Spatiotemporal Analysis of Water Quality and Optical Changes Induced by Contaminants in Lake Chinchaycocha Using Sentinel-2 and in Situ Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data of Water Quality Parameters
2.3. Satellite Image Data and Reflectance Extraction
2.4. Phase 1: Evaluation of Empirical Formulas
2.5. Phase 2: Development of New Equations for Lake Chinchaycocha
2.5.1. Regression Models for Water Quality Estimation
2.5.2. Spectral Band Combinations and Indices
2.5.3. Construction of Composite Water Quality Indices
2.5.4. Exploratory Correlation and Visual Assessment
- Individual spectral bands vs. water quality parameters;
- Band ratios and transformations;
- Seasonal comparisons to detect optical response shifts.
2.5.5. Season-Specific Model Training and Validation
- Dry season: All available data points consisting of matched in situ water quality measurements and Sentinel-2 imagery collected between June and September 2018–2022 were used for model training. An independent dataset from October 2024, provided by the Autoridad Nacional del Agua (ANA) and temporally aligned with a Sentinel-2 acquisition, was reserved exclusively for model validation.
- Rainy season: The full dataset of paired field and satellite observations from the rainy season was randomly divided into 80% for training and 20% for validation, ensuring separation between calibration and evaluation stages.
2.5.6. Model Construction and Selection
2.5.7. Statistical Analysis and Model Performance Assessment
- Coefficient of Determination (R2)—Proportion of variance explained.
- Mean Absolute Percentage Error (MAPE, %)—Measures prediction accuracy as a percentage:
- 3.
- Root Mean Square Error (RMSE)—to measure the average magnitude of the prediction error, expressed in the same units as the parameter evaluated:
3. Results
3.1. Validation of Empirical Water Quality Models with in Situ Observations
Comparison Between Remote Sensing-Derived and in Situ Measurements
3.2. Development of Local Predictive Models for Lake Chinchaycocha
3.2.1. Exploratory Correlation Analysis
- (a)
- Seasonal Reflectance Distribution by Spectral Band
- (b)
- Pearson Correlation Network among Water Quality Parameters
- (c)
- Heatmap of Correlations Between Spectral Bands and Water Quality Parameters
- (d)
- Spider Diagram of Indices
3.2.2. Visual Analysis Using Scatter and Bar Charts
- (a)
- Band ratios, products, and other transformations
3.2.3. Derivation of Predictive Equations and Model Validation
3.2.4. Long-Term Spatial and Monthly Patterns of Salinity (Salt) in Lake Chinchaycocha
4. Discussion
4.1. Review of Empirical Algorithm Performance
4.2. Physical and Spectral Relationships Between Sentinel-2 Bands and Water Quality Parameters
4.2.1. Seasonal Variability in Sentinel-2 Reflectance
4.2.2. Relationships Among in Situ Water Quality Parameters
4.2.3. Spectral Relationships Between Sentinel-2 Bands and Water Quality Parameters
- Electrical Conductivity and Major Ions
- 2.
- Nutrients and trace metals (copper and ammonia nitrogen)
- 3.
- Spectral Behavior of Additional Metals and Ions
- 4.
- Atmospheric Effects on Band 1 (443 nm)
4.3. Evaluation and Calibration of Models with in Situ Data
4.4. Ecological and Management Implications of Remote Sensing-Based Water Quality Monitoring Using Governmental Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
R2 | Coefficient of Determination |
RMSE | Root Mean Square Error |
MAPE | Mean Absolute Percentage Error |
CDOM | Colored Dissolved Organic Matter |
SWIR | Short-Wave Infrared |
Sen2Cor | Sentinel-2 Atmospheric CORrection processor |
ACOLITE | Atmospheric Correction for OLI “lite” |
COD-Mn | Chemical Oxygen Demand (permanganate method) |
pH | Potential of Hydrogen (dimensionless) |
EC | Electrical Conductivity |
TDS | Total Dissolved Solids |
LOQ | Limit of Quantification |
NH3–N | Ammoniacal Nitrogen |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
MNDWI | Modified Normalized Difference Water Index |
CONAGUA | National Water Commission (Comisión Nacional del Agua, Mexico) |
SENAMHI | National Service of Meteorology and Hydrology of Peru (Servicio Nacional de Meteorología e Hidrología del Perú) |
MINAM | Ministry of the Environment (Ministerio del Ambiente, Peru) |
MIDAGRI | Ministry of Agrarian Development and Irrigation (Ministerio de Desarrollo Agrario y Riego, Peru) |
PRODUCE | Ministry of Production (Ministerio de la Producción, Peru) |
MTC | Ministry of Transport and Communications (Ministerio de Transportes y Comunicaciones, Peru) |
MINEM | Ministry of Energy and Mines (Ministerio de Energía y Minas, Peru) |
SERNANP | National Service of Natural Protected Areas (Servicio Nacional de Áreas Naturales Protegidas por el Estado, Peru) |
ANA | National Water Authority (Autoridad Nacional del Agua, Peru) |
Appendix A
Variable | Code | Season | R2 | RMSE | MAE | Bias | p-Value | n | Observed Range |
---|---|---|---|---|---|---|---|---|---|
pH | WQP-PH-01 | Rainy | 0.01 | 8.76 | 5.59 | −5.23 | 0.6387 | 30 | −27.856–11.756 |
Dry | 0.01 | 3.11 | 2.75 | −2.75 | 0.6643 | 27 | −0.842–6.987 | ||
WQP-PH-02 | Rainy | 0.02 | 2.56 | 1.96 | −1.18 | 0.4408 | 30 | 0.979–10.765 | |
Dry | 0.44 | 3.46 | 3.4 | −3.4 | 0.0002 | 27 | 4.449–6.119 | ||
WQP-PH-03 | Rainy | 0.02 | 0.73 | 0.56 | −0.52 | 0.4770 | 30 | 6.780–8.923 | |
Dry | 0.27 | 1.22 | 1.16 | −1.16 | 0.0060 | 27 | 7.085–7.895 | ||
Conductivity (EC) | WQP-EC-01 | Rainy | 0.50 | 253.25 | 253.07 | −253.07 | 0.0000 | 30 | 22.932–23.432 |
Dry | 0.00 | 251.75 | 251.57 | −251.57 | 0.8951 | 27 | 22.618–23.301 | ||
WQP-EC-02 | Rainy | 0.68 | 876.56 | 876.51 | 876.51 | 0.0000 | 30 | 1152.75–1152.77 | |
Dry | 0.03 | 878.22 | 878.17 | 878.17 | 0.4242 | 27 | 1152.75–1152.76 | ||
WQP-EC-03 | Rainy | 0.36 | 42.22 | 40.66 | 40.66 | 0.0004 | 30 | 311.06–321.34 | |
Dry | 0.01 | 48.63 | 47.52 | 47.52 | 0.6608 | 27 | 315.56–329.78 | ||
WQP-EC-04 | Rainy | 0.77 | 1791.81 | 1787.64 | 1787.64 | 0.0000 | 30 | 1897.30–2379.30 | |
Dry | 0.14 | 1938.7 | 1937.82 | 1937.82 | 0.0551 | 27 | 2141.30–2315.30 | ||
Dissolved Oxygen (DO) | WQP-DO-01 | Rainy | 0.11 | 3.57 | 3.48 | −3.48 | 0.0675 | 30 | 3.276–6.381 |
Dry | 0.02 | 2.73 | 2.53 | −2.53 | 0.4908 | 27 | 4.819–6.074 | ||
WQP-DO-02 | Rainy | 0.00 | 126.33 | 88.07 | −0.11 | 0.7774 | 29 | −187.58–393.29 | |
Dry | 0.00 | 136.53 | 94.68 | −65.06 | 0.8415 | 27 | −408.11–140.38 | ||
WQP-DO-03 | Rainy | 0.00 | 0.95 | 0.78 | 0.65 | 0.9740 | 30 | 7.680–8.754 | |
Dry | 0.08 | 1.21 | 1.03 | 0.3 | 0.1586 | 27 | 7.468–8.815 | ||
WQP-DO-04 | Rainy | 0.07 | 0.68 | 0.56 | −0.15 | 0.16509 | 30 | 7.411–7.703 | |
Dry | 0.00 | 1.12 | 0.94 | −0.45 | 0.75347 | 27 | 7.268–7.608 | ||
Total Nitrogen (TN) | WQP-TN-01 | Rainy | 0.00 | 0.41 | 0.39 | 0.39 | 0.7668 | 27 | 0.955–1.184 |
Dry | 0.00 | 0.57 | 0.53 | 0.53 | 0.9506 | 27 | 0.964–1.034 | ||
WQP-TN-02 | Rainy | 0.03 | 1.98 | 1.97 | 1.97 | 0.3662 | 27 | 2.649–2.727 | |
Dry | 0.19 | 2.23 | 2.22 | 2.22 | 0.0243 | 27 | 2.677–2.715 | ||
WQP-TN-03 | Rainy | 0.02 | 0.27 | 0.21 | 0.17 | 0.4560 | 27 | 0.337–1.159 | |
Dry | 0.00 | 0.27 | 0.19 | 0.06 | 0.7288 | 27 | 0.220–0.809 | ||
WQP-TN-04 | Rainy | 0.02 | 2.64 | 2.64 | −2.64 | 0.4564 | 27 | −1.939–−1.928 | |
Dry | 0.31 | 2.41 | 2.4 | −2.4 | 0.0026 | 27 | −1.934–−1.930 | ||
WQP-TN-05 | Rainy | 0.14 | 19.67 | 19.66 | 19.66 | 0.05671 | 27 | 19.245–21.471 | |
Dry | 0.17 | 19.61 | 19.61 | 19.61 | 0.035 | 27 | 19.708–20.675 | ||
Nitrates (N) | WQP-N-01 | Rainy | 0.01 | 1.99 | 1.99 | −1.99 | 0.7125 | 18 | 0.675–2.458 |
Dry | 0.23 | 2.00 | 1.99 | −1.99 | 0.0841 | 14 | 1.445–1.893 | ||
WQP-N-02 | Rainy | 0.01 | 66.62 | 66.62 | −66.62 | 0.7520 | 18 | −42.226–−1.959 | |
Dry | 0.24 | 66.62 | 66.62 | −66.62 | 0.0773 | 14 | −25.314–−16.030 | ||
Ammoniacal Nitrogen (NH3–N) | WQP-AN-01 | Rainy | 0.62 | 0.36 | 0.24 | 0.24 | 0.0000 | 21 | 0.161–0.994 |
Dry | 0.34 | 0.63 | 0.63 | 0.63 | 0.0142 | 17 | 0.616–0.797 | ||
WQP-AN-02 | Rainy | 0.66 | 0.62 | 0.62 | 0.62 | 0.0000 | 21 | 0.757–0.795 | |
Dry | 0.05 | 0.69 | 0.69 | 0.69 | 0.3876 | 17 | 0.755–0.790 | ||
WQP-AN-03 | Rainy | 0.53 | 0.51 | 0.5 | 0.5 | 0.0002 | 21 | 0.578–0.847 | |
Dry | 0.03 | 0.68 | 0.68 | 0.68 | 0.5125 | 17 | 0.714–0.811 | ||
WQP-AN-04 | Rainy | 0.00 | 9.63 × 1070 | 2.1 × 1070 | 2.10 × 1070 | 0.92161 | 21 | 0.000–4.41 × 1053 | |
Dry | 0.08 | 0.09 | 0.08 | −0.08 | 0.27667 | 17 | 0.000–0.000 | ||
Chemical Oxygen Demand (COD) | WQP-COD-01 | Rainy | 0.01 | 66.62 | 66.62 | −66.62 | 0.7520 | 18 | −66.439–−66.438 |
Dry | 0.24 | 66.62 | 66.62 | −66.62 | 0.0773 | 14 | −66.438–−66.437 | ||
Sodium (Na+) | WQP-NA-01 | Rainy | 0.06 | 5.18 | 5.16 | −5.16 | 0.21114 | 30 | 0.685–0.892 |
Dry | 0.00 | 6.06 | 6 | −6 | 0.87244 | 27 | 0.555–0.838 | ||
WQP-NA-02 | Rainy | 0.04 | 72.13 | 72.13 | 72.13 | 0.28142 | 30 | 78.081–78.082 | |
Dry | 0.00 | 71.37 | 71.36 | 71.36 | 0.78992 | 27 | 78.080–78.081 | ||
Total Magnesium (Mg2+) | WQP-MG-01 | Rainy | 0.19 | 39.7 | 39.69 | 39.69 | 0.0166 | 30 | 48.891–48.892 |
Dry | 0.02 | 39.15 | 39.13 | 39.13 | 0.53511 | 27 | 48.891–48.892 | ||
Chlorides (Cl−) | WQP-CL-01 | Rainy | 0.23 | 131.25 | 131.25 | 131.25 | 0.1923 | 9 | 135.572–135.573 |
Dry | 0.06 | 130.21 | 130.21 | 130.21 | 0.44402 | 12 | 135.571–135.572 |
Appendix B
WQP | Bands | Model Equation | Regression | Testing | ||||
---|---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | |||
pH | B8, B9 | 5.2702 + 92.8338(B8) − 60.7384(B9) | 0.4394 | 0.1235 | 0.1434 | 0.6371 | 0.4402 | 0.4822 |
B1, B9 | 6.2567 + 70.0864(B1) − 50.9987(B9) | 0.6971 | 0.0891 | 0.1054 | 0.1037 | 0.9021 | 0.9162 | |
(B1/B9) + B8A | 0.0301 + 7.4127x | 0.6072 | 0.0992 | 0.1200 | 0.1606 | 0.9470 | 0.9585 | |
DO | (B9/B1) + B4 | 48.5445 − 38.9215x | 0.3869 | 0.6626 | 0.7944 | 0.0154 | 3.7792 | 3.8135 |
Total Nitrogen | B2+B5 | −3316.2672 + 45318.9712x − 206214.4973x2 + 312485.2983x3 | 0.4202 | 0.1165 | 0.1583 | 0.3570 | 1.0950 | 1.2134 |
NH3–N | (B4/B1) + B9 | 34.9331 − 62.8271x + 28.2871x2 | 0.5701 | 0.0200 | 0.0277 | 0.0303 | 0.0913 | 0.1149 |
Total Magnesium | (B9/B12) + B5 | 36.9210 + 42.0826x | 0.4743 | 0.6575 | 0.8093 | 0.0020 | 1.8531 | 2.0769 |
Chlorides | B1, B8 | 11.7529 + 181.1302(B1) − 252.5469(B8) | 0.4474 | 0.2666 | 0.3472 | 0.3059 | 0.3131 | 0.3959 |
B1, B9 | 13.2862 + 135.1023(B1) − 222.5205(B9) | 0.3973 | 0.2809 | 0.3625 | 0.2504 | 0.2318 | 0.2802 | |
(B12/B5) + B9 | 73.9309 + −64.1618x | 0.4486 | 0.2444 | 0.3468 | 0.0141 | 0.9420 | 1.0928 | |
Total Calcium | B6, B11 | 16.0820 + 1802.3723(B6) − 1662.6064(B11) | 0.3517 | 3.4710 | 4.0576 | 0.6495 | 2.5349 | 2.8864 |
(B11/B6) + B3 | 281.9817 − 225.6225x | 0.3725 | 3.3543 | 3.9922 | 0.4962 | 2.1176 | 2.6949 | |
Total Potassium | (B11/B12) + B9 | −14.4719 + 14.2732x | 0.4498 | 0.1001 | 0.1245 | 0.4737 | 0.3265 | 0.3678 |
B1, B7 | 0.0511 + 44.5267(B1) − 35.0331(B7) | 0.3066 | 0.1077 | 0.1398 | 0.6303 | 0.0539 | 0.0629 | |
Total Silicon | B11, B12 | −8.1044 + 324.5570(B11) − 226.0222(B12) | 0.6024 | 0.1945 | 0.2422 | 0.4810 | 0.2782 | 0.3452 |
(B11/B12) + B9 | −190620.8543 + 518258.7287x −469687.3945x2 + 141893.3150x3 | 0.512 | 0.2123 | 0.2683 | 0.8110 | 0.1970 | 0.2522 | |
(B11/B12) + B1 | −31.1209 + 29.8852x | 0.4854 | 0.2167 | 0.2756 | 0.8551 | 0.2861 | 0.3636 | |
TDS1 | B6, B11 | −6.5662 + 1853.8103(B6) −1301.6422(B11) | 0.5838 | 2.4971 | 3.1457 | 0.7341 | 5.7563 | 5.9936 |
(B6/B11) + B12 | −201.7290 + 227.9766x | 0.5634 | 2.5274 | 3.2218 | 0.7115 | 4.6210 | 4.8962 | |
(B6/B11) + B9 | −182.3844 + 210.7001x | 0.5593 | 2.5298 | 3.2370 | 0.7388 | 4.9822 | 5.2155 | |
TDS2 | B5, B12 | 4.3813 + 3887.1081(B5) −3471.2789(B12) | 0.5802 | 1.6951 | 2.2519 | 0.6765 | 3.9838 | 4.9751 |
TDS3 | B6, B11 | −1.8525 + 1900.1408(B6) + −1461.5655(B11) | 0.5257 | 2.7525 | 3.4197 | 0.6967 | 4.7869 | 5.0527 |
(B6/B11) + B8A | −1139.0172 + 1898.5706x + −750.0057x2 | 0.5191 | 2.6584 | 3.4435 | 0.7201 | 4.1177 | 4.3950 | |
(B6/B11) + B12 | 223.6711x − 203.8210 | 0.5230 | 2.6916 | 3.4295 | 0.6720 | 3.9327 | 4.2565 | |
TDS4 | (B6/B11) + B12 | −200.0019 + 225.1125x | 0.5583 | 2.5156 | 3.2143 | 0.6982 | 4.3385 | 4.6404 |
Salt | B6, B11 | 2.5467 + 1829.3356(B6) − 1399.4181(B11) | 0.5532 | 2.4427 | 3.1262 | 0.6960 | 5.3591 | 5.5973 |
(B6/B11) + B12 | −191.4588 + 215.6541x | 0.5479 | 2.4506 | 3.1447 | 0.6782 | 4.5235 | 4.7984 | |
Metals | B6, B8A | −0.1679 −16.6738(B6) + 21.3993(B8A) | 0.3783 | 0.0246 | 0.0325 | 0.3290 | 0.0289 | 0.0332 |
WQP | Bands | Model Equation | Regression | Testing | ||||
---|---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | |||
EC | (B1/B9) + B3 | 377.7439 − 94.1387x | 0.8774 | 2.3152 | 3.2068 | 0.9118 | 3.8439 | 4.0387 |
B3, B9 | 398.9889 −2318.2098B3 + 1266.8358B9 | 0.8393 | 2.7829 | 3.6705 | 0.9718 | 2.6275 | 2.8113 | |
NH3–N | (B2/B3) + B1 | 1.4346 − 1.2305x | 0.8407 | 0.0155 | 0.0186 | 0.3549 | 0.0312 | 0.0360 |
B2, B4 | 0.2373 − 13.3072B2 + 12.4165B4 | 0.8126 | 0.0166 | 0.0201 | 0.3260 | 0.0383 | 0.0485 | |
Total Calcium | (B5/B9) + B1 | −86422.9362 + 230676.0153x −204876.6823x2 + 60573.6592x3 | 0.8403 | 1.6281 | 2.1001 | 0.9234 | 2.1563 | 2.3505 |
B3, B9 | 78.3624 − 1954.5532B3 + 1715.1469B9 | 0.7964 | 1.8403 | 2.3711 | 0.6416 | 2.9664 | 3.7923 | |
B1, B9 | −54.7534 − 1001.3258B1 + 1927.8490B9 | 0.7779 | 1.9479 | 2.4768 | 0.9575 | 1.3660 | 1.6747 | |
Total Copper | (B11/B1) + B9 | −0.0505 + 0.1479x − 0.1413x2 + 0.0454x3 | 0.8738 | 0.0002 | 0.0002 | 0.9483 | 0.0002 | 0.0002 |
Total Lithium | (B8/B9) + B3 | 0.0961 − 0.0783x | 0.4492 | 0.0009 | 0.0013 | 0.7108 | 0.0007 | 0.0010 |
Total Potassium | (B3/B8A) + B9 | 8.3920 − 6.2236x | 0.4823 | 0.1067 | 0.1452 | 0.8126 | 0.1082 | 0.1242 |
B3, B5 | 2.5766 − 61.4031B3 + 50.7426B5 | 0.4722 | 0.1031 | 0.1466 | 0.8222 | 0.0883 | 0.1002 | |
Total Silicon | (B12/B3) + B9 | −15.4473 + 17.4132x | 0.7609 | 0.1935 | 0.2511 | 0.9141 | 0.2064 | 0.2739 |
Total Iron | (B7/B5) + B12 | −1.5667 + 1.4464x | 0.7020 | 0.0082 | 0.0096 | * | * | * |
Total Molybdenum | (B5/B9) + B1 | 0.0087 − 0.0075x | 0.8052 | 0.00001 | 0.0001 | * | * | * |
Salt | (B6/B9) + B1 | 296.1252 −219.7282x | 0.6901 | 2.3660 | 2.9080 | 0.9251 | 0.9844 | 1.1013 |
B6, B9 | 101.7986 − 2728.5676B6 + 2257.8518B9 | 0.6527 | 2.4232 | 3.0788 | 0.9161 | 0.7957 | 1.0024 | |
TDS1 | B1, B9 | −55.2584 − 1000.7899B1 + 2116.1663B9 | 0.7555 | 1.9443 | 2.5512 | 0.8034 | 1.6790 | 2.0125 |
TDS3 | B1, B9 | −62.5268 − 1040.1592B1 + 2167.5819B9 | 0.8040 | 1.7416 | 2.2861 | 0.8306 | 1.6425 | 1.9518 |
TDS4 | B1, B9 | −57.1627 − 991.4322B1 + 2112.9990B9 | 0.7674 | 1.8814 | 2.4564 | 0.8311 | 1.5849 | 1.8652 |
References
- Boyd, C.E. Physical Properties of Water. In Water Quality: An Introduction; Boyd, C.E., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–19. ISBN 978-3-030-23335-8. [Google Scholar]
- Kaplan, G.; Yalcinkaya, F.; Altıok, E.; Pietrelli, A.; Nastro, R.A.; Lovecchio, N.; Ieropoulos, I.A.; Tsipa, A. The Role of Remote Sensing in the Evolution of Water Pollution Detection and Monitoring: A Comprehensive Review. Phys. Chem. Earth Parts A/B/C 2024, 136, 103712. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, J.; Meng, H.; Lai, Y.; Xu, M. Remote Sensing Inversion of Water Quality Parameters in the Yellow River Delta. Ecol. Indic. 2023, 155, 110914. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Tian, P.; Xu, Z.; Fan, W.; Lai, H.; Liu, Y.; Yang, P.; Yang, Z. Exploring the Effects of Climate Change and Urban Policies on Lake Water Quality Using Remote Sensing and Explainable Artificial Intelligence. J. Clean. Prod. 2024, 475, 143649. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. Remote Sensing Techniques for Water Quality Monitoring: A Review. Sensors 2024, 24, 8041. [Google Scholar] [CrossRef] [PubMed]
- Fouladi Osgouei, H.; Zarghami, M.; Mosaferi, M.; Karimzadeh, S. A Novel Analysis of Critical Water Pollution in the Transboundary Aras River Using the Sentinel-2 Satellite Images and ANNs. Int. J. Environ. Sci. Technol. 2022, 19, 9011–9026. [Google Scholar] [CrossRef]
- Chang, N.-B.; Bai, K.; Chen, C.-F. Integrating Multisensor Satellite Data Merging and Image Reconstruction in Support of Machine Learning for Better Water Quality Management. J. Environ. Manag. 2017, 201, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.I.; Schröder, T.; Kutzner, R.D.; Laue, P.; Bernert, H.; Stelzer, K.; Friese, K.; Rinke, K. Evaluating Satellite-Based Water Quality Sensing of Inland Waters on Basis of 100+ German Water Bodies Using 2 Different Processing Chains. Remote Sens. 2024, 16, 3416. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Gurlin, D.; Pahlevan, N.; Alikas, K.; Conroy, T.; Anstee, J.; Balasubramanian, S.V.; Barbosa, C.C.F.; Binding, C.; Bracher, A.; et al. GLORIA—A Globally Representative Hyperspectral in Situ Dataset for Optical Sensing of Water Quality. Sci Data 2023, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zhou, G.; Pablo Antezana Lopez, F.; Xu, C.; Jing, G.; Tan, Y. Deep Learning for Water Quality Multivariate Assessment in Inland Water across China. Int. J. Appl. Earth Obs. Geoinf. 2024, 133, 104078. [Google Scholar] [CrossRef]
- Zhao, Y.; He, X.; Pan, S.; Bai, Y.; Wang, D.; Li, T.; Gong, F.; Zhang, X. Satellite Retrievals of Water Quality for Diverse Inland Waters from Sentinel-2 Images: An Example from Zhejiang Province, China. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104048. [Google Scholar] [CrossRef]
- Arias-Rodriguez, L.F.; Duan, Z.; Díaz-Torres, J.d.J.; Basilio Hazas, M.; Huang, J.; Kumar, B.U.; Tuo, Y.; Disse, M. Integration of Remote Sensing and Mexican Water Quality Monitoring System Using an Extreme Learning Machine. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef] [PubMed]
- Observatorio Nacional de Recursos Hídricos. Available online: https://snirh.ana.gob.pe/onrh/ (accessed on 2 December 2024).
- Deng, Y.; Zhang, Y.; Pan, D.; Yang, S.X.; Gharabaghi, B. Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management. Remote Sens. 2024, 16, 4196. [Google Scholar] [CrossRef]
- INRENA Plan Maestro de La Reserva Nacional de Junín, 2008–2012. Available online: https://sis.sernanp.gob.pe/biblioteca/?publicacion=1802 (accessed on 1 November 2024).
- Pérez, L.F.C.; Zambrano, G.A.M. Contaminación por aguas residuales e indicadores de calidad en la reserva nacional ‘Lago Junín’, Perú. Rev. Mex. Cienc. Agrícolas 2019, 10, 1433–1447. [Google Scholar] [CrossRef]
- Castillo, L.; Elias, R. Descripción En Época Seca Del Microhábitat Del Renacuajo de Telmatobius Macrostomus (Peters, 1873) “Rana Gigante Del Lago Junín” En Los Afluentes Del Lago Chinchaycocha/Perú. Ecol. Apl. 2021, 20, 25–34. [Google Scholar] [CrossRef]
- Autoridad Nacional del Agua. Monitoreo Participativo de la Calidad de los Recursos Hídricos en la Cuenca Mantaro (2019-IV); Autoridad Nacional Del Agua: Lima, Peru, 2020.
- Autoridad Nacional del Agua. Quinto Monitoreo de la Calidad de Agua Superficial Dle Lago Chinchaycocha-Epoca de Estiaje; Autoridad Nacional del Agua: Lima, Peru, 2018.
- MINAM Resolución Suprema N° 005-2017-MINAM. Available online: https://www.minam.gob.pe/disposiciones/resolucion-suprema-n-005-2017-minam/ (accessed on 1 November 2024).
- Yanqui, R.M.; Minaya, L.C.; Balbín, M.V. Almacenamiento de carbono en especies predominantes de flora en el lago Chinchaycocha. Apunt. Cienc. Soc. 2012, 2, 6. [Google Scholar] [CrossRef]
- SERFOR Libro Rojo de La Fauna Silvestre Amenazada Del Perú | SINIA. Available online: https://sinia.minam.gob.pe/documentos/libro-rojo-fauna-silvestre-amenazada-peru (accessed on 1 November 2024).
- Tejada Moncada, A. Evaluación e Identificación de Potenciales Riesgos Ambientales en Flora y Fauna en Laguna Chinchaycocha, Junín, Departamento de Junín; Organismo de Evaluación y Fiscalización Ambiental (OEFA): Lima, Peru, 2013. [Google Scholar]
- Gonzales Rossel, J.A.; Olivares Alcántara, V.M. Informe de Resultados de la Evaluación Ambiental Realizado en los Ámbitos de la Actividad Minera en las Cuencas de los ríos San Juan y San José en el Departamento de Cerro de Pasco; Organismo de Evaluación y Fiscalización Ambiental–OEFA: Lima, Peru, 2012. [Google Scholar]
- Ministerio del Ambiente Mapa Nacional de Cobertura Vegetal. Available online: https://geoservidor.minam.gob.pe/ (accessed on 22 February 2025).
- Ministerio de Desarrollo Agrario y Riego Atlas de la Superficie Agrícola del Perú. Available online: https://siea.midagri.gob.pe/portal/informativos/superficie-agricola-peruana (accessed on 22 February 2025).
- GEO ANP. Available online: https://geo.sernanp.gob.pe/visorsernanp/ (accessed on 4 May 2025).
- Ministerio de Energía y Minas. Resolución Ministerial N.° 056-2025-MINEM/DM. Actualización del Inventario Inicial de Pasivos Ambientales Mineros; Ministerio de Energía y Minas: Santo Domingo, Dominican Republic, 2025.
- Kayastha, P.; Dzialowski, A.R.; Stoodley, S.H.; Wagner, K.L.; Mansaray, A.S. Effect of Time Window on Satellite and Ground-Based Data for Estimating Chlorophyll-a in Reservoirs. Remote Sens. 2022, 14, 846. [Google Scholar] [CrossRef]
- Zhai, M.; Zhou, X.; Tao, Z.; Xie, Y.; Yang, J.; Shao, W.; Zhang, H.; Lv, T. Satellite-Ground Synchronous in-Situ Dataset of Water Optical Parameters and Surface Temperature for Typical Lakes in China. Sci. Data 2024, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Deng, R.; Ma, Y.; Li, J.; Guo, Y.; Lei, C. Satellite Retrieval and Spatiotemporal Variability in Chlorophyll-a for Marine Ranching: An Example from Daya Bay, Guangdong Province, China. Water 2025, 17, 780. [Google Scholar] [CrossRef]
- Park, J.; Khanal, S.; Zhao, K.; Byun, K. Remote Sensing of Chlorophyll-a and Water Quality over Inland Lakes: How to Alleviate Geo-Location Error and Temporal Discrepancy in Model Training. Remote Sens. 2024, 16, 2761. [Google Scholar] [CrossRef]
- Hestir, E.L.; Brando, V.E.; Bresciani, M.; Giardino, C.; Matta, E.; Villa, P.; Dekker, A.G. Measuring Freshwater Aquatic Ecosystems: The Need for a Hyperspectral Global Mapping Satellite Mission. Remote Sens. Environ. 2015, 167, 181–195. [Google Scholar] [CrossRef]
- Aprueban Estándares de Calidad Ambiental (ECA) Para Agua y Establecen Disposiciones Complementarias|SINIA. Available online: https://sinia.minam.gob.pe/normas/aprueban-estandares-calidad-ambiental-eca-agua-establecen-disposiciones (accessed on 2 December 2024).
- European Space Agency. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015. [Google Scholar]
- Torres-Bejarano, F.; Arteaga-Hernández, F.; Rodríguez-Ibarra, D.; Mejía-Ávila, D.; González-Márquez, L.C. Water Quality Assessment in a Wetland Complex Using Sentinel 2 Satellite Images. Int. J. Environ. Sci. Technol. 2021, 18, 2345–2356. [Google Scholar] [CrossRef]
- Pizani, F.M.C.; Maillard, P.; Ferreira, A.F.F.; de Amorim, C.C. Estimation of water quality in a reservoir from sentinel-2 msi and landsat-8 oli sensors. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 401–408. [Google Scholar] [CrossRef]
- Ndou, N. Geostatistical Inference of Sentinel-2 Spectral Reflectance Patterns to Water Quality Indicators in the Setumo Dam, South Africa. Remote Sens. Appl. Soc. Environ. 2023, 30, 100945. [Google Scholar] [CrossRef]
- Lesa Chundu, M.; Banda, K.; Sichingabula, H.M.; Nyambe, I.A. Integrated Water Quality Assessment of Open Water Bodies Using Empirical Equations and Remote Sensing Techniques in Bangweulu Wetland Lakes, Zambia. J. Gt. Lakes Res. 2024, 102451. [Google Scholar] [CrossRef]
- El Ouali, A.; El Hafyani, M.; Roubil, A.; Lahrach, A.; Essahlaoui, A.; Hamid, F.E.; Muzirafuti, A.; Paraforos, D.S.; Lanza, S.; Randazzo, G. Modeling and Spatiotemporal Mapping of Water Quality through Remote Sensing Techniques: A Case Study of the Hassan Addakhil Dam. Appl. Sci. 2021, 11, 9297. [Google Scholar] [CrossRef]
- Hossen, H.; Mahmod, W.E.; Negm, A.; Nakamura, T. Assessing Water Quality Parameters in Burullus Lake Using Sentinel-2 Satellite Images. Water Resour. 2022, 49, 321–331. [Google Scholar] [CrossRef]
- Kowe, P.; Ncube, E.; Magidi, J.; Ndambuki, J.M.; Rwasoka, D.T.; Gumindoga, W.; Maviza, A.; de jesus Paulo Mavaringana, M.; Kakanda, E.T. Spatial-Temporal Variability Analysis of Water Quality Using Remote Sensing Data: A Case Study of Lake Manyame. Sci. Afr. 2023, 21, e01877. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Noor, K.; Herbert, K. Modelling Reservoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A MSI and Landsat-8 OLI Satellite Sensors with Empirical Multivariate Regression. J. Sens. 2020, 2020, 8858408. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, H.; Fu, J.; Sheng, G. Water Quality Change in Reservoirs of Shenzhen, China: Detection Using LANDSAT/TM Data. Sci. Total Environ. 2004, 328, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Muhoyi, H.; Gumindoga, W.; Mhizha, A.; Misi, S.N.; Nondo, N. Water Quality Monitoring Using Remote Sensing, Lower Manyame Sub-Catchment, Zimbabwe. Water Pract. Technol. 2022, 17, 1347–1357. [Google Scholar] [CrossRef]
- Torbick, N.; Hession, S.; Hagen, S.; Wiangwang, N.; Becker, B.; Qi, J. Mapping Inland Lake Water Quality across the Lower Peninsula of Michigan Using Landsat TM Imagery. Int. J. Remote Sens. 2013, 34, 7607–7624. [Google Scholar] [CrossRef]
- Kapalanga, T.S.; Hoko, Z.; Gumindoga, W.; Chikwiramakomo, L. Remote-Sensing-Based Algorithms for Water Quality Monitoring in Olushandja Dam, North-Central Namibia. Water Supply 2020, 21, 1878–1894. [Google Scholar] [CrossRef]
- Dong, G.; Hu, Z.; Liu, X.; Fu, Y.; Zhang, W. Spatio-Temporal Variation of Total Nitrogen and Ammonia Nitrogen in the Water Source of the Middle Route of the South-To-North Water Diversion Project. Water 2020, 12, 2615. [Google Scholar] [CrossRef]
- Liu, T.; Guo, Z.; Li, X.; Xiao, T.; Liu, J.; Zhang, Y. Monitoring Water Quality Parameters Using Sentinel-2 Data: A Case Study in the Weihe River Basin (China). Sustainability 2024, 16, 6881. [Google Scholar] [CrossRef]
- Shi, X.; Qiu, Z.; Hu, Y.; Zhao, D.; Zhao, A.; Lin, H.; Zhan, Y.; Wang, Y.; Zhang, Y. Monitoring the Water Quality Distribution Characteristics in the Huaihe River Basin Based on the Sentinel-2 Satellite. Water 2024, 16, 860. [Google Scholar] [CrossRef]
- Ismail, K.; Boudhar, A.; Abdelkrim, A.; Mohammed, H.; Mouatassime, S.E.; Kamal, A.O.; Driss, E.; Idrissi, E.A.; Nouaim, W. Evaluating the Potential of Sentinel-2 Satellite Images for Water Quality Characterization of Artificial Reservoirs: The Bin El Ouidane Reservoir Case Study (Morocco). Meteorol. Hydrol. Water Manag. 2019, 7, 31–39. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Remote Sensing of Alpine Lake Water Environment Changes on the Tibetan Plateau and Surroundings: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Maslukah, L.; Basayep, I.; Wirasatriya, A.; Indrayanti, E.; Prasetyawan, I.B.; Wijaya, Y.J. Application of Sentinel-2 Imagery for Total Suspended Solids Mapping off the Bodri River, Kendal Regency, Indonesia. Remote Sens. Appl. Soc. Environ. 2024, 36, 101379. [Google Scholar] [CrossRef]
- Wirasatriya, A.; Maslukah, L.; Indrayanti, E.; Yusuf, M.; Milenia, A.P.; Adam, A.A.; Helmi, M. Seasonal Variability of Total Suspended Sediment off the Banjir Kanal Barat River, Semarang, Indonesia Estimated from Sentinel-2 Images. Reg. Stud. Mar. Sci. 2023, 57, 102735. [Google Scholar] [CrossRef]
- Abdelmalik, K.W. Role of Statistical Remote Sensing for Inland Water Quality Parameters Prediction. Egypt. J. Remote Sens. Space Sci. 2018, 21, 193–200. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Z.; Sun, K.; Chen, Y.; Mu, M.; Sun, Q.; Zeng, S. Monitoring 36-Year Water Clarity Dynamics in Turbid Waters of the Pearl River Estuary, China, Using Landsat Data. Ecol. Inform. 2024, 81, 102600. [Google Scholar] [CrossRef]
- Briceño-de-Urbaneja, I.; Pérez, W.; Miguel, D.S.; Ramos, S. Determinación de calidad de agua en el Lago Vichuquén, con imágenes de satélite Landsat 8, sensor OLI, año 2016, Chile. Rev. De Teledetección 2018, 67–78. [Google Scholar] [CrossRef]
- Jang, W.; Kim, J.; Kim, J.H.; Shin, J.-K.; Chon, K.; Kang, E.T.; Park, Y.; Kim, S. Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sens. 2024, 16, 315. [Google Scholar] [CrossRef]
- Saberioon, M.; Brom, J.; Nedbal, V.; Souček, P.; Císař, P. Chlorophyll-a and Total Suspended Solids Retrieval and Mapping Using Sentinel-2A and Machine Learning for Inland Waters. Ecol. Indic. 2020, 113, 106236. [Google Scholar] [CrossRef]
- Gerardo, R.; de Lima, I.P. Monitoring Duckweeds (Lemna Minor) in Small Rivers Using Sentinel-2 Satellite Imagery: Application of Vegetation and Water Indices to the Lis River (Portugal). Water 2022, 14, 2284. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Ouyang, Z.; Chen, S.; Che, T.; Zheng, Z. Application of the ESTARFM Algorithm for Fusing Sentinel-2 and MODIS NDSI Series in the Eastern Qilian Mountains. J. Hydrol. Reg. Stud. 2025, 57, 102103. [Google Scholar] [CrossRef]
- Villa, P.; Laini, A.; Bresciani, M.; Bolpagni, R. A Remote Sensing Approach to Monitor the Conservation Status of Lacustrine Phragmites Australis Beds. Wetl. Ecol. Manag. 2013, 21, 399–416. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Mukherjee, N.R.; Samuel, C. Assessment of the Temporal Variations of Surface Water Bodies in and around Chennai Using Landsat Imagery. Indian J. Sci. Technol. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Zeng, S.; Lei, S.; Qin, Z.; Song, W.; Sun, Q. Long-Term Remote Observations of Particulate Organic Phosphorus Concentration in Eutrophic Lake Taihu Based on a Novel Algorithm. Chemosphere 2023, 332, 138836. [Google Scholar] [CrossRef] [PubMed]
- Ayala Izurieta, J.E.; Beltrán Dávalos, A.A.; Jara Santillán, C.A.; Godoy Ponce, S.C.; Van Wittenberghe, S.; Verrelst, J.; Delegido, J. Spatial and Temporal Analysis of Water Quality in High Andean Lakes with Sentinel-2 Satellite Automatic Water Products. Sensors 2023, 23, 8774. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Sunardi, S.; Ariyani, M.; Agustian, M.; Withaningsih, S.; Parikesit, P.; Juahir, H.; Ismail, A.; Abdoellah, O.S. Water Corrosivity of Polluted Reservoir and Hydropower Sustainability. Sci. Rep. 2020, 10, 11110. [Google Scholar] [CrossRef] [PubMed]
- Arias-Rodriguez, L.F.; Tüzün, U.F.; Duan, Z.; Huang, J.; Tuo, Y.; Disse, M. Global Water Quality of Inland Waters with Harmonized Landsat-8 and Sentinel-2 Using Cloud-Computed Machine Learning. Remote Sens. 2023, 15, 1390. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Bravo Alvarez, L.; Duran-Llacer, I.; Ruíz-Guirola, D.E.; Montejo-Sánchez, S.; Martínez-Retureta, R.; López-Morales, E.; Bourrel, L.; Frappart, F.; Urrutia, R. Leveraging Machine Learning and Remote Sensing for Water Quality Analysis in Lake Ranco, Southern Chile. Remote Sens. 2024, 16, 3401. [Google Scholar] [CrossRef]
- Lins, R.C.; Martinez, J.-M.; Motta Marques, D.D.; Cirilo, J.A.; Fragoso, C.R. Assessment of Chlorophyll-a Remote Sensing Algorithms in a Productive Tropical Estuarine-Lagoon System. Remote Sens. 2017, 9, 516. [Google Scholar] [CrossRef]
- Fendereski, F.; Creed, I.F.; Trick, C.G. Remote Sensing of Chlorophyll-a in Clear vs. Turbid Waters in Lakes. Remote Sens. 2024, 16, 3553. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Chavez, S.; Ronchail, J.; Junquas, C.; Takahashi, K.; Lavado, W. Rainfall Hotspots over the Southern Tropical Andes: Spatial Distribution, Rainfall Intensity, and Relations with Large-Scale Atmospheric Circulation. Water Resour. Res. 2015, 51, 3459–3475. [Google Scholar] [CrossRef]
- Coelho, C.; Heim, B.; Foerster, S.; Brosinsky, A.; De Araújo, J.C. In Situ and Satellite Observation of CDOM and Chlorophyll-a Dynamics in Small Water Surface Reservoirs in the Brazilian Semiarid Region. Water 2017, 9, 913. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Ciavatta, S.; Sathyendranath, S.; Skákala, J.; Bruggeman, J.; Ford, D.; Platt, T. The Influence of Temperature and Community Structure on Light Absorption by Phytoplankton in the North Atlantic. Sensors 2019, 19, 4182. [Google Scholar] [CrossRef] [PubMed]
- Peralta-Guevara, D.E.; Quispe-Quispe, Y.; Palomino-Malpartida, Y.G.; Aronés-Medina, E.G.; Correa-Cuba, O.; Aróstegui León, E.; Carhuarupay-Molleda, Y.F.; Alzamora-Flores, H.; Licapa Redolfo, R.; Pumallihua Ramos, M.; et al. A High Andean Lake: A Current Look at Anthropogenic Activities and Water Quality. Water 2025, 17, 1182. [Google Scholar] [CrossRef]
- Alcântara, E.; Bernardo, N.; Watanabe, F.; Rodrigues, T.; Rotta, L.; Carmo, A.; Shimabukuro, M.; Gonçalves, S.; Imai, N. Estimating the CDOM Absorption Coefficient in Tropical Inland Waters Using OLI/Landsat-8 Images. Remote Sens. Lett. 2016, 7, 661–670. [Google Scholar] [CrossRef]
- Ramírez-Suárez, W.M.; Hernández-Olivera, L.A. Tolerancia a La Salinidad En Especies Cespitosas. Pastos Forrajes 2016, 39, 235–245. [Google Scholar]
- García Aragón, F.; Ysla Cedeño, E.A.; Bazán Alguiar, J.P.; Saldaña Alfaro, D.R.; Llanos Vásquez, C.F. Informe de Evaluación Ambiental del Lago Chinchaycocha, Ejecutado Durante el año 2015; Organismo de Evaluación y Fiscalización Ambiental–Oefa: Lima, Peru, 2015. [Google Scholar]
- Castro-González, M.; Campos, N.H. Efecto del Cadmio y el Cobre sobre el Flujo de Nitrógeno y Fósforo en la Interfase Agua-Sedimento en una Laguna Costera Tropical. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2004, 28, 535–543. [Google Scholar] [CrossRef]
- Xu, X.; Pan, J.; Zhang, H.; Lin, H. Progress in Remote Sensing of Heavy Metals in Water. Remote Sens. 2024, 16, 3888. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems: A Review of the Issues, Conventional, and Remote Sensing Techniques. Remote Sens. 2023, 15, 3534. [Google Scholar] [CrossRef]
- Ngamile, S.; Madonsela, S.; Kganyago, M. Trends in Remote Sensing of Water Quality Parameters in Inland Water Bodies: A Systematic Review. Front. Environ. Sci. 2025, 13, 1549301. [Google Scholar] [CrossRef]
- Batina, A.; Krtalić, A. Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review. Hydrology 2024, 11, 92. [Google Scholar] [CrossRef]
- Felegari, S.; Sharifi, A.; Khosravi, M.; Sabanov, S.; Tariq, A.; Karuppannan, S. Using Sentinel-2 Data to Estimate the Concentration of Heavy Metals Caused by Industrial Activities in Ust-Kamenogorsk, Northeastern Kazakhstan. Heliyon 2023, 9, e21908. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | Water Quality Standard | Total | Dry Season | Rainy Season | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | N* | Avg | SD | N | Min | Max | N | Min | Max | |||
Physicochemical | ||||||||||||
Field parameters | ||||||||||||
pH | -- | 6.5–9.0 | 57 | 0 | 8.71 | 0.19 | 27 | 8.408 | 9.174 | 30 | 7.962 | 8.70 |
Temperature | °C | Δ3 | 57 | 0 | 12.51 | 3.49 | 27 | 11.59 | 16.91 | 30 | 3.988 | 11.05 |
Conductivity | µS/cm | 1000 | 57 | 0 | 275.46 | 9.67 | 27 | 254 | 290.7 | 30 | 256.2 | 276.26 |
Dissolved Oxygen | mg O2/L | ≥5 | 57 | 0 | 7.786 | 0.85 | 27 | 6.246 | 10.064 | 30 | 6.451 | 7.70 |
Laboratory parameters | ||||||||||||
Chlorophyll-a | mg/L | 0.008 | 51 | 51 | -- | -- | 21 | <0.003 | <0.0041 | 30 | <0.003 | <0.0041 |
Total Suspended Solids (TSS) | mg/L | ≤ 25 | 57 | 56 | 4 | 4 | 27 | <2 | <3 | 30 | <2 | 4 |
Oils and Greases | mg/L | 5 | 57 | 57 | -- | -- | 27 | <0.4 | <1 | 30 | <0.4 | <1 |
Total Nitrogen | mg N/L | 0.315 | 57 | 3 | 0.587 | 0.20 | 27 | 0.13 | 1.05 | 30 | <0.1 | 0.892 |
Ammoniacal Nitrogen | mg NH3-N/L | -- | 39 | 1 | 0.122 | 0.05 | 18 | <0.006 | 0.186 | 21 | 0.048 | 0.214 |
Nitrates | mg NO3−/L | 13 | 57 | 25 | 0.180 | 0.06 | 27 | <0.009 | 0.509 | 30 | <0.062 | 0.207 |
Nitrates (as N) | mg NO3-N/L | -- | 30 | 1 | 0.040 | 0.006 | 12 | <0.002 | 0.051 | 18 | 0.034 | 0.047 |
Chemical Oxygen Demand | mg O2/L | -- | 9 | 0 | 11 | 4.83 | - | - | - | 9 | 4 | 19 |
Chlorides | mg Cl−/L | -- | 21 | 0 | 4.918 | 0.64 | 12 | 5.02 | 6.687 | 9 | 3.998 | 4.514 |
Total Phosphorus | mg P/L | 0.035 | 57 | 49 | 0.064 | 0.03 | 27 | <0.01 | 0.099 | 30 | <0.007 | 0.01 |
Inorganic | ||||||||||||
Total Aluminum | mg/L | -- | 57 | 48 | 0.0093 | 0.0073 | 27 | <0.002 | 0.011 | 30 | <0.002 | 0.027 |
Total Antimony | mg/L | 0.64 | 57 | 20 | 0.0006 | 0.0002 | 27 | <0.00013 | 0.0008 | 30 | <0.00004 | 0.0009 |
Total Arsenic | mg/L | 0.15 | 57 | 1 | 0.0034 | 0.0008 | 27 | <0.0001 | 0.0057 | 30 | 0.0012 | 0.00446 |
Total Barium | mg/L | 0.7 | 57 | 0 | 0.0342 | 0.0053 | 27 | 0.0258 | 0.0415 | 30 | 0.0193 | 0.0406 |
Total Boron | mg/L | -- | 57 | 25 | 0.0123 | 0.0098 | 27 | <0.006 | 0.057 | 30 | <0.002 | 0.011 |
Total Calcium | mg/L | -- | 57 | 0 | 36.123 | 5.4328 | 27 | 24.671 | 42.87 | 30 | 27.308 | 45.9 |
Total Copper | mg/L | 0.1 | 57 | 3 | 0.002 | 0.0006 | 27 | <0.00009 | 0.00311 | 30 | <0.00009 | 0.00353 |
Total Strontium | mg/L | -- | 57 | 0 | 0.2044 | 0.0174 | 27 | 0.1831 | 0.2389 | 30 | 0.1521 | 0.2269 |
Total Iron | mg/L | -- | 57 | 28 | 0.0298 | 0.0753 | 27 | <0.0004 | 0.415 | 30 | <0.0004 | 0.0691 |
Total Lithium | mg/L | -- | 57 | 0 | 0.0092 | 0.0020 | 27 | 0.0076 | 0.0148 | 30 | 0.0044 | 0.0111 |
Total Magnesium | mg/L | -- | 57 | 0 | 9.4673 | 0.9873 | 27 | 8.257 | 12.282 | 30 | 8.206 | 11.084 |
Total Manganese | mg/L | -- | 57 | 0 | 0.037 | 0.0181 | 27 | 0.0082 | 0.0784 | 30 | 0.01391 | 0.10913 |
Total Molybdenum | mg/L | -- | 57 | 9 | 0.0004 | 0.0001 | 27 | <0.00006 | 0.00097 | 30 | <0.00002 | 0.00063 |
Total Potassium | mg/L | -- | 57 | 0 | 1.192 | 0.2069 | 27 | 1.12 | 1.62 | 30 | 0.6 | 1.33 |
Total Silicon | mg/L | -- | 48 | 0 | 2.220 | 0.5092 | 27 | 1.5 | 2.906 | 21 | 1.17 | 3.2 |
Total Sodium | mg/L | -- | 57 | 0 | 6.312 | 0.7838 | 27 | 5.517 | 8.617 | 30 | 5.376 | 6.757 |
Total Zinc | mg/L | 0.12 | 57 | 4 | 0.026 | 0.0202 | 27 | <0.008 | 0.1177 | 30 | <0.01 | 0.0599 |
Image Date | Season | Image ID | Δ Days (Satellite–Field) |
---|---|---|---|
26 October 2024 | Dry | 01 * | |
22 October 2022 | Dry | 02 | |
5 May 2022 | Rainy | 03 | |
12 October 2021 | Dry | 04 | |
9 June 2021 | Rainy | 05 | |
8 September 2019 | Dry | 06 | |
25 June 2019 | Rainy | 07 | |
8 September 2018 | Dry | 08 | |
21 May 2018 | Rainy | 09 |
Adjusted Algorithm | Error | Code | Study Area | Source | Units |
---|---|---|---|---|---|
Physicochemical parameters | |||||
Potential of Hydrogen (pH) | |||||
R2 = 0.842, RMSE = 0.15 | PH-01 | Bajo Sinú Wetlands, Colombia | Bejarano et al. [37] | -- | |
r2 = 0.89, RMSE = 0.04 | PH-02 | Tres Marias Reservoir, Brazil | Pizani et al. [38] | -- | |
R2 = 0.6 | PH-03 | Setumo Dam reservoir, South Africa | Ndou [39] | -- | |
Conductivity (EC) | |||||
R2 = 0.718 | EC-01 | Bangweulu Wetland, Zambia | Chundu et al. [40] | µS/cm | |
R2 = 0.69 RMSE = 97 | EC-02 | Aras River Basin, Turkey and Neighbors | Fouladi et. al. [7] | µS/cm | |
R2 = 0.735, RMSE = 8.54 | EC-03 | Bajo Sinú Wetlands, Colombia | Bejarano et al. [37] | µS/cm | |
R2 = 0.7 | EC-04 | Setumo Dam reservoir, South Africa | Ndou [39] | dS/m | |
Dissolved Oxygen (DO) | |||||
R2 = 0.56 RMSE = 0.65 | DO-01 | Hassan Addakhil Reservoir, Morocco | El Ouali et al. [41] | mg O2/L | |
R2 = 0.778 RMSE = 0.60 | DO-02 | Bajo Sinú Wetlands, Colombia | Bejarano et al. [37] | mg O2/L | |
r2 = 0.85 RMSE = 0.07 | DO-03 | Tres Marias Reservoir, Brazil | Pizani et al. [38] | mg O2/L | |
R2 = 0.728 RMSE = 1.272 | DO-04 | Guangli River, Huaihe River Basin, China | Cao et al. [3] | mg O2/L | |
Chlorophyll A (Chl-a) | |||||
R2 = 0.58 RMSE = 0.07 | CHL-01 | Hassan Addakhil Reservoir, Morocco | El Ouali et al. [41] | µg/L | |
R2B7/B8 = 0.835, NRMSE = 0.14 | CHL-02 | Burullus Lake, Egypt | Hossen et al. [42] | µg/L | |
r2 = 0.71, RMSE = 0.92 | CHL -03 | Tres Marias Reservoir, Brazil | Pizani et al. [38] | µg/L | |
--- | CHL-04 | Manyame Lake, Zimbabwe | Kowe et al. [43] | µg/L | |
R2 = 0.701 RMSE = 12.84 | CHL-05 | Chebara Dam reservoir, Kenia | Ouma et al. [44] | µg/L | |
Chemical Oxygen Demand (COD) | |||||
R2 = 0.67 | COD-1 | Manyame and Dande Rivers, Zimbabwe | Wang et al. [45], Muhoyi et al. [46] | mg/L | |
Total Nitrogen (TN) | |||||
R2 = 0.78 | TN-01 | Manyame River and Dande River, Zimbabwe | Torbick et al. [47], Muhoyi et al. [46] | mg N/L | |
R2B8A = 0.619, NRMSE = 0.27 | TN-02 | Burullus Lake, Egypt | Hossen et al. [42] | µg N/L | |
r2 = 0.63 | TN-03 | Manyame Lake, Zimbabwe | Kapalanga et al. [48] Kowe et al. [43] | mg N/L | |
R2 = 0.783 RMSE = 0.079 | TN-04 | Danjiangkou Reservoir, China | Dong et al. [49] | mg N/L | |
R2 = 0.657 | TN-05 | Branch River Chenqiao, China | Cao et al. [3] | mg N/L | |
Total Phosphorus (TP) | |||||
R2 = 0.63 | TP-01 | Manyame and Dande Rivers, Zimbabwe | Torbick et al. [47], Muhoyi et al. [46] | mg P/L | |
R2B8/B3 = 0.733, NRMSE = 0.16 | TP-02 | Burullus Lake, Egypt | Hossen et al. [42] | µg P/L | |
R2 = 0.61, p = 0.023 | TP-03 | Weihe River, China | Liu et al. [50] | mg P/L | |
R2 = 0.8359 RMSE = 0.0568 | TP-04 | Huaihe River Basin, China | Shi et al. [51] | mg P/L | |
Nitrates (N) | |||||
R2 = 0.62 RMSE = 0.16 | N-01 | Hassan Addakhil Reservoir, Morocco | El Ouali et al. [41] | mg NO3-N/L | |
R2 = 0.671 RMSE = 0.618 | N-02 | The Bin El Ouidane Reservoir, Azilal, Morocco | Ismail et al. [52] | mg NO3-N/L | |
Ammoniacal Nitrogen (NH3–N) | |||||
R2 = 0.9036 RMSE = 0.0397 | AN-01 | Huaihe River Basin, China | Shi et al. [51] | mg NH3-N/L | |
R2 = 0.739 RMSE = 0.0107 | AN-02 | Danjiangkou Reservoir, China | Dong et al. [49] | mg NH3-N/L | |
R2 = 0.62 p = 0.020 | AN-03 | Weihe River, China | Liu et al. [50] | mg NH3-N/L | |
R2 = 0.7390 | AN-04 | Branch River Chenqiao, China | Cao et al. [3] | mg NH3-N/L | |
Total Suspended Solids (TSS) | |||||
R2 = 0.71 | TSS-01 | Manyame and Dande Rivers, Zimbabwe | Song et al. [53], Muhoyi et al. [46] | mg/L | |
R2 = 0.615 RMSE = 7.34 | TSS-02 | Bodri River Estuary, Indonesia | Maslukah et al. [54] | mg/L | |
R2 = 0.61 RMSE = 8.384 | TSS-03 | Chebara Dam reservoir, Kenia | Ouma et al. [44] | mg/L | |
R2 = 0.65 RMSE = 6.27 | TSS-04 | Banjir Kanal Barat River, Semarang, Indonesia | Wirasatriya et al. [55] | mg/L | |
Inorganic parameters | |||||
R2 = 0.664 | NA-01 | Bangweulu Wetland, Zambia | Chundu et al. [40] | mg/L ** | |
R2 = 0.68 | MG-01 | Aras River Basin, Turkey and Neighbors | Fouladi et al. [7] | mEq/L * | |
R2 = 0.67 | NA-02 | Aras River Basin, Turkey and Neighbors | Fouladi et al. [7] | mEq/L * | |
R2 = 0.71 | CL-01 | Aras River Basin, Turkey and Neighbors | Fouladi et al. [7] | mEq/L * |
Combination Type | Formula Example |
---|---|
Single band | |
Linear band combination | |
Band ratios | |
Mixed band combinations |
Index | Definition Based on Sentinel 2 | Reference |
---|---|---|
Modified Normalized Difference Water Index (MNDWI2) | Xu [62] | |
Normalized Difference Salinity Index (NDSI) | Khan et al. [63] and Guo et al. [64] | |
Normalized Difference Aquatic Vegetation Index (NDAVI) | Villa et al. [65] | |
Normalized Difference Vegetation Index (NDVI) | Tucker C.J. [66] | |
Green Normalized Difference Vegetation Index (GNDVI) | Gitelson & Merzlyak [67] | |
Normalized Difference Turbidity Index (NDTI) | Lacaux et al. [68] | |
Water Ratio Index 1 (WRI1) | Mukherjee & Samuel [69] | |
Automated Water Extraction Index 1 (AWEI1) | Feyisa et al. [4] |
Index | Abbrev. | Formula (mg L−1) |
---|---|---|
Sum of major ions | TDS1 | [Ca2+] + [Sr2+] +[Mg2+] + [K+] + [Si]+ [Na+] |
TDS2 | TDS1 + [Cl−] | |
TDS3 | [Ca2+] + [K+] + [Mg2+] + [Si] | |
TDS4 | [Ca2+] + [Mg2+] + [Si] + [Na+] | |
Salinity | Salt | [Na+] + [Mg2+] + [Ca2+] |
Nutrients | Nutri | [TN] + [NH4–N] + [TP] |
Metals | Metals | Σ[Sb + As + Ba + Cu + Fe + Li + Mn + Mo + Zn] |
WQP | Band Combination | Model Equation | Train | Test | ||
---|---|---|---|---|---|---|
R2 | R2 | RMSE | ||||
NH3–N | (B4/B1) + B9 | Polynomial (2°) | 0.57 | 0.03 | 0.115 | |
Total Calcium | (B11/B6) + B3 | Linear | 0.37 | 0.50 | 2.695 | |
Total Potassium | B1, B7 | Linear | 0.31 | 0.63 | 0.063 | |
Total Silicon | (B11/B12) + B9 | Polynomial (3°) | 0.51 | 0.81 | 0.252 | |
TDS1 | (B6/B11) + B12 | Linear | 0.56 | 0.71 | 4.896 | |
Salt | (B6/B11) + B12 | Linear | 0.55 | 0.68 | 4.798 |
WQP | Band Combination | Model Equation | Train | Testing | ||
---|---|---|---|---|---|---|
R2 | R2 | RMSE | ||||
EC | (B1/B9) + B3 | Linear | 0.8774 | 0.91 | 4.039 | |
NH3–N | (B2/B3) + B1 | Linear | 0.84 | 0.35 | 0.036 | |
Total Calcium | (B5/B9) + B1 | Polynomial (3°) | 0.84 | 0.92 | 2.350 | |
Total Copper | (B11/B1) + B9 | Polynomial (3°) | 0.87 | 0.95 | 0.0002 | |
Total Lithium | (B8/B9) + B3 | Linear | 0.45 | 0.71 | 0.001 | |
Total Potassium | B3, B5 | Linear | 0.47 | 0.82 | 0.100 | |
Total Silicon | (B12/B3) + B9 | Linear | 0.76 | 0.91 | 0.274 | |
Salt | (B6/B9) + B1 | Linear | 0.69 | 0.92 | 1.101 | |
TDS1 | B1, B9 | Linear | 0.75 | 0.80 | 2.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza, E.; Baltodano, A.; Requena, N. Spatiotemporal Analysis of Water Quality and Optical Changes Induced by Contaminants in Lake Chinchaycocha Using Sentinel-2 and in Situ Data. Water 2025, 17, 2195. https://doi.org/10.3390/w17152195
Espinoza E, Baltodano A, Requena N. Spatiotemporal Analysis of Water Quality and Optical Changes Induced by Contaminants in Lake Chinchaycocha Using Sentinel-2 and in Situ Data. Water. 2025; 17(15):2195. https://doi.org/10.3390/w17152195
Chicago/Turabian StyleEspinoza, Emerson, Analy Baltodano, and Norvin Requena. 2025. "Spatiotemporal Analysis of Water Quality and Optical Changes Induced by Contaminants in Lake Chinchaycocha Using Sentinel-2 and in Situ Data" Water 17, no. 15: 2195. https://doi.org/10.3390/w17152195
APA StyleEspinoza, E., Baltodano, A., & Requena, N. (2025). Spatiotemporal Analysis of Water Quality and Optical Changes Induced by Contaminants in Lake Chinchaycocha Using Sentinel-2 and in Situ Data. Water, 17(15), 2195. https://doi.org/10.3390/w17152195