | 1 | ||||
MDA | 0.705 | −0.760 * | 0.843 * | 1 | |||
SOD | 0.447 | −0.321 | 0.773 * | 0.581 | 1 | ||
CAT | 0.278 | −0.123 | 0.455 | 0.267 | 0.879 ** | 1 | |
Elodea nuttallii | Relative growth rat | 1 | |||||
dry-wet ratio | −0.912 ** | 1 | |||||
Chlorophyll | 0.896 ** | −0.762 * | 1 | ||||
MDA | 0.719 | −0.599 | 0.908 ** | 1 | |||
SOD | −0.202 | 0.142 | 0.144 | 0.472 | 1 | ||
CAT | 0.842 * | −0.779 * | 0.933 ** | 0.910 ** | 0.330 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Zhao, T.; Gui, S.; Xu, W.; Hao, K.; Zhong, Y. Comparative Account of Tolerance of Different Submerged Macrophytes to Ammonia Nitrogen in the Water Column: Implications for Remediation and Ecological Rehabilitation of Nutrient-Enriched Aquatic Environments. Water 2025, 17, 2218. https://doi.org/10.3390/w17152218
Zhu S, Zhao T, Gui S, Xu W, Hao K, Zhong Y. Comparative Account of Tolerance of Different Submerged Macrophytes to Ammonia Nitrogen in the Water Column: Implications for Remediation and Ecological Rehabilitation of Nutrient-Enriched Aquatic Environments. Water. 2025; 17(15):2218. https://doi.org/10.3390/w17152218
Chicago/Turabian StyleZhu, Shijiang, Tao Zhao, Shubiao Gui, Wen Xu, Kun Hao, and Yun Zhong. 2025. "Comparative Account of Tolerance of Different Submerged Macrophytes to Ammonia Nitrogen in the Water Column: Implications for Remediation and Ecological Rehabilitation of Nutrient-Enriched Aquatic Environments" Water 17, no. 15: 2218. https://doi.org/10.3390/w17152218
APA StyleZhu, S., Zhao, T., Gui, S., Xu, W., Hao, K., & Zhong, Y. (2025). Comparative Account of Tolerance of Different Submerged Macrophytes to Ammonia Nitrogen in the Water Column: Implications for Remediation and Ecological Rehabilitation of Nutrient-Enriched Aquatic Environments. Water, 17(15), 2218. https://doi.org/10.3390/w17152218