ABAQUS-Based Numerical Analysis of Land Subsidence Induced by Pit Pumping in Multi-Aquifer Systems
Abstract
1. Introduction
2. Engineering Background
Project Description
3. Numerical Simulation and Verification
3.1. Model Establishment
3.2. Model Verification
4. Evolution Mechanisms of Soil Deformation Induced by Foundation Pit Pumping
4.1. Influence of Pit-Exterior Hydraulic Connectivity
4.2. Influence of Different Site Conditions
4.3. Influence of Different Pumping Position
5. Conclusions
- (1)
- The stabilization time of land subsidence is determined by the stabilization time of water level decline in the external phreatic layer. In practical engineering applications, continuous monitoring of pit deformation remains necessary even after internal water level stabilization, requiring sustained attention to the subsidence process of external water levels.
- (2)
- The study reveals distinct characteristics in water level responses inside and outside the excavation, demonstrating that both the rate and magnitude of drawdown within the pit are significantly greater than those in the external phreatic layer. This phenomenon reflects the disturbance effect of excavation on groundwater systems.
- (3)
- This study quantitatively analyzed the influence of hydraulic connectivity on pumping effects, revealing that enhanced connectivity accelerates internal water level decline while simultaneously exacerbating surface subsidence and prolonging its stabilization time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Zheng, G.; Ha, D.; Loaiciga, H.; Zhou, H.; Zeng, C.; Zhang, H. Estimation of the Hydraulic Parameters of Leaky Aquifers Based on Pumping Tests and Coupled Simulation/Optimization: Verification Using a Layered Aquifer in Tianjin, China. Hydrogeol. J. 2019, 27, 3081–3095. [Google Scholar] [CrossRef]
- Zheng, G.; Dai, X.; Diao, Y.; Zeng, C. Experimental and Simplified Model Study of the Development of Ground Settlement under Hazards Induced by Loss of Groundwater and Sand. Nat. Hazards 2016, 82, 1869–1893. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; Courier Corporation: Mineola, NY, USA, 2012. [Google Scholar]
- Li, M.-G.; Chen, J.-J.; Xia, X.-H.; Zhang, Y.-Q.; Wang, D.-F. Statistical and Hydro-Mechanical Coupling Analyses on Groundwater Drawdown and Soil Deformation Caused by Dewatering in a Multi-Aquifer-Aquitard System. J. Hydrol. 2020, 589, 125365. [Google Scholar] [CrossRef]
- Yang, K.; Xu, C.; Zeng, C.; Zhu, L.; Xue, X.; Han, L. Analysis of Recharge Efficiency Under Barrier Effects Incurred by Adjacent Underground Structures. Water 2025, 17, 257. [Google Scholar] [CrossRef]
- He, D.; Zeng, C.; Xu, C.; Xue, X.; Zhao, Y.; Han, L.; Sun, H. Barrier Effect of Existing Building Pile on the Responses of Groundwater and Soil During Foundation Pit Dewatering. Water 2024, 16, 2977. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Chen, H.-B.; Liao, H.; Xue, X.-L.; Chen, Q.-N.; Diao, Y. Behaviours of Groundwater and Strata during Dewatering of Large-Scale Excavations with a Nearby Underground Barrier. J. Hydrol. 2023, 620, 129400. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, C.; Yang, K.; Xue, X.; Zeng, C. Experimental Study on the Influence of Rising Water Levels on the Buoyancy of Building Structure. Water 2025, 17, 1377. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Wang, S.; Xue, X.-L.; Zheng, G.; Mei, G.-X. Characteristics of Ground Settlement Due to Combined Actions of Groundwater Drawdown and Enclosure Wall Movement. Acta. Geotech. 2022, 17, 4095–4112. [Google Scholar] [CrossRef]
- Xue, T.; Xue, X.; Long, S.; Chen, Q.; Lu, S.; Zeng, C. Effect of Pre-Existing Underground Structures on Groundwater Flow and Strata Movement Induced by Dewatering and Excavation. Water 2023, 15, 814. [Google Scholar] [CrossRef]
- Yang, K.; Xu, C.; Chi, M.; Wang, P. Analytical Analysis of the Groundwater Drawdown Difference Induced by Foundation Pit Dewatering with a Suspended Waterproof Curtain. Appl. Sci. 2022, 12, 10301. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, W.; Li, D. Analytical Solution for Steady-State Seepage Field of Foundation Pit During Water Curtain Leakage. Mathematics 2025, 13, 203. [Google Scholar] [CrossRef]
- Yang, T.L.; Yan, X.X.; Wang, H.M.; Huang, X.L.; Zhan, G.H. Comprehensive Experimental Study on Prevention of Land Subsidence Caused by Dewatering in Deep Foundation Pit with Hanging Waterproof Curtain. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 1–5. [Google Scholar] [CrossRef]
- Xu, W.; Liu, B.; Wu, J. Construction Technology and Service Performance of Waterproof Curtain for Foundation Pit in Large-Particle Pebble Gravel Layer of Yangtze River Floodplain. Appl. Sci. 2024, 14, 5962. [Google Scholar] [CrossRef]
- Shen, S.-L.; Lyu, H.-M.; Zhou, A.; Lu, L.-H.; Li, G.; Hu, B.-B. Automatic Control of Groundwater Balance to Combat Dewatering during Construction of a Metro System. Autom. Constr. 2021, 123, 103536. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Shen, S.-L.; Wu, Y.-X.; Zhou, A.-N. Calculation of Groundwater Head Distribution with a Close Barrier during Excavation Dewatering in Confined Aquifer. Geosci. Front. 2021, 12, 791–803. [Google Scholar] [CrossRef]
- Sun, W.; Liu, H.; Zhang, W.; Liu, S.; Han, L. Determination of Groundwater Buoyancy Reduction Coefficient in Clay: Model Tests, Numerical Simulations and Machine Learning Methods. Undergr. Space 2023, 13, 228–240. [Google Scholar] [CrossRef]
- Bevan, M.A.; Powrie, W.; Roberts, T.O.L. Influence of Large-Scale Inhomogeneities on a Construction Dewatering System in Chalk. Géotechnique 2010, 60, 635–649. [Google Scholar] [CrossRef]
- Forth, R.A. Groundwater and Geotechnical Aspects of Deep Excavations in Hong Kong. Eng. Geol. 2004, 72, 253–260. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Zheng, G.; Xue, X.-L.; Mei, G.-X. Combined Recharge: A Method to Prevent Ground Settlement Induced by Redevelopment of Recharge Wells. J. Hydrol. 2019, 568, 1–11. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Song, W.-W.; Xue, X.-L.; Li, M.-K.; Bai, N.; Mei, G.-X. Construction Dewatering in a Metro Station Incorporating Buttress Retaining Wall to Limit Ground Settlement: Insights from Experimental Modelling. Tunn. Undergr. Space Technol. 2021, 116, 104124. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Powrie, W.; Xue, X.-L.; Li, M.-K.; Mei, G.-X. Effectiveness of a Buttress Wall in Reducing Retaining Wall Movement during Dewatering before Bulk Excavation. Acta Geotech. 2021, 16, 3253–3267. [Google Scholar] [CrossRef]
- Chu, Y.; Shi, J.; Ye, Z.; Liu, D. Dewatering Characteristics and Drawdown Prediction of Suspended Waterproof Curtain Foundation Pit in Soft Soil Areas. Buildings 2024, 14, 119. [Google Scholar] [CrossRef]
- Liu, L.; Lei, M.; Cao, C.; Shi, C. Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata. Water 2019, 11, 2182. [Google Scholar] [CrossRef]
- Wang, X.-W.; Yang, T.-L.; Xu, Y.-S.; Shen, S.-L. Evaluation of Optimized Depth of Waterproof Curtain to Mitigate Negative Impacts during Dewatering. J. Hydrol. 2019, 577, 123969. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Wu, Y.; Liu, S.; Wu, L.; Lou, R.; Lu, J.; Yin, Y. Field Experiment and Numerical Simulation of Coupling Non-Darcy Flow Caused by Curtain and Pumping Well in Foundation Pit Dewatering. J. Hydrol. 2017, 549, 277–293. [Google Scholar] [CrossRef]
- Zhenfang, L.; Dongming, G.; Yanbing, W.; Zenglin, Z. Technology Research of Large Underwater Ultra-Deep Curtain Grouting in Zhong-Guan Iron Ore. Procedia Eng. 2011, 26, 731–737. [Google Scholar] [CrossRef]
- Robins, N.S.; Davies, J.; Cheney, C.; Tribe, E.L. Groundwater in a Water-Rich Environment: Wales, a Land of Plenty. Water Environ. J. 2005, 19, 62–67. [Google Scholar] [CrossRef]
- Luczaj, J.; Masarik, K. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA. Resources 2015, 4, 323–357. [Google Scholar] [CrossRef]
- Qu, S.; Shi, Z.; Liang, X.; Wang, G.; Han, J. Multiple Factors Control Groundwater Chemistry and Quality of Multi-Layer Groundwater System in Northwest China Coalfield—Using Self-Organizing Maps (SOM). J. Geochem. Explor. 2021, 227, 106795. [Google Scholar] [CrossRef]
- Li, D.; Cheng, S.; Liu, N.; Liu, Z.; Sun, Y. Numerical Simulation Study on the Distribution Characteristics of Precipitation Seepage Field in Water-Rich Ultra-Thick Sand and Gravel Layer. Water 2023, 15, 3720. [Google Scholar] [CrossRef]
- Luo, X.; Yu, C.; Wang, Y. Water Control of Water-Rich Deeply Buried Tunnel: An Analytical Model of a Combined Scheme. Geotech. Geol. Eng. 2023, 41, 3909–3922. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, Y. Seepage in Water-Rich Loess Tunnel Excavating Process and Grouting Control Effect. Geofluids 2021, 2021, 5597845. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, P.; Lin, H.; Zhao, Y. Risk Management Technologies for Deep Excavations in Water-Rich Areas. Water 2024, 16, 323. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, K.; Meng, G.; Suo, X. Optimization of Recharge Schemes for Deep Excavation in the Confined Water-Rich Stratum. Sustainability 2023, 15, 5432. [Google Scholar] [CrossRef]
- Yang, T.; Liu, S.; Wang, X.; Zhao, H.; Liu, Y.; Li, Y. Analysis of the Deformation Law of Deep and Large Foundation Pits in Soft Soil Areas. Front. Earth Sci. 2022, 10, 828354. [Google Scholar] [CrossRef]
- Zhao, J.; Tan, Z.; Yu, R.; Li, Z.; Zhang, X.; Zhu, P. Deformation Responses of the Foundation Pit Construction of the Urban Metro Station: A Case Study in Xiamen. Tunn. Undergr. Space Technol. 2022, 128, 104662. [Google Scholar] [CrossRef]
- Wang, Z. Numerical Analysis of Deformation Control of Deep Foundation Pit in Ulanqab City. Geotech. Geol. Eng. 2021, 39, 5325–5337. [Google Scholar] [CrossRef]
- Mei, Y.; Li, Y.-L.; Wang, X.-Y.; Wang, J.; Hu, C.-M. Statistical Analysis of Deformation Laws of Deep Foundation Pits in Collapsible Loess. Arab. J. Sci. Eng. 2019, 44, 8347–8360. [Google Scholar] [CrossRef]
- Wang, X.; Song, Q.; Gong, H. Research on Deformation Law of Deep Foundation Pit of Station in Core Region of Saturated Soft Loess Based on Monitoring. Adv. Civ. Eng. 2022, 2022, 7848152. [Google Scholar] [CrossRef]
- Zhou, N.; Vermeer, P.A.; Lou, R.; Tang, Y.; Jiang, S. Numerical Simulation of Deep Foundation Pit Dewatering and Optimization of Controlling Land Subsidence. Eng. Geol. 2010, 114, 251–260. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, S.-L.; Lyu, H.-M.; Zhou, A. Analyses of Leakage Effect of Waterproof Curtain during Excavation Dewatering. J. Hydrol. 2020, 583, 124582. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.; Zhang, N.; Shen, Q. Calculation of Foundation Pit Deformation Caused by Deep Excavation Considering Influence of Loading and Unloading. J. Cent. South Univ. 2017, 24, 2164–2171. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, D. Characteristics of a Large-Scale Deep Foundation Pit Excavated by the Central-Island Technique in Shanghai Soft Clay. II: Top-Down Construction of the Peripheral Rectangular Pit. J. Geotech. Geoenviron. Eng. 2013, 139, 1894–1910. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Dong, J.; Wang, J.; Wang, M. Comparative Investigation on Deformation Monitoring and Numerical Simulation of the Deepest Excavation in Beijing. Bull. Eng. Geol. Environ. 2021, 80, 1233–1247. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, Q.; Xu, X.; Tang, Q.; Li, X.; Liao, X. Deformation Characteristics of Soil Layers and Diaphragm Walls during Deep Foundation Pit Excavation: Simulation Verification and Parameter Analysis. Symmetry 2022, 14, 254. [Google Scholar] [CrossRef]
- Shi, H.; Jia, Z.; Wang, T.; Cheng, Z.; Zhang, D.; Bai, M.; Yu, K. Deformation Characteristics and Optimization Design for Large-Scale Deep and Circular Foundation Pit Partitioned Excavation in a Complex Environment. Buildings 2022, 12, 1292. [Google Scholar] [CrossRef]
- Cui, J.; Yang, Z.; Azzam, R. Field Measurement and Numerical Study on the Effects of Under-Excavation and Over-Excavation on Ultra-Deep Foundation Pit in Coastal Area. J. Mar. Sci. Eng. 2023, 11, 219. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P.; Ankit, G.; Singh, Y.J. Deformation Monitoring Analysis and Numerical Simulation in a Deep Foundation Pit. Soil Mech. Found. Eng. 2021, 58, 56–62. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Wang, S.; Xue, X.-L.; Zheng, G.; Mei, G.-X. Evolution of Deep Ground Settlement Subject to Groundwater Drawdown during Dewatering in a Multi-Layered Aquifer-Aquitard System: Insights from Numerical Modelling. J. Hydrol. 2021, 603, 127078. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Powrie, W.; Chen, H.-B.; Wang, S.; Diao, Y.; Xue, X.-L. Ground Behavior Due to Dewatering Inside a Foundation Pit Considering the Barrier Effect of Preexisting Building Piles on Aquifer Flow. J. Geotech. Geoenviron. Eng. 2024, 150, 05024004. [Google Scholar] [CrossRef]
- Xue, X.-L.; Zhu, L.; Wang, S.; Chen, H.-B.; Zeng, C.-F. Groundwater Response to Pumping Considering Barrier Effect of Existing Underground Structure. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), Beijing, China, 15–17 July 2022. [Google Scholar]
- Zeng, C.F.; Sun, H.Y.; Chen, H.B.; Xue, X.L.; Liu, Y.S.; Song, W.W. Responses of Adjacent Building Pile to Foundation Pit Dewatering. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), Beijing, China, 15–17 July 2022; Wang, L., Zhang, J.M., Wang, R., Eds.; PBD-IV 2022. Geotechnical, Geological and Earthquake Engineering. Springer: Cham, Switzerland, 2022; Volume 52. [Google Scholar] [CrossRef]
- El-Nimr, M.T.; Basha, A.M.; Abo-Raya, M.M.; Zakaria, M.H. General Deformation Behavior of Deep Excavation Support Systems: A Review. Glob. J. Eng. Tech. Adv. 2022, 10, 39–57. [Google Scholar] [CrossRef]
- Wu, B.; Ge, C.; Li, P.; Yang, M.; Li, L. Influence of Deep Foundation Pit Excavation on Adjacent Pipelines: A Case Study in Nanjing, China. Appl. Sci. 2024, 14, 572. [Google Scholar] [CrossRef]
- Zhang, D. Influences of Deep Foundation Pit Excavation on the Stability of Adjacent Ancient Buildings. Buildings 2023, 13, 2004. [Google Scholar] [CrossRef]
- Li, D.; Liao, F.; Wang, L.; Lin, J.; Wang, J. Multi-Stage and Multi-Parameter Influence Analysis of Deep Foundation Pit Excavation on Surrounding Environment. Buildings 2024, 14, 297. [Google Scholar] [CrossRef]
- Zeng, F.-Y.; Zhang, Z.-J.; Wang, J.-H.; Li, M.-G. Observed Performance of Two Adjacent and Concurrently Excavated Deep Foundation Pits in Soft Clay. J. Perform. Constr. Facil. 2018, 32, 04018040. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Zhang, S.; Huang, F.; Xiao, H.; Ma, H.; Luo, L.; Bao, H. Response Monitoring and Analysis in Deep Foundation Pit Excavation: A Case Study in Soft Soil at Subway Tunnel Intersections. Buildings 2023, 13, 1286. [Google Scholar] [CrossRef]
- Hu, B.; Li, X.; Huang, D. Safety Risk Analysis and Protective Control of Existing Pipelines Affected by Deep Pit Excavation in Metro Construction. Model. Simul. Eng. 2019, 2019, 3643808. [Google Scholar] [CrossRef]
- Li, G.; Qin, F.; Yan, N.; Qiao, X.; Si, L.; Zhao, S. Surface Deformation Characteristics and Influencing Factors in Deep Foundation Pit Excavations for Subway Projects in Ningbo’s Soft Soil Area. Buildings 2025, 15, 1229. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Chen, Y. The Influence of Different Excavation Methods on Deep Foundation Pit and Surrounding Environment. In Proceedings of the 8th International Conference on Civil Engineering, Nanchang, China, 4–5 December 2021. [Google Scholar]
- Ha, D.; Zheng, G.; Zhou, H.; Zeng, C.; Zhang, H. Estimation of Hydraulic Parameters from Pumping Tests in a Multiaquifer System. Undergr. Space 2020, 5, 210–222. [Google Scholar] [CrossRef]
- Wang, J.; Feng, B.; Yu, H.; Guo, T.; Yang, G.; Tang, J. Numerical Study of Dewatering in a Large Deep Foundation Pit. Environ. Earth Sci. 2013, 69, 863–872. [Google Scholar] [CrossRef]
- Zheng, G.; Ha, D.; Zeng, C.; Cheng, X.; Zhou, H.; Cao, J. Influence of the Opening Timing of Recharge Wells on Settlement Caused by Dewatering in Excavations. J. Hydrol. 2019, 573, 534–545. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Zheng, G.; Xue, X.-L. Responses of Deep Soil Layers to Combined Recharge in a Leaky Aquifer. Eng. Geol. 2019, 260, 105263. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Liao, H.; Xue, X.-L.; Long, S.-C.; Luo, G.-J.; Diao, Y.; Li, M.-G. Responses of Groundwater and Soil to Dewatering Considering the Barrier Effect of Adjacent Metro Station on Multi-Aquifers. J. Hydrol. 2022, 612, 128117. [Google Scholar] [CrossRef]
- Shen, L.; Xue, Z.; Tang, L.; Ge, H. Research on Resilience Evaluation and Enhancement of Deep Foundation Pit Construction Safety System. Buildings 2022, 12, 1922. [Google Scholar] [CrossRef]
- Rabiner, L.R.; Schafer, R.W. Theory and Applications of Digital Speech Processing, 1st ed.; Pearson Higher Education: Upper Saddle River, NJ, USA, 2011; ISBN 978-0-13-603428-5. [Google Scholar]
- Chang, Y.; Lv, L.; Wang, X.; Xu, J. A Semi-Analytical Solution of Two-Dimensional Unsteady Groundwater Flow Outside a Long-Strip Excavation Pit with a Cut-Off Wall. Appl. Sci. 2024, 14, 7367. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Wang, J.-H.; Li, M.-G. Effect of Dewatering in a Confined Aquifer on Ground Settlement in Deep Excavations. Int. J. Geomech. 2018, 18, 04018120. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Shen, J.S.; Cheng, W.-C.; Hino, T. Semi-Analytical Solution to Pumping Test Data with Barrier, Wellbore Storage, and Partial Penetration Effects. Eng. Geol. 2017, 226, 44–51. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, F.; Zhang, X. Numerical Simulation and Deformation Prediction of Deep Pit Based on PSO-BP Neural Network Inversion of Soil Parameters. Sensors 2024, 24, 2959. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, K.; Wang, J.; Cheng, C. Numerical Simulation of Deep Foundation Pit Construction under Complex Site Conditions. Adv. Civ. Eng. 2021, 2021, 6669466. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Xue, X.-L.; Li, M.-K. Use of Cross Wall to Restrict Enclosure Movement during Dewatering inside a Metro Pit before Soil Excavation. Tunn. Undergr. Space Technol. 2021, 112, 103909. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Xue, X.-L.; Zheng, G.; Xue, T.-Y.; Mei, G.-X. Responses of Retaining Wall and Surrounding Ground to Pre-Excavation Dewatering in an Alternated Multi-Aquifer-Aquitard System. J. Hydrol. 2018, 559, 609–626. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Yuan, Z.-C.; Xue, X.-L.; Hu, W. Responses of Retaining Wall to Pre-Excavation Dewatering Under Staggered Layout of Dewatering Wells. In Proceedings of China-Europe Conference on Geotechnical Engineering, Vienna, Austria, 13–16 August 2018; Wu, W., Yu, H.-S., Eds.; Springer Series in Geomechanics and Geoengineering; Springer International Publishing: Cham, Switzerland, 2018; pp. 1085–1089. ISBN 978-3-319-97114-8. [Google Scholar]
- Zheng, G.; Zeng, C.-F.; Diao, Y.; Xue, X.-L. Test and Numerical Research on Wall Deflections Induced by Pre-Excavation Dewatering. Comput. Geotech. 2014, 62, 244–256. [Google Scholar] [CrossRef]
- Sethi, R. A Dual-Well Step Drawdown Method for the Estimation of Linear and Non-Linear Flow Parameters and Wellbore Skin Factor in Confined Aquifer Systems. J. Hydrol. 2011, 400, 187–194. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.; Goh, A.T.C.; Hou, Z.; Wang, W. A Simple Model for Ground Surface Settlement Induced by Braced Excavation Subjected to a Significant Groundwater Drawdown. Geomech. Eng. 2018, 16, 635–642. [Google Scholar] [CrossRef]
- Fan, D.; Tan, Y.; Tang, Y.; Wang, D. Evaluation of Dewatering-Induced Hydraulic and Ground Responses of Thick Multi-Aquifer Sandy Strata without Aquitards. Environ. Earth Sci. 2024, 83, 3. [Google Scholar] [CrossRef]
- Ping, S.; Wang, F.; Wang, D.; Li, S.; Yuan, Y.; Wu, M.; Pan, H.; Cao, Y. Optimization of a Deep Foundation Pit Dewatering Scheme in Gypsum-Bearing Strata. Environ. Earth Sci. 2024, 83, 8. [Google Scholar] [CrossRef]
- Xue, X.-L.; Sun, H.-Y.; Zeng, C.-F.; Chen, H.-B.; Zheng, G.; Xu, C.-J.; Han, L. Why Pile-Supported Building Settled Continuously after Water Level Was Stabilized during Dewatering: Clues from Interaction between Pile and Multi Aquifers. J. Hydrol. 2024, 638, 131539. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Powrie, W.; Xu, C.-J.; Xue, X.-L. Wall Movement during Dewatering inside a Diaphragm Wall before Soil Excavation. Undergr. Space 2025, 22, 355–368. [Google Scholar] [CrossRef]
- Xie, Z.-F. Environmentally Sustainable Groundwater Control during Dewatering with Barriers: A Case Study in Shanghai. Undergr. Space 2021, 6, 12–23. [Google Scholar] [CrossRef]
- Wang, Z.-F.; Shen, S.-L.; Ho, C.-E.; Kim, Y.-H. Investigation of Field-Installation Effects of Horizontal Twin-Jet Grouting in Shanghai Soft Soil Deposits. Can. Geotech. J. 2013, 50, 288–297. [Google Scholar] [CrossRef]
- Sterling, S.N. Groundwater Lowering in Construction: A Practical Guide to Dewatering. Environ. Eng. Geosci. 2014, 20, 406–407. [Google Scholar] [CrossRef]
- Goh, A.T.C.; Zhang, R.H.; Wang, W.; Wang, L.; Liu, H.L.; Zhang, W.G. Numerical Study of the Effects of Groundwater Drawdown on Ground Settlement for Excavation in Residual Soils. Acta Geotech. 2020, 15, 1259–1272. [Google Scholar] [CrossRef]
- Zeng, C.-F.; Zheng, G.; Zhou, X.-F.; Xue, X.-L.; Zhou, H.-Z. Behaviours of Wall and Soil during Pre-Excavation Dewatering under Different Foundation Pit Widths. Comput. Geotech. 2019, 115, 103169. [Google Scholar] [CrossRef]
- Lu, D.; Meng, F.; Zhou, X.; Zhuo, Y.; Gao, Z.; Du, X. A Dynamic Elastoplastic Model of Concrete Based on a Modeling Method with Environmental Factors as Constitutive Variables. J. Eng. Mech. 2023, 149, 04023102. [Google Scholar] [CrossRef]
- Lu, D.; Wang, G.; Du, X.; Wang, Y. A Nonlinear Dynamic Uniaxial Strength Criterion That Considers the Ultimate Dynamic Strength of Concrete. Int. J. Impact Eng. 2017, 103, 124–137. [Google Scholar] [CrossRef]
- Lu, D.; Meng, F.; Zhou, X.; Wang, G.; Du, X. Double Scalar Variables Plastic-Damage Model for Concrete. J. Eng. Mech. 2022, 148, 04021143. [Google Scholar] [CrossRef]
- Lu, D.; Zhou, X.; Du, X.; Wang, G.S. 3D Dynamic Elastoplastic Constitutive Model of Concrete within the Framework of Rate-Dependent Consistency Condition. J. Eng. Mech. 2020, 146, 04020124. [Google Scholar] [CrossRef]
- Lu, D.; Zhou, X.; Du, X.; Wang, G. A 3D Fractional Elastoplastic Constitutive Model for Concrete Material. Int. J. Solids Struct. 2019, 165, 160–175. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, D.H.; Zhang, Y.N.; Du, X.L. An Open-Source Unconstrained Stress Updating Algorithm for the modified Cam-clay model. Comput. Methods Appl. Mech. Eng. 2022, 390, 114356. [Google Scholar] [CrossRef]
- Yu, J.; Yao, W.; Duan, K.; Liu, X.Y.; Zhu, Y.L. Experimental Study and Discrete Element Method Modeling of Compression. Int. J. Rock Mech. Min. Sci. 2020, 134, 104437. [Google Scholar] [CrossRef]
- Lu, D.; Liang, J.; Du, X.; Ma, C.; Gao, Z. Fractional Elastoplastic Constitutive Model for Soils Based on a Novel 3D. Comput. Geotech. 2019, 105, 277–290. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Y.; Yao, Y.; Liu, X.; Ren, C.; Cai, Y.; Tang, X. Stress Relaxation Behaviour of Marble under Cyclic Weak Disturbance and confining pressures. Measurement 2021, 182, 109777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zeng, C.; Xue, X.; Wang, S.; Zhao, Y.; Zhang, Z. ABAQUS-Based Numerical Analysis of Land Subsidence Induced by Pit Pumping in Multi-Aquifer Systems. Water 2025, 17, 2210. https://doi.org/10.3390/w17152210
Chen J, Zeng C, Xue X, Wang S, Zhao Y, Zhang Z. ABAQUS-Based Numerical Analysis of Land Subsidence Induced by Pit Pumping in Multi-Aquifer Systems. Water. 2025; 17(15):2210. https://doi.org/10.3390/w17152210
Chicago/Turabian StyleChen, Jiao, Chaofeng Zeng, Xiuli Xue, Shuo Wang, Youwu Zhao, and Zirui Zhang. 2025. "ABAQUS-Based Numerical Analysis of Land Subsidence Induced by Pit Pumping in Multi-Aquifer Systems" Water 17, no. 15: 2210. https://doi.org/10.3390/w17152210
APA StyleChen, J., Zeng, C., Xue, X., Wang, S., Zhao, Y., & Zhang, Z. (2025). ABAQUS-Based Numerical Analysis of Land Subsidence Induced by Pit Pumping in Multi-Aquifer Systems. Water, 17(15), 2210. https://doi.org/10.3390/w17152210