Water Pollution Monitoring, Modeling, and Management
1. Introduction
2. The Importance of Monitoring Water Pollution
- (1)
- (2)
- (3)
- (4)
3. Modeling Water Pollution
- (1)
- (2)
- Scenario Testing: Through modeling, researchers can evaluate the potential impact of different management strategies, such as pollution control measures or restoration efforts, before implementation [33].
- (3)
- (4)
4. Management Strategies for Water Pollution
- (1)
- (2)
- (3)
- Public Engagement and Education: Raising public awareness about the importance of water conservation and pollution prevention can lead to more sustainable practices at the individual and community levels. Educational campaigns can empower citizens to advocate for better water management policies [45,46].
- (4)
- Technological Innovations: The adoption of innovative technologies, such as bioremediation, advanced filtration systems, and wastewater recycling, can enhance water treatment processes and reduce pollution [47,48]. Biomass undergoes thermochemical conversion under limited or anaerobic conditions, resulting in a carbon-rich solid substance called biochar [49]. Biochar or its derived modified materials can effectively remove water pollutants [50].
- (5)
- Collaborative Management: Water bodies often cross political boundaries, necessitating collaborative management approaches [51]. Engaging stakeholders from various sectors—government, industry, academia, and the community—ensures that diverse perspectives are considered in decision-making processes [52].
5. Challenges and Future Directions
- (1)
- (2)
- (3)
- (4)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, R.; Dai, X.; Wang, H.; Wang, Z.; Li, Z.; Chen, Y.; Luo, Y.; Ouyang, D. Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Int. J. Environ. Res. Public Health 2022, 19, 12354. [Google Scholar] [CrossRef] [PubMed]
- Kordbacheh, F.; Heidari, G. Water pollutants and approaches for their removal. Mater. Chem. Horiz. 2023, 2, 139–153. [Google Scholar]
- Su, R.; Chai, L.; Tang, C.; Li, B.; Yang, Z. Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system. Water Sci. Technol. 2018, 77, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Barletta, M.; Lima, A.R.; Costa, M.F. Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci. Total Environ. 2019, 651, 1199–1218. [Google Scholar] [CrossRef]
- Su, R.; Li, Z.; Cheng, F.; Dai, X.; Wang, H.; Luo, Y.; Huang, L. Advances in the degradation of emerging contaminants by persulfate oxidation technology. Water Air Soil Pollut. 2023, 234, 754. [Google Scholar] [CrossRef]
- Devendrapandi, G.; Balu, R.; Ayyappan, K.; Ayyamperumal, R.; Alhammadi, S.; Lavanya, M.; Senthilkumar, R.; Karthika, P. Unearthing Earth’s secrets: Exploring the environmental legacy of contaminants in soil, water, and sediments. Environ. Res. 2024, 249, 118246. [Google Scholar] [CrossRef]
- Su, R.; Wang, Z.; Liu, Z.; Chen, Y.; Wang, H.; Dai, X.; Ge, X.; Luo, Y. Single atoms in environmental catalysis: Breakthroughs in synthesis and application. J. Water Process Eng. 2024, 68, 106319. [Google Scholar] [CrossRef]
- Sahoo, S.; Goswami, S. Theoretical framework for assessing the economic and environmental impact of water pollution: A detailed study on sustainable development of India. J. Future Sustain. 2024, 4, 23–34. [Google Scholar] [CrossRef]
- Zhang, D.; Sial, M.S.; Ahmad, N.; Filipe, A.J.; Thu, P.A.; Zia-Ud-Din, M.; Caleiro, A.B. Water scarcity and sustainability in an emerging economy: A management perspective for future. Sustainability 2020, 13, 144. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Z.; Ye, M.; Zhou, Y.; Su, R.; Huang, S.; Chen, Y.; Dai, X. Synergistic enhancement of oxytetracycline hydrochloride removal by UV/ZIF-67 (Co)-activated peroxymonosulfate. Water 2024, 16, 2586. [Google Scholar] [CrossRef]
- Luo, Y.; Su, R.; Yao, H.; Zhang, A.; Xiang, S.; Huang, L. Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Environ. Sci. Pollut. Res. 2021, 28, 62572–62582. [Google Scholar] [CrossRef] [PubMed]
- Staponites, L.R.; Simon, O.P.; Barták, V.; Bílý, M. Management effectiveness in a freshwater protected area: Long-term water quality response to catchment-scale land use changes. Ecol. Indic. 2022, 144, 109438. [Google Scholar] [CrossRef]
- Murray, C.; Larson, A.; Goodwill, J.; Wang, Y.; Cardace, D.; Akanda, A.S. Water quality observations from space: A review of critical issues and challenges. Environments 2022, 9, 125. [Google Scholar] [CrossRef]
- Kumar, L.; Kumari, R.; Kumar, A.; Tunio, I.A.; Sassanelli, C. Water quality assessment and monitoring in Pakistan: A comprehensive review. Sustainability 2023, 15, 6246. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the application of remote sensing in effective monitoring of water quality parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- López-Ramírez, G.A.; Aragón-Zavala, A. Wireless sensor networks for water quality monitoring: A comprehensive review. IEEE Access 2023, 11, 95120–95142. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Q.; Yuan, B. Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecol. Indic. 2022, 135, 108561. [Google Scholar] [CrossRef]
- Lencha, S.M.; Ulsido, M.D.; Muluneh, A. Evaluation of seasonal and spatial variations in water quality and identification of potential sources of pollution using multivariate statistical techniques for Lake Hawassa watershed, Ethiopia. Appl. Sci. 2021, 11, 8991. [Google Scholar] [CrossRef]
- Luo, Y.; Su, R. Preparation of NH2-MIL-101(Fe) metal organic framework and its performance in adsorbing and removing tetracycline. Int. J. Mol. Sci. 2024, 25, 9855. [Google Scholar] [CrossRef]
- Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R. Towards harmonization of water quality management: A comparison of chemical drinking water and surface water quality standards around the globe. J. Environ. Manag. 2021, 298, 113447. [Google Scholar] [CrossRef]
- Wolfram, J.; Stehle, S.; Bub, S.; Petschick, L.L.; Schulz, R. Water quality and ecological risks in European surface waters–Monitoring improves while water quality decreases. Environ. Int. 2021, 152, 106479. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, V.; Piadeh, F.; Chen, A.S.; Behzadian, K. Stakeholder analysis in the application of cutting-edge digital visualisation technologies for urban flood risk management: A critical review. Expert Syst. Appl. 2024, 236, 121426. [Google Scholar] [CrossRef]
- Muhamad Khair, N.K.; Lee, K.E.; Mokhtar, M. Sustainable city and community empowerment through the implementation of community-based monitoring: A conceptual approach. Sustainability 2020, 12, 9583. [Google Scholar] [CrossRef]
- Silva, G.M.e.; Campos, D.F.; Brasil, J.A.T.; Tremblay, M.; Mendiondo, E.M.; Ghiglieno, F. Advances in technological research for online and in situ water quality monitoring—A review. Sustainability 2022, 14, 5059. [Google Scholar] [CrossRef]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-time water quality monitoring with chemical sensors. Sensors 2020, 20, 3432. [Google Scholar] [CrossRef]
- Chapman, J.; Truong, V.K.; Elbourne, A.; Gangadoo, S.; Cheeseman, S.; Rajapaksha, P.; Latham, K.; Crawford, R.J.; Cozzolino, D. Combining chemometrics and sensors: Toward new applications in monitoring and environmental analysis. Chem. Rev. 2020, 120, 6048–6069. [Google Scholar] [CrossRef]
- Liu, S.; Glamore, W.; Tamburic, B.; Morrow, A.; Johnson, F. Remote sensing to detect harmful algal blooms in inland waterbodies. Sci. Total Environ. 2022, 851, 158096. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A review of the artificial neural network models for water quality prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar]
- Süsser, D.; Ceglarz, A.; Gaschnig, H.; Stavrakas, V.; Flamos, A.; Giannakidis, G.; Lilliestam, J. Model-based policymaking or policy-based modelling? How energy models and energy policy interact. Energy Res. Soc. Sci. 2021, 75, 101984. [Google Scholar] [CrossRef]
- Jampani, M.; Mateo-Sagasta, J.; Chandrasekar, A.; Fatta-Kassinos, D.; Graham, D.W.; Gothwal, R.; Moodley, A.; Chadag, V.M.; Wiberg, D.; Langan, S. Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. J. Hazard. Mater. 2024, 461, 132527. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y.-H. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.H.; Kavianpour, M.; Alcaraz, J.L.G.; Yamini, O.A. System dynamics modeling for effective strategies in water pollution control: Insights and applications. Appl. Sci. 2023, 13, 9024. [Google Scholar] [CrossRef]
- Berrone, P.; Rousseau, H.E.; Ricart, J.E.; Brito, E.; Giuliodori, A. How can research contribute to the implementation of sustainable development goals? An interpretive review of SDG literature in management. Int. J. Manag. Rev. 2023, 25, 318–339. [Google Scholar] [CrossRef]
- Chormare, R.; Kumar, M.A. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. Chemosphere 2022, 302, 134836. [Google Scholar] [CrossRef]
- Li, L.; Knapp, J.L.; Lintern, A.; Ng, G.-H.C.; Perdrial, J.; Sullivan, P.L.; Zhi, W. River water quality shaped by land–river connectivity in a changing climate. Nat. Clim. Change 2024, 14, 225–237. [Google Scholar] [CrossRef]
- Xiong, J.; Zheng, Y.; Zhang, J.; Quan, F.; Lu, H.; Zeng, H. Impact of climate change on coastal water quality and its interaction with pollution prevention efforts. J. Environ. Manag. 2023, 325, 116557. [Google Scholar] [CrossRef]
- Cho, K.H.; Pachepsky, Y.; Ligaray, M.; Kwon, Y.; Kim, K.H. Data assimilation in surface water quality modeling: A review. Water Res. 2020, 186, 116307. [Google Scholar] [CrossRef]
- Shan, C.; Guo, H.; Dong, Z.; Liu, L.; Lu, D.; Hu, J. Study on the river habitat quality in Luanhe based on the eco-hydrodynamic model. Ecol. Indic. 2022, 142, 109262. [Google Scholar] [CrossRef]
- Su, R.; Yao, H.; Wang, H.; Chen, Y.; Huang, S.; Luo, Y.; Ma, X. Metal-organic frameworks for removing emerging organic pollutants: A review. J. Water Process Eng. 2025, 70, 107096. [Google Scholar] [CrossRef]
- Giri, S. Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ. Pollut. 2021, 271, 116332. [Google Scholar] [CrossRef] [PubMed]
- Gursoy-Haksevenler, B.H.; Atasoy-Aytis, E.; Dilaver, M.; Yalcinkaya, S.; Findik-Cinar, N.; Kucuk, E.; Pilevneli, T.; Koc-Orhon, A.; Siltu, E.; Gücver, S.M. A strategy for the implementation of water-quality-based discharge limits for the regulation of hazardous substances. Environ. Sci. Pollut. Res. 2021, 28, 24706–24720. [Google Scholar] [CrossRef] [PubMed]
- Anteneh, Y.; Alamirew, T.; Zeleke, G.; Kassawmar, T. Modeling runoff-sediment influx responses to alternative BMP interventions in the Gojeb watershed, Ethiopia, using the SWAT hydrological model. Environ. Sci. Pollut. Res. 2023, 30, 22816–22834. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Liu, G. Research progress and treatment status of agricultural non-point source pollution in China. Acad. J. Agric. Life Sci. 2024, 5, 1–6. [Google Scholar]
- Dushkova, D.; Ivlieva, O. Empowering Communities to Act for a Change: A Review of the Community Empowerment Programs towards Sustainability and Resilience. Sustainability 2024, 16, 8700. [Google Scholar] [CrossRef]
- Priatna, D.; Khan, S.M. The importance of education and role of educational institutions in climate change mitigation and achieving UN SDG 13 “Climate Action”. Indones. J. Appl. Environ. Stud. 2024, 5, 1–5. [Google Scholar] [CrossRef]
- Saeed, M.U.; Hussain, N.; Sumrin, A.; Shahbaz, A.; Noor, S.; Bilal, M.; Aleya, L.; Iqbal, H.M. Microbial bioremediation strategies with wastewater treatment potentialities—A review. Sci. Total Environ. 2022, 818, 151754. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Zhu, Z.; Wan, L.; Wang, X.; Hou, J.; Liu, S.; Fan, X. Preparation of chitosan-iron oxide modified sludge-based biochar for effective removal of tetracycline from water: Performance and mechanism. Environ. Sci. Pollut. Res. 2024, 31, 622–633. [Google Scholar] [CrossRef]
- Chen, X.; Qian, S.; Ma, Y.; Zhu, J.; Shen, S.; Tang, J.; Ding, Y.; Zhi, S.; Zhang, K.; Yang, L. Efficient degradation of sulfamethoxazole in various waters with peroxymonosulfate activated by magnetic-modified sludge biochar: Surface-bound radical mechanism. Environ. Pollut. 2023, 319, 121010. [Google Scholar] [CrossRef]
- Sattler, C.; Schröter, B. Collective action across boundaries: Collaborative network initiatives as boundary organizations to improve ecosystem services governance. Ecosyst. Serv. 2022, 56, 101452. [Google Scholar] [CrossRef]
- Santos, E.; Carvalho, M.; Martins, S. Sustainable water management: Understanding the socioeconomic and cultural dimensions. Sustainability 2023, 15, 13074. [Google Scholar] [CrossRef]
- Liguori, K.; Keenum, I.; Davis, B.C.; Calarco, J.; Milligan, E.; Harwood, V.J.; Pruden, A. Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environ. Sci. Technol. 2022, 56, 9149–9160. [Google Scholar] [CrossRef] [PubMed]
- Mukonza, S.S.; Chiang, J.-L. Meta-Analysis of Satellite Observations for United Nations Sustainable Development Goals: Exploring the Potential of Machine Learning for Water Quality Monitoring. Environments 2023, 10, 170. [Google Scholar] [CrossRef]
- Gupta, A.D.; Pandey, P.; Feijóo, A.; Yaseen, Z.M.; Bokde, N.D. Smart water technology for efficient water resource management: A review. Energies 2020, 13, 6268. [Google Scholar] [CrossRef]
- Shi, J.; Huang, W.; Han, H.; Xu, C. Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards. Renew. Sustain. Energy Rev. 2021, 143, 110883. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Xie, H. Drought impacts on hydrology and water quality under climate change. Sci. Total Environ. 2023, 858, 159854. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Su, R.; Xie, C.; Alhassan, S.I.; Huang, S.; Chen, R.; Xiang, S.; Wang, Z.; Huang, L. Oxygen reduction reaction in the field of water environment for application of nanomaterials. Nanomaterials 2020, 10, 1719. [Google Scholar] [CrossRef]
- Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci. Total Environ. 2023, 859, 160031. [Google Scholar] [CrossRef]
- Narayanan, M.; El-Sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R.S.; Kumarasamy, S.; Sathiyan, G. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. Environ. Pollut. 2022, 300, 118922. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Su, R. Water Pollution Monitoring, Modeling, and Management. Water 2025, 17, 1871. https://doi.org/10.3390/w17131871
Luo Y, Su R. Water Pollution Monitoring, Modeling, and Management. Water. 2025; 17(13):1871. https://doi.org/10.3390/w17131871
Chicago/Turabian StyleLuo, Yiting, and Rongkui Su. 2025. "Water Pollution Monitoring, Modeling, and Management" Water 17, no. 13: 1871. https://doi.org/10.3390/w17131871
APA StyleLuo, Y., & Su, R. (2025). Water Pollution Monitoring, Modeling, and Management. Water, 17(13), 1871. https://doi.org/10.3390/w17131871