Current State of Arsenic, Fluoride, and Nitrate Groundwater Contamination in Northern Mexico: Distribution, Health Impacts, and Emerging Research
Abstract
1. Introduction
- Provide an overview of iAs, F, and NO3-N contamination of groundwater in north-central Mexico, an area where high concentrations have been reported.
- Map the areas where studies have been conducted to identify the distribution of high and low concentrations, as well as areas where monitoring data are lacking.
- Provide updated information about the effects on public health of the ingestion of these contaminants via drinking water to the local population.
- Compile the current situation on water treatment for drinking water supply and document the recent changes in water management that will alter the percentage of surface to groundwater in both drinking water and irrigation water, a change that may negatively affect irrigation water quality.
2. Description of the Study Area
2.1. Hydrogeology
2.2. Climate and Land Use
3. Groundwater Quality
3.1. iAs and F
3.2. Nitrate
3.3. Contaminant Levels and Spatial Distribution
4. Safe Limits and Drinking Water Regulations
5. Health Effects of Drinking Water Contaminated with iAs, F, or NO3-N
Health Studies in North Mexico
Health Issue | Target Population | Reference |
---|---|---|
Durango-Comarca Lagunera | ||
Subclinical hypothyroidism due to chronic consumption of nitrate-contaminated water in rural areas with intensive livestock and agricultural practices in Durango, Mexico | Families, General | [59] |
Health risk and methemoglobin in children ingesting nitrate-contaminated Water | Children | [83] |
Methemoglobin and Heinz bodies as biomarkers in children exposed to nitrate | Children | [84] |
6. Removal Technologies
7. Emerging Research
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
iAs | Inorganic arsenic |
AsIII | Arsenite |
AsV | Arsenate |
MMAIII | Monomethylarsonic acid |
DMAIII | Dimethylarsinic acid |
F | Fluoride |
NO3-N | Nitrate nitrogen |
References
- Morris, B.L.; Lawrence, A.R.L.; Chilton, P.J.C.; Adams, B.; Calow, R.C.; Klinck, B.A. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management; United Nations Environment Programme: Nairobi, Kenya, 2003; 126p. [Google Scholar]
- MacDonald, A.M.; Bonsor, H.C.; Ahmed, K.M.; Burgess, W.G.; Basharat, M.; Calow, R.C.; Dixit, A.; Foster, S.S.D.; Gopal, K.; Lapworth, D.J.; et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in-situ observations. Nat. Geosci. 2016, 9, 762–766. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Ying Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, D.; Lang, X. Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels. Int. J. Climatol. 2020, 41, 278–294. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef]
- Chen, L.; Brun, P.; Buri, P.; Fatichi, S.; Gessler, A.; McCarthy, M.J.; Pellicciotti, F.; Stocker, B.; Karger, D.N. Global increase in the occurrence and impact of multiyear droughts. Science 2025, 387, 278–284. [Google Scholar] [CrossRef]
- Benz, S.; Irvine, D.J.; Rau, G.; Bayer PMenberg, K.; Blum, P.; Jamieson, R.C.; Griebler, C.; Kurylyk, B.L. Global groundwater warming due to climate change. Nat. Geosci. 2024, 17, 545–551. [Google Scholar] [CrossRef]
- Cutts, E. Torrents of sediment-laden water worsened disastrous Libyan floods. Eos 2024, 105. [Google Scholar] [CrossRef]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario, perspectives and mechanism of arsenic and fluoride co-occurrence in the groundwater: A review. Chemosphere 2020, 249, 126126. [Google Scholar] [CrossRef]
- Rodrigues Costa, F.C.; Rezende Moreira, V.; Guimaraes, R.N.; Moser, P.B.; Santos Amaral, M.C. Arsenic in natural waters of Latin-American countries: Occurrence, risk assessment, low-cost methods, and technologies for remediation. Process Saf. Environ. Prot. 2024, 184, 116–128. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Martin-Alarcón, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698, 134168. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Alarcón-Herrera, M.T.; Gaytán-Alarcón, M.P. Arsenic and fluorine in northern Mexico, spatial distribution and enrichment factors. Environ. Monit. Assess. 2023, 195, 212. [Google Scholar] [CrossRef] [PubMed]
- Florez-Peñaloza, J.R.; Mahlknecht, J.; Escolero, O.; Morales-Casique, E.; Montaño-Caro, J.C.; Blanco-Gaona, S.; Silva-Aguilera, R.A. Hydrochemical evolution of a semiarid endorheic basin, with intense agricultural and livestock activities. J. Hydrol. 2025, 657, 133093. [Google Scholar] [CrossRef]
- Jurczynski, Y.; Passos, R.; Campos, L.C. A Review of the most concerning chemical contaminants in drinking water for human health. Sustainability 2024, 16, 7107. [Google Scholar] [CrossRef]
- González-Horta, C.; Ballinas-Casarrubias, L.; Sánchez-Ramírez, B.; Ishida, M.C.; Barrera-Hernández, A.; Gutiérrez-Torres, D.; Zacarias, O.L.; Saunders, R.J.; Drobná, Z.; Mendez, M.A.; et al. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. Int. J. Environ. Res. Public Health 2015, 12, 4587–4601. [Google Scholar] [CrossRef]
- Nieto-Samaniego, A.F.; Alaniz-Alvarez, S.A.; Camprubí Cano, A. La Mesa Central: Estratigrafía, estructura y evolución tectónica cenozoica. Bol. Soc. Geol. Mex. 2005, 57, 285–318. [Google Scholar] [CrossRef]
- Reyes-Gómez, V.M.; Alarcón-Herrera, T.; Gutiérrez, M.; Núñez López, D. Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: Contaminant levels, potential sources, and co-occurrence. Water Air Soil Pollut. 2013, 224, 1433. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Horst, A.; Hernández-Limón, G.; Aravena, R. Groundwater geochemistry of the Chihuahua and Rio Conchos Basin (northern Mexico for water resources management. Hydrol. Process. 2008, 22, 4736–4751. [Google Scholar] [CrossRef]
- Ochoa-Rivero, J.M.; Jacquez-Herrera, V.; Prieto-Amparán, J.A.; Loya-Fierro, O.; Ballinas Casarrubias, L.; González-Horta, C.; Olmos-Marquez, M.A.; Rocha-Gutiérrez, B.A. Risk assessment for the distribution and levels of fluoride and nitrate in groundwater in a semi-arid area of northern Mexico. Groundwat. Sust. Develop. 2023, 23, 101045. [Google Scholar] [CrossRef]
- Reyes-Gómez, V.M.; Gutiérrez, M.; Nájera-Haro, B.; Núñez-López, D.; Alarcón-Herrera, M.T. Groundwater quality impacted by land use/land cover change in a semi-arid region of Mexico. Groundwat. Sust. Develop. 2017, 5, 160–167. [Google Scholar] [CrossRef]
- Espino-Valdés, M.S.; Rodríguez-Lozano, D.F.; Gutiérrez, M.; Silva-Hidalgo, H.; Pinales-Munguía, A. Relationship of fluoride concentration to well depth in an alluvial aquifer in a semiarid area. Environments 2022, 9, 155. [Google Scholar] [CrossRef]
- Espino-Valdés, M.S.; Villalobos-Gutiérrez, N.; Gutiérrez, M.; Silva-Hidalgo, H.; Pinales-Munguía, A. Temporal evolution of nitrate in Meoqui-Delicias aquifer in Chihuahua, Mexico. Tecnociencia Chihuah. 2024, 18, 1415. [Google Scholar] [CrossRef]
- Baeza-Galván, R.A. Aspectos geológicos del arsénico y su evolución en el acuífero Meoqui-Delicias, Chihuahua. Master’s Thesis, Universidad Autónoma de Chihuahua, Chihuahua, Mexico, 2023. [Google Scholar]
- Batista Cruz, R.Y.; Liotta, M.; Batista Rodriguez, J.A.; Montecelos Zamora, Y.; Kretzschmar, T.G.; de la Garza Rodriguez, I.M.; Blanco Moreno, J.A.; Almaguer Carmenates, Y.; Rodriguez Vega, A.; Lopez Saucedo, F.J. Hydrochemical and isotopical characterization of the Region Carbonifera aquifer: An example of hydrogeological systems in the semi-arid climates of northeastern Mexico. Appl. Geochem. 2022, 141, 105307. [Google Scholar] [CrossRef]
- Torres-Martinez, J.A.; Mora, A.; Mahlknecht, J.; Daesslé, L.W.; Cervantes-Avilés, P.A.; Ledesma-Ruiz, R. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes, and MixSIAR model. Environ. Pollut. 2021, 269, 115445. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.; Torres-Martínez, J.A.; Moreau, C.; Bertrand, G.; Mahlknecht, J. Mapping salinization and trace element abundance (including As and other metalloids) in the groundwater of north-central Mexico using a double-clustering approach. Water Res. 2021, 205, 117709. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, J.; Aguilar-Barajas, I.; Farías, P.; Knappett, P.S.K.; Torres-Martínez, J.A.; Hoogesteger, J.; Lara, R.H.; Ramírez-Mendoza, R.A.; Mora, A. Hydrochemical controls on arsenic contamination and its health risks in the Comarca Lagunera region (Mexico): Implications of the scientific evidence for public health policy. Sci. Total Environ. 2023, 857, 159347. [Google Scholar] [CrossRef]
- Robledo-Peralta, A.; López-Guzmán, M.; Morales-Amaya, C.G.; Reynoso-Cuevas, L. Arsenic and fluoride in groundwater, prevalence and alternative removal approach. Processes 2021, 9, 1191. [Google Scholar] [CrossRef]
- Irigoyen-Campuzano, J.R.; Barraza-Barraza, D.; Gutiérrez, M.; Torres-Castañón, L.A.; Reynoso-Cuevas, L.; Alarcón-Herrera, M.T. Hydrogeochemical characterization of an intermontane aquifer contaminated with arsenic and fluoride via clustering analysis. Hydrology 2024, 11, 76. [Google Scholar] [CrossRef]
- NOAA ETOPO1 Global Relief Model. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316 (accessed on 20 March 2025).
- Gutiérrez, M.; Espino-Valdés, M.S.; Calleros-Rincón, E.Y.; Alarcón-Herrera, M.T. Role of nitrogen in assessing the sustainability of irrigated areas: Case study of northern Mexico. Water Air Soil Pollut. 2021, 232, 148. [Google Scholar] [CrossRef]
- Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Estrada-Ávalos, J.; Trucíos-Caciano, R.; Carlón-Allende, T.; Castruita-Esparza, L.U. Two centuries of drought history in the center of Chihuahua, Mexico. Forests 2022, 13, 921. [Google Scholar] [CrossRef]
- Villanueva-Díaz, J.; Estrada-Ávalos, J.; Martínez-Sifuentes, A.R.; Correa-Díaz, A.; Meko, D.M.; Castruita-Esparza, L.U.; Cerano-Paredes, J. Historic variability of the water inflow to the Lazaro Cardenas Dam and water allocation in the Irrigation District 017, Comarca Lagunera, Mexico. Forests 2022, 13, 2057. [Google Scholar] [CrossRef]
- Moreno Gómez, M.; Palma Nava, A.; Rodríguez Yebra, A.; Huysmans, M. Semi-quantitative model for aquifer resilience to droughts. Predictions and mitigation strategies in Mexico. In Proceedings of the World Groundwater Congress IAH 2024, Switzerland, 2024. [Google Scholar] [CrossRef]
- Elouafi, I. Drylands under pressure: Science and solutions for global stability. Science 2025, 387, eadv6563. [Google Scholar] [CrossRef] [PubMed]
- Armienta, M.A.; Segovia, N. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Villalba, L.; Montero-Cabrera, M.E.; Manjón-Collado, G.; Colmenero-Sujo, L.; Rentería-Villalobos, M.; Cano-Jiménez, A.; Rodriguez-Pineda, A.; Dávila-Rangel, I.; Quirino-Torres, L.; Herrera-Peraza, E.F. Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico). Rad Protect Dosim. 2006, 121, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Cauich Kau, D.; Rüde, T.R.; Cardona Benavides, A.; Castro Larragoitia, J. Natural occurrence and controls of arsenic in groundwater in a semiarid basin in the Mexican Altiplano. Hydrogeol. J. 2022, 30, 2459–2477. [Google Scholar] [CrossRef]
- Bianchini, G.; Brombin, V.; Marchina, C.; Natali, C.; Godebo, T.R.; Rasini, A.; Salani, G.M. Origin of fluoride and arsenic in the Main Ethiopian Rift waters. Minerals 2020, 10, 453. [Google Scholar] [CrossRef]
- Bouselsal, B.; Satouh, A.; Egbueri, J.; Hashim, M.; Arafat, A.; Paramasivam, P.; Alzaed, A.; Hussein, E.E. Groundwater for drinking and sustainable agriculture and public health hazards of nitrate: Developmental and sustainability implications for an arid aquifer system. Results Eng. 2025, 25, 104160. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Linhoff, B. Deciphering natural and anthropogenic nitrate and recharge sources in arid region groundwater. Sci. Total Environ. 2022, 848, 157345. [Google Scholar] [CrossRef]
- Mendieta-Mendoza, A.; Rentería-Villalobos, M.; Chávez-Flores, D.; Santellano-Estrada, E.; Pinedo-Álvarez, C.; Ramos-Sánchez, H. Reconnesaince of chemically vulnerable areas of an aquifer under arid conditions with agricultural uses. Agric. Water Manag. 2020, 233, 106100. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Torres-Martínez, J.A.; Kumar, M.; Mora, A.; Kaown, D.; Loge, F.J. Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. Sci. Total Environ. 2023, 905, 166863. [Google Scholar] [CrossRef] [PubMed]
- CONAGUA. Comisión Nacional del Agua. Mexico’s National Network for Water Quality (RENAMECA). Available online: https://www.gob.mx/conagua/articulos/calidad-del-agua (accessed on 10 March 2025).
- Colmenero-Chacón, C.P.; Morales-deAvila, H.; Gutiérrez, M.; Esteller-Alberich, M.V.; Alarcón-Herrera, M.T. Enrichment and temporal trends of groundwater salinity in central Mexico. Hydrology 2023, 10, 194. [Google Scholar] [CrossRef]
- Morales-deAvila, H.; Gutiérrez, M.; Colmenero-Chacón, C.P.; Júnez-Ferreira, H.E.; Esteller-Alberich, M.V. Upward trends and lithological and climatic controls of groundwater arsenic, fluoride, and nitrate in central Mexico. Minerals 2023, 13, 1145. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7, 8566. [Google Scholar] [CrossRef]
- Cotruvo, J.A. WHO guidelines for drinking water quality: First addendum to the fourth edition. J. Am. Water Works Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef]
- La Actualización de la Norma Sobre Agua Potable, Perspectivas IMTA, 3(017), May 2022. Available online: https://www.gob.mx/imta/es/articulos/la-actualizacion-de-la-norma-sobre-agua-potable?idiom=es (accessed on 10 April 2025).
- Del Razo, L.M.; García-Vargas, G.G.; Valenzuela, O.L.; Castellanos, E.; Sánchez-Peña, L.C.; Currier, J.M.; Drobná, Z.; Loomis, D.; Stýblo, M. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: A cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ. Health A Global Access Sci. Source 2011, 10, 73. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Lou, B.; Wu, R.; Wang, G.; Lu, C.; Wang, H.; Pi, J.; Xu, Y. The role of reactive oxygen species in arsenic toxicity. Biomolecules 2020, 10, 240. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef]
- Jiménez-Córdova, M.I.; Cárdenas-González, M.; Aguilar-Madrid, G.; Sánchez-Peña, L.C.; Barrera-Hernández, Á.; Dominguez-Guerrero, I.A.; Gonzalez-Horta, C.; Barbier, O.C.; Del Razo, L.M. Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels. Toxicol. Appl. Pharmacol. 2018, 352, 97–106. [Google Scholar] [CrossRef]
- Jiménez-Córdoba, M.I.; Sánchez-Peña, L.C.; Barrera-Hernández, A.; González-Horta, C.; Barbier, O.C.; Del Razo, L.M. Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population. Sci. Total Environ. 2019, 684, 621–628. [Google Scholar] [CrossRef]
- Tian, X.; Wang, M.; Ying, X.; Dong, N.; Li, M.; Feng, J.; Zhao, Y.; Tian, F.; Li, B.; Zhang, W.; et al. Co-exposure to arsenic and fluoride to explore the interactive effect on oxidative stress and autophagy in myocardial tissue and cell. Ecotoxicol. Environ. Safety 2023, 253, 114647. [Google Scholar] [CrossRef]
- Limón-Pacheco, J.H.; Jimenez-Cordova, M.I.; Cárdenas-González, M.; Sánchez Retana, I.M.; Gonsebatt, M.E.; Del Razo, L.M. Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. Ann. Glob. Health 2018, 84, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Shaji, E.; Sarath, K.V.; Santosh, M.; Krishnaprasad, P.K.; Arya, B.K.; Babu, M.S. Fluoride contamination in groundwater: A global processes, challenges, and residual measures. Geosc. Front. 2024, 15, 101734. [Google Scholar] [CrossRef]
- García-Torres, E.; Pérez-Morales, R.; González-Zamora, A.; Calleros-Rincón, E.Y. Subclinical hypothyroidism in families due to cic consumption of nitrate-contaminated water in rural areas with intensive livestock and agricultural practices in Durango, Mexico. Water 2022, 14, 282. [Google Scholar] [CrossRef]
- Roy, P.D.; Garcia-Arriola, O.A.; Selvam, S.; Vargas-Martinez, I.G.; Sanchez-Zavala, J.L. Geochemistry of some fuoride and nitrate enriched water resources from the Oriental Basin: A prospective health risk hotspot from eastern-central Mexico. Environ. Geochem. Health 2025, 47, 114. [Google Scholar] [CrossRef]
- Hamlin, Q.F.; Martin, S.I.; Kendall, A.D.; Hyndman, D.W. Examining relationships between groundwater nitrate concentrations in drinking water and landscape characteristics to understand health risks. GeoHealth 2022, 6, e2021GH000524. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.V.; Van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 7. [Google Scholar] [CrossRef]
- Street, M.E.; Shulhai, A.M.; Petraroli, M.; Patianna, V.; Donini, V.; Giudice, A.; Gnocchi, M.; Masetti, M.; Montani, A.G.; Rotondo, R.; et al. The impact of environmental factors and contaminants on thyroid function and disease from fetal to adult life: Current evidence and future directions. Front. Endocrinol. 2024, 15, 1429884, Frontiers Media SA. [Google Scholar] [CrossRef]
- Bommarito, P.A.; Xu, X.; González-Horta, C.; Sánchez-Ramírez, B.; Ballinas-Casarrubias, L.; Santos Luna, R.; Román Pérez, S.; Hernández Ávila, J.E.; García-Vargas, G.G.; Del Razo, L.M.; et al. One-carbon metabolism nutrient intake and the association between body mass index and urinary arsenic metabolites in adults in the Chihuahua cohort. Environ. Int. 2019, 123, 292–300. [Google Scholar] [CrossRef]
- Currier, J.M.; Ishida, M.C.; González-Horta, C.; Sánchez-Ramírez, B.; Ballinas-Casarrubias, L.; Gutiérrez-Torres, D.S.; Hernández Cerón, R.; Viniegra Morales, D.; Baeza Terrazas, F.A.; Del Razo, L.M.; et al. Associations between arsenic species in exfoliated urothelial cells and prevalence of diabetes among residents of Chihuahua, Mexico. Environ. Health Perspect. 2014, 122, 1088–1094. [Google Scholar] [CrossRef]
- Martin, E.; González-Horta, C.; Rager, J.; Bailey, K.A.; Sánchez-Ramírez, B.; Ballinas-Casarrubias, L.; Ishida, M.C.; Gutiérrez-Torres, D.S.; Hernández Cerón, R.; Viniegra Morales, D.; et al. Metabolomic characteristics of arsenic-associated diabetes in a prospective cohort in Chihuahua, Mexico. Toxicol. Sci. 2015, 144, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Méndez, M.A.; González-Horta, C.; Sánchez-Ramírez, B.; Ballinas-Casarrubias, L.; Hernández Cerón, R.; Viniegra Morales, D.; Baeza Terrazas, F.A.; Ishida, M.C.; Gutierrez-Torres, D.S.; Saunders, J.; et al. Chronic exposure to arsenic and markers of cardiometabolic risk: A cross-sectional study in Chihuahua, Mexico. Environ. Health Perspect. 2016, 124, 104–111. [Google Scholar] [CrossRef]
- Rocha-Amador, D.O.; Calderón, J.; Carrizales, L.; Costilla-Salazar, R.; Pérez-Maldonado, I.N. Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. Environ. Toxicol. Pharmacol. 2011, 32, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-González, M.; Osorio-Yáñez, C.; Gaspar-Ramírez, O.; Pavković, M.; Ochoa-Martínez, A.; Lopez-Ventura, D.; Medeiros, M.; Barbier, O.C.; Pérez-Maldonado, I.N.; Sabbisettu, V.S.; et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 2016, 150, 653–662. [Google Scholar] [CrossRef]
- Facio-Campos, R.A.; Rendon-Von-Osten, J.; Calleros-Rincón, E.Y.; García-Vargas, G.G.; Téllez-López, M.A.; Olivas-Calderón, E. Organochlorine pesticide residues and urinary arsenic and fluoride levels in mothers and their newborns who are residents of rural areas in Durango State, Mexico. Int. J. Environ. Health Res. 2024, 35, 1028–1043. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, B.L.; Castillo-Maldonado, I.; Pedroza-Escobar, D.; Delgadillo-Guzmán, D.; Soto-Jiménez, M.F. Association of obesity, diabetes, and hypertension with arsenic in drinking water in the Comarca Lagunera province (north-central Mexico). Sci. Rep. 2023, 13, 9244. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Calderón, E.; Recio-Vega, R.; Gandolfi, A.J.; Lantz, R.C.; González-Cortes, T.; Gonzalez-De Alba, C.; Froines, J.R.; Espinoza-Fematt, J.A. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic. Toxicol. Appl. Pharmacol. 2015, 287, 161–167. [Google Scholar] [CrossRef]
- Recio-Vega, R.; Gonzalez-Cortes, T.; Olivas-Calderón, E.; Lantz, R.C.; Gandolfi, A.J.; Gonzalez-De Alba, C. In utero and early childhood exposure to arsenic decreases lung function in children. J. Appl. Toxicol. 2015, 35, 358–366. [Google Scholar] [CrossRef]
- Rojas, D.; Rager, J.E.; Smeester, L.; Bailey, K.A.; Drobná, Z.; Rubio-Andrade, M.; Stýblo, M.; Garcia-Vargas, G.; Fry, R.C. Prenatal arsenic exposure and the epigenome: Identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol. Sci. 2015, 143, 97–106. [Google Scholar] [CrossRef]
- García Salcedo, J.J.; Roh, T.; Nava Rivera, L.E.; Betancourt Martínez, N.D.; Carranza Rosales, P.; San Miguel Salazar, M.F.; Rivera Guillén, M.A.; Serrano Gallardo, L.B.; Niño Castañeda, M.S.; Guzmán Delgado, N.E.; et al. Comparative biomonitoring of arsenic exposure in mothers and their neonates in Comarca Lagunera, Mexico. Int. J. Environ. Res. Public Health 2022, 19, 16232. [Google Scholar] [CrossRef]
- Jiménez Villarreal, J.; Murillo Ortiz, B.; Martínez Garza, S.; Rivas Armendáriz, D.I.; Boone Villa, V.D.; Carranza Rosales, P.; Betancourt Martínez, N.D.; Delgado Aguirre, H.; Morán Martínez, J. Telomere length analysis in residents of a community exposed to arsenic. J. Biochem. Molec. Toxicol 2019, 33, e22230. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Gómez, J.; García-Vargas, G.G.; López-Carrillo, L.; Calderón-Aranda, E.S.; Gómez, A.; Vera, E.; Valverde, M.; Cebrián, M.E.; Rojas, E. Genotoxic effects of environmental exposure to arsenic and lead on children in Region Lagunera, Mexico. Ann. N. Y. Acad. Sci. 2008, 1140, 358–367. [Google Scholar] [CrossRef]
- Vega-Millán, C.B.; Dévora-Figueroa, A.G.; Burgess, J.L.; Beamer, P.I.; Furlong, M.; Lantz, R.C.; Meza-Figueroa, D.; O’Rouke, M.K.; Garci -Rico, L.; Meza-Escalante, E.R.; et al. Inflammation biomarkers associated with arsenic exposure by drinking water and respiratory outcomes in indigenous children from three Yaqui villages in southern Sonora, México. Environ Sci. Pollut. Res. 2021, 28, 34355–34366. [Google Scholar] [CrossRef]
- Andrew, A.S.; Burgess, J.L.; Meza, M.M.; Demidenko, E.; Waugh, M.G.; Hamilton, J.W.; Karagas, M.R. Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ. Health Perspect. 2006, 114, 1193–1198. [Google Scholar] [CrossRef]
- Jiménez-Córdoba, M.I.; González-Horta, C.; Ayllón-Vergara, J.; Arreola-Mendoza, L.; Aguilar-Madrid, G.; Villareal-Vega, E.E.; Barrera-Hernández, Á.; Barbier, O.C.; Del Razo, L.M. Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride. Environ. Res. 2019, 169, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Pérez, D.; Rodríguez-Martínez, M.; Martínez, F.; Borja-Aburto, V.H.; Castelo, J.; Grimaldo, J.I.; de la Cruz, E.; Carrizales, L.; Díaz-Barriga, F. Fluoride-induced disruption of reproductive hormones in men. Environ. Res. 2003, 93, 20–30. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Alarcón-Herrera, M.T.; Ochoa-Rivero, J.M. Impacto de factores de concentración en la calidad del agua subterránea en el norte-centro de México. Tecnociencia Chihuah. 2022, 16, e953. [Google Scholar] [CrossRef]
- Calleros-Rincón, E.Y.; Alarcón-Herrera, M.T.; Pérez, R.; Cueto, J.A.; Moran, J.; Sanin, L.H. Evaluación de riesgo sistémico y niveles de metahemoglobina en niños que consumen agua contaminada por nitratos. Ingeniería 2012, 16, 183–194. (In Spanish) [Google Scholar]
- Calleros-Rincón, E.Y.; Pérez Morales, R.; González Zamora, A.; Alba Romero, J.J.; Avalos Calleros, B.Y.; Olivas Calderón, E.H. Metahemoglobina y cuerpos de Heinz como biomarcador de exposición a nitratos en niños. XVII Congreso Internacional de Ciencias Ambientales, Mexico. Rev. Latinoam. El Ambiente Y las Ciencias 2018, 9, 15–29. [Google Scholar]
- Maity, J.P.; Vithanage, M.; Kumar, M.; Ghosh, A.; Mohan, D.; Ahmad, A.; Bhattacharya, P. Seven 21st century challenges of arsenic-fluoride contamination and remediation. Groundw. Sustain. Develop. 2021, 12, 100538. [Google Scholar] [CrossRef]
- Sánchez Hidalgo, G.C.; Ábrego-Bonilla, J.; Deago, E.; Ortega Del Rosario, M.D.L.A. Global perspectives on groundwater decontamination: Advances and challenges of the role of permeable reactive barriers. Hydrology 2025, 12, 98. [Google Scholar] [CrossRef]
- Burillo, J.C.; L. Ballinas G. Burillo E. Guerrero-Le D. Lardizabal-Gutiérrez, H.; Silva Hidalgo, H. Chitosan hidrogel synthesis to remove arsenic and fluoride ions from groundwater. J. Hazard. Mat. 2021, 417, 126070. [Google Scholar] [CrossRef] [PubMed]
- Espino Valdés, M.S. Calidad del agua subterránea en el Estado de Chihuahua: Retos y logros en la búsqueda de soluciones Sustentables para el agua de consumo. In Problemáticas del Agua y Medidas Sustentables en Estados Desérticos de México; Instituto Tecnológico de Sonora: Obregón, Mexico, 2019; ISBN 978-607-609-205-7. Available online: www.itson.mx (accessed on 15 May 2025).
- Gobierno de México Entrega Infraestructura del Proyecto Agua Saludable para La Laguna. Available online: https://www.gob.mx/cms/uploads/attachment/file/940222/Comunicado_de_prensa_0596-24.pdf (accessed on 12 April 2025).
- Alam, M.F.; Villholth, K.G.; Podgorski, J. Human arsenic exposure risk via crop consumption and global trade from groundwater-irrigated areas. Environ. Res. Lett. 2021, 16, 124013. [Google Scholar] [CrossRef]
- Mondal, D.; Gupta, S. Influence of fluoride contaminated irrigation water on biochemical constituents of different crops and vegetables with an implication to human risk through diet. J. Mater. Environ. Sci. 2015, 6, 3134–3142, ISSN 2028–2508. [Google Scholar]
- Rosas-Castor, J.M.; Guzmán-Mar, J.L.; Hernández-Ramírez, A.; Garza-González, M.T.; Hinojosa-Reyes, L. Arsenic accumulation in maize crop (Zea mays): A review. Sci. Total Environ. 2014, 488–489, 176–187. [Google Scholar] [CrossRef]
- Baig, J.A.; Kazi, T.G.; Shah, A.Q.; Afridi, H.I.; Kandhro, G.A.; Khan, S.; Kolachi, N.F.; Wadhwa, S.K.; Shah, F.; Arain, M.B.; et al. Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food Chem. Toxicol. 2011, 49, 265–270. [Google Scholar] [CrossRef]
- Hermosillo-Muñoz, M.C.; Valles Aragon, M.C.; Ballinas-Casarrubias, M.L.; Rocha-Gutierre, B.A.; Prieto-Amparan, J.A. Traceability of arsenic in agricultural irrigation water from center-south of Chihuahua State, Mexico. Rev. Int. Contam. Amb. 2019, 35, 81–91. [Google Scholar] [CrossRef]
- Ochoa-Rivero, J.M.; Gutiérrez, M.; Álvarez-Holguín, A.; Rubio-Arias, H.O.; Rocha-Gutiérrez, B.A.; Ponce-García, O.C. Comparing the uptake of arsenic by barley and oats growing in a semiarid area irrigated with either groundwater or treated wastewater. Minerals 2023, 13, 175. [Google Scholar] [CrossRef]
- Pineda-Chacón, G.; Alarcón-Herrera, M.T. Arsenic uptake and distribution in Cucumis melo and Citrullus lanatus plants. Environ. Prog. Sustain. Energy 2016, 35, 750–757. [Google Scholar] [CrossRef]
- Espino Valdés, M.S.; Domíngues Cervantes, F.; Villalba, M.L.; De la Garza-Aguilar, R.; Pinales-Munguía, A. Impacto de suelos y cultivos de alfalfa por el riego con agua con alto contenido de arsénico en Julimes, Chihuahua; GEOS, Union Geofisica Mexicana: Puerto Vallarta, Mexico, 2013; Volume 33, p. 81. Available online: https://www.ugm.org.mx/raugm2013/ (accessed on 15 May 2025).
- Ruiz Hernández, M.R. Evaluación de la Acumulación de Arsénico por Alfalfa. Master’s Thesis, Universidad Autónoma Agraria Antonio Narro, Torreón, Mexico, 2011. [Google Scholar]
- Codex-Stan 193-1955; General Standard for Contaminants and Toxins in Food and Feed; Food and Agricultural Organization and World Health Organization (FAO/WHO): Rome, Italy, 1995.
Location, Naq, Nwells | Ndata | iAs µg L−1 | F mg L−1 | NO3-N mg L−1 | Reference |
---|---|---|---|---|---|
State of Chihuahua | |||||
El Sauz-San Diego, 4, 45 | 45 | 38.5 (1.5–344) | 1.49 (0.02–9.7) | 12.9 (0.5–30.7) | [18] |
Chihuahua, central, 2, 15 | 45 | 24.4 (1.0–226) | 2.73 (0.37–20.7) | 3.96 (0.18–23.7) | [20] |
Chihuahua City, 1, n.a | 92 | n.a. | 1.64 (0.46–3.60) | 2.53 (0.48–10.6) | [19] |
Irrig. District 005, 1, 63 | 63 | n.a. | 1.58 (0.62–4.8) | 7.5 (0.7–23.2) | [21,22] |
Irrig. District 005, 1, 40 | 40 | 86.9 (7.0–489.0) | n.a. | n.a. | [23] |
Chihuahua, south, 8, n.a. | 445 | 48 (0.1–419.8) | 1.30 (0.05–11.8) | n.a. | [15] |
Jiménez-Camargo, 1, 30 | 30 | 150 (10–800) | n.a. | 7.6 (0.5–32.5) | [43] |
State of Durango | |||||
NW Durango, 14, 44 | 286 | 27.6 (0.7–369.5) | 1.53 (0.02–9.1) | 2.1 (0.004–15.4) | [12] |
SW Durango, 16, 64 | 266 | 47.0 (0.7–386.5) | 3.94 (0.02–45.2) | 2.1 (0.009–18.5) | [12] |
NE Durango, 7, 153 | 412 | 40.0 (0.7–462.8) | 0.85 (0.02–3.6) | 11.1 (0.008–127.7) | [12] |
SE Durango, 11, 58 | 273 | 48.0 (0.7–310.0) | 1.75 (0.10–15.8) | 4.3 (0.005–81.9) | [12] |
Durango City, 1, 9 | 9 | 32.0 (n.a.) | 3.89 (n.a.) | 8.7 (n.a.) | [28] |
Valle del Guadiana, 1, 40 | 40 | 41.1 (1.5–199.8) | 0.17 (0.01–0.58) | 0.16 (0–0.62) | [29] |
Comarca Lagunera | |||||
Comarca Lagunera, 6, 31 | 31 | 70.0 (10–350) | 0.88 (0.12–3.1) | 7.7 (0.01–45.0) | [27] |
Recharge zone, 6, 29 | 29 | n.a. | 1.1 (0.12–4.5) | 20.2 (1.5–109.0) | [25] |
Transition zone, 6, 9 | 9 | n.a. | 0.6 (0.25–1.1) | 4.3 (0.14–4.3) | [25] |
Discharge zone, 6, 15 | 15 | n.a. | 1.0 (0.31–3.1) | 1.2 (0.01–2.6) | [25] |
Comarca Lagunera, 6, 55 | 55 | 51.9 (5.0–349) | 0.98 (<0.2–4.54) | 12.3 (<0.02–109) | [26] |
Health Concerns/Health Issues | Target Population | Reference |
---|---|---|
Chihuahua | ||
Association between body mass index and urinary arsenic metabolites | Adult | [64] |
Diabetes, elevated triglycerides and cholesterol, and cardiometabolic risk | General | [65,66,67] |
Durango | ||
Apoptosis of peripheral blood mononuclear cells in As-exposed children | Children | [68] |
Exposure to As and Cr is associated with kidney injury molecule-1 | Children | [69] |
Urinary arsenic and fluoride in mothers in rural areas and their newborns | Mothers Newborns | [70] |
Comarca Lagunera | ||
Increased prevalence of diabetes after exposure to arsenic in water | General | [51] |
Association of obesity, diabetes, and hypertension with arsenic in water | General | [71] |
Lung inflammation biomarkers and lung function in children chronically exposed to arsenic | Children | [72,73] |
Prenatal arsenic exposure and functional changes in gene expression in newborn cord blood and subsequent birth outcomes | Women, Newborn | [74,75] |
Telomere length analysis in residents of a community exposed to arsenic | Children, general | [76,77] |
Sonora | ||
Inflammation biomarkers associated with arsenic exposure by water and respiratory outcomes | Children | [78] |
Decreased DNA repair in vitro and in individuals exposed to As | General | [79] |
Health Concerns/Health Issues | Target Population | Reference |
---|---|---|
Chihuahua | ||
Vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride | Children | [80] |
Evaluation of kidney injury biomarkers in an adult Mexican population environmentally exposed to fluoride and low arsenic levels | Adult | [54] |
Durango | ||
Urinary arsenic and fluoride in mothers in rural areas and their newborns | ||
San Luis Potosi | ||
Fluoride-induced disruption of reproductive hormones in men | Men | [81] |
Location | Crop | Studied Part | As mg kg−1 | Reference |
---|---|---|---|---|
Chihuahua | Jalapeño pepper Serrano pepper Onion | Fruit Fruit Bulb | 0.016 0.050 0.38 | [94] |
Chihuahua | Barley Oats | Grain Stems Grain Stems | 0.20 0.62 0.55 1.53 | [95] |
Chihuahua | Alfalfa | Leaves and stems | <0.02 | [97] |
Durango | Corn tortilla | Food item | 0.14–0.54 | [92] |
Durango | Melon plants | Leaves and Stem Root | 5.2 34 | [96] |
Comarca Lagunera | Maize | Grain | 0.12 | [92] |
Comarca Lagunera | Alfalfa | Leaves and stems | 2.2–23.3 | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez, M.; Alarcón-Herrera, M.T.; Espino-Valdés, M.S.; Valenzuela-García, L.I. Current State of Arsenic, Fluoride, and Nitrate Groundwater Contamination in Northern Mexico: Distribution, Health Impacts, and Emerging Research. Water 2025, 17, 1990. https://doi.org/10.3390/w17131990
Gutiérrez M, Alarcón-Herrera MT, Espino-Valdés MS, Valenzuela-García LI. Current State of Arsenic, Fluoride, and Nitrate Groundwater Contamination in Northern Mexico: Distribution, Health Impacts, and Emerging Research. Water. 2025; 17(13):1990. https://doi.org/10.3390/w17131990
Chicago/Turabian StyleGutiérrez, Mélida, María Teresa Alarcón-Herrera, María Socorro Espino-Valdés, and Luz Idalia Valenzuela-García. 2025. "Current State of Arsenic, Fluoride, and Nitrate Groundwater Contamination in Northern Mexico: Distribution, Health Impacts, and Emerging Research" Water 17, no. 13: 1990. https://doi.org/10.3390/w17131990
APA StyleGutiérrez, M., Alarcón-Herrera, M. T., Espino-Valdés, M. S., & Valenzuela-García, L. I. (2025). Current State of Arsenic, Fluoride, and Nitrate Groundwater Contamination in Northern Mexico: Distribution, Health Impacts, and Emerging Research. Water, 17(13), 1990. https://doi.org/10.3390/w17131990