Chemical Characterization and Source Analysis of Shallow Groundwater in a Typical Area of Huaihe River Basin
Abstract
1. Introduction
2. Overview of the Study Area
3. Sample Collection and Testing
3.1. Layout of Sampling Points
3.2. Sample Testing
3.3. Data Quality Monitoring
3.4. Methods of Analysis
4. Results and Discussion
4.1. Groundwater Chemical Characterization and Quality Assessment
4.1.1. Groundwater Chemical Characterization
4.1.2. Groundwater Quality Assessment
4.1.3. Types of Groundwater Chemistry
4.2. Analysis of Groundwater Pollution Sources and Spatial Distribution Characteristics
4.3. Calculation and Analysis of the Contribution of Pollution Sources
5. Conclusions
- (1)
- The four main sources of groundwater pollution in the Huaihe River basin in Huaibin County are F1 leaching, migration and enrichment, with a variance contribution of 37.39%, and the pollution areas are mainly concentrated in the north-eastern part of Zhaojizhen and Sankongqiao Township. F2 agricultural surface pollution, with a variance contribution of 15.52%, is mainly found in the south-western part of Zhaojizhen, Sankongqiao Township, Lujizhen Township and the southeastern part of Wangdian Township. F3 leaching and agricultural surface pollution factor, the variance contribution rate is 11.07%, the pollution area is mainly in the western part of Zhangzhuang Township; F4 industrial pollution factor, the variance contribution rate is 10.24%, the pollution area is mainly concentrated in the eastern part of Wangjiagang Township and Qisi Township.
- (2)
- The APCS-MLR model was used to calculate and analyze the contribution of each factor to the chemical indicators of groundwater in the basin, and the average contribution of the four factors to the characteristic indicators was 66.51%, 51.66%, 19.61% and 78.13%, respectively, which resulted in the average fit coefficient of 0.74 between the measured and predicted values of the indicators, which indicated that the results of the calculations could accurately analyze the contribution of the indicators to the pollution in the study area. Indicator contribution.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abba, S.; Yassin, M.A.; Shah, S.M.H.; Egbueri, J.C.; Elzain, H.E.; Agbasi, J.C.; Saini, G.; Usaman, J.; Khan, N.A.; Aljundi, I.H. Trace element pollution tracking in the complex multi-aquifer groundwater system of Al-Hassa oasis (Saudi Arabia) using spatial, chemometric and index-based techniques. Environ. Res. 2024, 249, 118320. [Google Scholar] [CrossRef] [PubMed]
- Abu, M.; Zango, M.S.; Nunoo, S.; Anim-Gyampo, M. Groundwater characterization including prediction of the quality, fluoride, and nitrate occurrence in a typical artisanal mining area in Ghana: A hydrochemical and multivariate statistical approach. Groundw. Sustain. Dev. 2023, 23, 101041. [Google Scholar] [CrossRef]
- Aduojo, A.A.; Mosobalaje, O.O.; Uchegbulam, O.; Johnson, A.O.; Ifeanyi, O. Multivariate analysis of seasonal changes of chemical elements in groundwater around Solous lll dumpsite, Lagos, South-West Nigeria. Sci. Afr. 2024, 23, e02084. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Patidar, K.; Gautam, S.; Alshehri, M. Assessing variability and hydrochemical characteristics of groundwater fluoride contamination and its associated health risks in East Singhbhum district of Jharkhand, India. J. Hazard. Mater. 2024, 478, 135498. [Google Scholar] [CrossRef]
- Chen, K.; Liu, Q.; Yang, T.; Ju, Q.; Hou, X.; Gao, W.; Jiang, S. Groundwater pollution source identification and health risk assessment in the North Anhui Plain, eastern China: Insights from positive matrix factorization and Monte Carlo simulation. Sci. Total Environ. 2023, 895, 165186. [Google Scholar] [CrossRef]
- Chen, Z.; He, J.; He, B.; Chu, Y.; Xia, Q. A new approach combining principal component factor analysis and K-means for identifying natural background levels of NO3-N in shallow groundwater of the Huaihe River Basin. Sci. Total Environ. 2024, 957, 177120. [Google Scholar] [CrossRef]
- Choudhary, S.; Rao, N.S.; Chaudhary, M.; Das, R. Assessing sources of groundwater quality and health risks using graphical, multivariate, and index techniques from a part of Rajasthan, India. Groundw. Sustain. Dev. 2024, 27, 101356. [Google Scholar] [CrossRef]
- Crayol, E.; Huneau, F.; Garel, E.; Zuffianò, L.; Limoni, P.; Romanazzi, A.; Mattei, A.; Re, V.; Knoeller, K.; Polemio, M. Investigating pollution input to coastal groundwater-dependent ecosystems in dry Mediterranean agricultural regions. Sci. Total Environ. 2024, 954, 176015. [Google Scholar] [CrossRef]
- Dharmani, A.B.; Verma, M.; Rani, S.; Narang, A.; Singh, M.R.; Saya, L.; Hooda, S. Unravelling groundwater contamination and health-related implications in semi-arid and cold regions of India. J. Contam. Hydrol. 2024, 261, 104303. [Google Scholar]
- Drall, J.K.; Rautela, R.; Jambhulkar, R.; Kataria, A.K.; Kumar, S. Effect of heavy metals contamination due to leachate migration from uncontrolled dumpsites: A comprehensive analysis on soil and groundwater. J. Environ. Manag. 2025, 373, 123473. [Google Scholar] [CrossRef]
- El-Sayed, H.M.; Ibrahim, M.I.; Abou Shagar, A.S.; Elgendy, A.R. Geophysical and hydrochemical analysis of saltwater intrusion in El-Omayed, Egypt: Implications for sustainable groundwater management. Egypt. J. Aquatic Res. 2023, 49, 478–489. [Google Scholar] [CrossRef]
- Habib, M.A.; Reza, A.S.; Hasan, M.I.; Ahsan, M.A.; Moniruzzaman, M.; Hasan, A.B.; Shofi, S.I.; Hridoy, K.M. Evaluating arsenic contamination in northwestern Bangladesh: A GIS-Based assessment of groundwater vulnerability and human health impacts. Heliyon 2024, 10, e27917. [Google Scholar] [CrossRef] [PubMed]
- Haghnazar, H.; Johannesson, K.H.; González-Pinzón, R.; Pourakbar, M.; Aghayani, E.; Rajabi, A.; Hashemi, A.A. Groundwater geochemistry, quality, and pollution of the largest lake basin in the Middle East: Comparison of PMF and PCA-MLR receptor models and application of the source-oriented HHRA approach. Chemosphere 2022, 288, 132489. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.J.; Rahman, M.Z.; Kamal, A.M.; Chowdhury, M.A.; Hossain, M.S.; Rahman, M.M.; Zahid, A.; Islam, A.R.M.T. Quantitative and qualitative assessment of groundwater resources for drinking water supply in the peri-urban area of Dhaka, Bangladesh. Groundw. Sustain. Dev. 2024, 25, 101146. [Google Scholar] [CrossRef]
- Isah, A.; Bassey, E.N.; Akinbiyi, O.A.; Azeez, R.A.; Oji, A.S.; El-Badawy, T. Characterizing groundwater contamination flow-paths and heavy metal mobilization near a waste site in Southwestern Nigeria. J. Afr. Earth Sci. 2025, 221, 105460. [Google Scholar] [CrossRef]
- Jin, L.; Ye, H.; Shi, Y.; Li, L.; Liu, R.; Cai, Y.; Li, J.; Li, F.; Jin, Z. Using PCA-APCS-MLR model and SIAR model combined with multiple isotopes to quantify the nitrate sources in groundwater of Zhuji, East China. Appl. Geochem. 2022, 143, 105354. [Google Scholar] [CrossRef]
- HJ/T 164-2004; Technical Specifications for Environmental Monitoring of Groundwater. Standards Press of China: Beijing, China, 2004.
- GB/T 14848-2017; Standard for Groundwater Quality. Standards Press of China: Beijing, China, 2017.
- Karim, B.A.; Mahmood, G.; Hasija, M.; Meena, B.; Sheikh, S. Assessment of heavy metal contamination in groundwater and its implications for dental and public health. Chemosphere 2024, 367, 143609. [Google Scholar] [CrossRef]
- Kouacou, B.A.; Anornu, G.; Adiaffi, B.; Gibrilla, A. Hydrochemical characteristics and sources of groundwater pollution in Soubré and Gagnoa counties, Côte d’Ivoire. Groundw. Sustain. Dev. 2024, 26, 101199. [Google Scholar]
- Kouacou, B.A.; Anornu, G.; Gibrilla, A.; Adiaffi, B.; Gyamfi, C. Hydrochemical evolution of groundwater in the Soubré and Gagnoa counties, Côte d’Ivoire. Groundw. Sustain. Dev. 2024, 24, 101079. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Chipthamlong, P.; Pawana, V.; Chomchaewchan, P.; Kamdee, K.; Tomun, N.; Kimmany, B. Hydrochemical characteristics and salt intrusion in groundwater of the lower Chao Phraya river basin: Insights from stable isotopes and hydrochemical analysis. Groundw. Sustain. Dev. 2023, 23, 101044. [Google Scholar] [CrossRef]
- Li, S.; Su, H.; Han, F.; Li, Z. Source identification of trace elements in groundwater combining APCS-MLR with geographical detector. J. Hydrol. 2023, 623, 129771. [Google Scholar] [CrossRef]
- Li, X.; Liang, G.; He, B.; Ning, Y.; Yang, Y.; Wang, L.; Wang, G. Recent advances in groundwater pollution research using machine learning from 2000 to 2023: A bibliometric analysis. Environ. Res. 2024, 267, 120683. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, C.; Zhang, Y.; Wu, C.; Liu, B.; Shu, L. Mechanisms of evolution and pollution source identification in groundwater quality of the Fen River Basin driven by precipitation. Sci. Total Environ. 2024, 952, 175893. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Fei, Y.H.; Li, Y.S.; Bao, X.L.; Zhang, P.W. Pollution source identification methods and remediation technologies of groundwater: A review. China Geol. 2024, 7, 125–137. [Google Scholar] [CrossRef]
- Lu, X.; Fan, Y.; Hu, Y.; Zhang, H.; Wei, Y.; Yan, Z. Spatial distribution characteristics and source analysis of shallow groundwater pollution in typical areas of Yangtze River Delta. Sci. Total Environ. 2024, 906, 167369. [Google Scholar] [CrossRef]
- Ma, N.; Gao, L.; Ge, Z.; Li, M. Hydrochemical characteristics of groundwater in a plain river network region: Establishing linkages between source and water quality variables. Chemosphere 2023, 331, 138809. [Google Scholar] [CrossRef]
- Meng, L.; Zuo, R.; Wang, J.S.; Yang, J.; Teng, Y.G.; Shi, R.T.; Zhai, Y.Z. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. J. Contam. Hydrol. 2018, 218, 70–83. [Google Scholar] [CrossRef]
- Pang, K.; Luo, K.; Zhang, S.; Hao, L. Source-oriented health risk assessment of groundwater based on hydrochemistry and two-dimensional Monte Carlo simulation. J. Hazard. Mater. 2024, 479, 135666. [Google Scholar] [CrossRef]
- Rahman, F.; Akram, M.W.; Khan, D. Evaluating monsoon season heavy metal contamination in groundwater of Uttar Dinajpur District using pollution indices and Principal Component analysis. Geomatica 2024, 76, 100029. [Google Scholar] [CrossRef]
- Rakib, M.; Quraishi, S.B.; Newaz, M.A.; Sultana, J.; Bodrud-Doza, M.; Rahman, M.A.; Patwary, M.A.; Bhuiyan, M.A. Groundwater quality and human health risk assessment in selected coastal and floodplain areas of Bangladesh. J. Contam. Hydrol. 2022, 249, 104041. [Google Scholar] [CrossRef]
- Ravindra, K.; Thind, P.S.; Mor, S.; Singh, T.; Mor, S. Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment. Environ. Pollut. 2019, 255 Pt 1, 113062. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.; Bian, J.; Wang, Y.; Wu, J.; Gu, Z. Identification of groundwater pollution sources and health risk assessment in the Songnen Plain based on PCA-APCS-MLR and trapezoidal fuzzy number-Monte Carlo stochastic simulation model. J. Hydrol. 2024, 632, 130897. [Google Scholar] [CrossRef]
- Schiavo, M.; Giambastiani, B.M.; Greggio, N.; Colombani, N.O.; Mastrocicco, M. Geostatistical assessment of groundwater arsenic contamination in the Padana Plain. Sci. Total Environ. 2024, 931, 172998. [Google Scholar] [CrossRef] [PubMed]
- Shaibur, M.R.; Howlader, M.; Nahar, N.; Hossain, M.S.; Mamun, A.M.; Shohan, M.H.; Selim, A. Application of pollution indices to determine pollution intensities in the groundwater of Gopalganj (south-central part), Bangladesh. Groundw. Sustain. Dev. 2024, 26, 101206. [Google Scholar] [CrossRef]
- Smida, H.; Tarki, M.; Gammoudi, N.; Dassi, L. GIS-based multicriteria and artificial neural network (ANN) investigation for the assessment of groundwater vulnerability and pollution hazard in the Braga shallow aquifer (Central Tunisia): A critical review of generic and modified DRASTIC models. J. Contam. Hydrol. 2023, 259, 104245. [Google Scholar] [CrossRef]
- Tajwar, M.; Rahman, M.; Shreya, S.S.; Sakib, N.; Gazi, M.Y.; Hasan, M.; Islam, M.; Alam, M.M.T.; Zahid, A. Pollution evaluation and health risks assessment of naturally occurring toxic metals in shallow groundwater: A study in southwestern tidal delta of Bangladesh. J. Trace Elem. Miner. 2024, 10, 100197. [Google Scholar] [CrossRef]
- Talpur, S.A.; Rashad, M.; Ahmed, A.; Rosatelli, G.; Baloch, M.Y.J.; Khan, A.H.A.; Talpur, H.A.; Iqbal, J. Pollution indicators and human health risk assessment of fluoride contaminated drinking groundwater in southern Pakistan. Hydroresearch 2025, 8, 167–177. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Zhang, S.; Zhang, X.; Chen, D.; Zhou, J. Hydrochemical evolution characteristics, controlling factors, and high nitrate hazards of shallow groundwater in a typical agricultural area of Nansi Lake Basin, North China. Environ. Res. 2023, 223, 115430. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, C.; Yang, W.; Liang, X.; Zhang, L.; Zhang, J. Analysis of the quality, source identification and apportionment of the groundwater in a typical arid and semi-arid region. J. Hydrol. 2023, 625 Pt B, 130169. [Google Scholar] [CrossRef]
- Yang, L.; Tang, Y.; Sun, H.; He, L.; Li, R. Hydrochemical characteristics of abandoned coal mines derived acid mine drainage in a typical karst basin (Wuma river basin, Guizhou China). Heliyon 2024, 10, e31963. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Z.; Song, D.; Zhang, B.; Zhou, Y.; Zhang, N.; Zhao, M.; Song, D.; Yuan, H.; Pang, Q. Pollution risk evaluation of groundwater wells based on stochastic and deterministic simulation of aquifer lithology. Ecotoxicol. Environ. Saf. 2024, 285, 117027. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zheng, T.; Yuan, R.; Zheng, X. APCS-MLR model: A convenient and fast method for quantitative identification of nitrate pollution sources in groundwater. J. Environ. Manag. 2022, 314, 115101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, Y.; Yao, R.; Wei, D.; Huang, X.; Luo, M.; Wei, C.; Chen, S.; Yang, C. Natural background levels, source apportionment and health risks of potentially toxic elements in groundwater of highly urbanized area. Sci. Total Environ. 2024, 935, 173276. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Chen, W.; Shi, W.; Cui, Y.; Chen, L.; Shao, J. Hydrogeochemical analysis and groundwater pollution source identification based on self-organizing map at a contaminated site. J. Hydrol. 2023, 616, 128839. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Yang, Y.; Wang, R.; Liao, J.; Zhang, P.; Liu, L.; Zhao, Y.; Deng, Y. Distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) with PCA-MLR and PMF methods in the topsoil of Chengdu at SW, China. Sci. Total Environ. 2024, 908, 168263. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, Q.; Zeng, J.; Gao, S.; Zhang, X.; Linghu, K.; Wu, P. Co-tracing of groundwater emerging and conventional contaminants in karst area of Southwest China: Distribution, source, and source-specific health risks. J. Hydrol. 2024, 645, 132172. [Google Scholar] [CrossRef]
Maximum Values | Minimum Value | Average Value | (Statistics) Standard Deviation | Coefficient of Variation | |
---|---|---|---|---|---|
pH | 9.09 | 6.32 | 7.251 | 0.421 | 0.06 |
TDS | 908.00 | 25.00 | 400.71 | 126 | 0.32 |
K+ | 116.00 | 0.24 | 1.75 | 8.63 | 4.92 |
Na+ | 140.00 | 9.40 | 43.76 | 20.94 | 0.48 |
Mg2+ | 47.80 | 6.75 | 19.75 | 7.94 | 0.40 |
Ca2+ | 175.00 | 25.50 | 78.41 | 28.96 | 0.37 |
Cl− | 236.00 | 2.67 | 37.48 | 35.80 | 0.96 |
SO42− | 198.00 | 0.86 | 25.76 | 24.88 | 0.97 |
HCO3− | 650.00 | 67.80 | 320.04 | 85.72 | 0.27 |
Fe | 7.32 | 0.01 | 0.162 | 0.647 | 4.00 |
Mn | 4.32 | 0.004 | 0.697 | 0.840 | 1.20 |
Pb | 0.028 | 0.0004 | 0.002 | 0.004 | 2.00 |
As | 0.035 | 0.0003 | 0.002 | 0.005 | 2.50 |
F | 8.58 | 0.155 | 0.400 | 0.623 | 1.56 |
NH4+ | 0.914 | 0.04 | 0.179 | 0.138 | 0.77 |
Norm | Class I | Class II | Class III | Class IV | Class V |
---|---|---|---|---|---|
Cl− | ≤50 | ≤150 | ≤250 | ≤350 | >350 |
SO42− | ≤50 | ≤150 | ≤250 | ≤350 | >350 |
TDS | ≤300 | ≤500 | ≤1000 | ≤2000 | >2000 |
NO3− | ≤2 | ≤5 | ≤20 | ≤30 | >30 |
NO2− | ≤0.01 | ≤0.1 | ≤1 | ≤4.8 | >4.8 |
NH4+ | ≤0.2 | ≤0.5 | ≤1 | ≤1.5 | >1.5 |
F− | ≤0.5 | ≤1 | ≤1.5 | ≤2 | >2 |
As | ≤0.001 | ≤0.002 | ≤0.01 | ≤0.05 | >0.05 |
Fe | ≤0.1 | ≤0.2 | ≤0.3 | ≤2 | >2 |
Mn | ≤0.04 | ≤0.05 | ≤0.1 | ≤1.5 | >1.5 |
COD | ≤1 | ≤2 | ≤3 | ≤10 | >10 |
total coliform bacteria | ≤3 | ≤3 | ≤3 | ≤100 | >100 |
Pollution Category | I (Unpolluted) | II (Light Pollution) | III (Moderate Pollution) | IV (Heavier Pollution) | V (Heavy Pollution) |
---|---|---|---|---|---|
Index range | <1 | 1–2 | 2–3 | 3–5 | >5 |
Ingredient | Initial Eigenvalue | Extract the Sum of Squares and Load | Rotate the Sum of Squares to Load | ||||||
---|---|---|---|---|---|---|---|---|---|
Add Up the Total | Variance (%) | Cumulative (%) | Add Up the Total | Variance (%) | Cumulative (%) | Add Up the Total | Variance (%) | Cumulative (%) | |
1 | 4.113 | 37.388 | 37.388 | 4.113 | 37.388 | 37.388 | 3.824 | 34.766 | 34.766 |
2 | 1.707 | 15.515 | 52.903 | 1.707 | 15.515 | 52.903 | 1.885 | 17.137 | 51.903 |
3 | 1.217 | 11.065 | 63.968 | 1.217 | 11.065 | 63.968 | 1.282 | 11.659 | 63.562 |
4 | 1.127 | 10.244 | 74.211 | 1.127 | 10.244 | 74.211 | 1.171 | 10.649 | 74.211 |
5 | 0.943 | 8.575 | 82.787 | ||||||
6 | 0.672 | 6.111 | 88.898 | ||||||
7 | 0.518 | 4.709 | 93.607 | ||||||
8 | 0.377 | 3.423 | 97.03 | ||||||
9 | 0.199 | 1.807 | 98.837 | ||||||
10 | 0.081 | 0.736 | 99.572 | ||||||
11 | 0.047 | 0.428 | 100 |
Norm | F1 | F2 | F3 | F4 |
---|---|---|---|---|
K+ | 0.134 | −0.1 | 0.896 | 0.19 |
Ca2+ | 0.924 | 0.093 | −0.095 | 0.034 |
Mg2+ | 0.907 | 0.178 | 0.064 | 0.011 |
HCO3− | 0.664 | −0.25 | −0.559 | 0.243 |
Cl− | 0.781 | 0.331 | 0.169 | −0.204 |
Mn | 0.216 | 0.659 | −0.04 | 0.003 |
NO3− | 0.333 | 0.665 | 0.243 | −0.117 |
NO2− | −0.016 | 0.469 | 0.117 | 0.454 |
NH4+ | −0.027 | 0.742 | −0.184 | 0.186 |
As | 0.03 | 0.04 | 0.067 | 0.879 |
TDS | 0.959 | 0.12 | 0.114 | 0.08 |
Lysofiltration Migration Enrichment Factor | Agricultural Surface Pollution Emission Factors | Dissolved Filtration and Agricultural Surfacepollution Factors | Geoenvironmental Factors | Other Sources | R2 | |
---|---|---|---|---|---|---|
K+ | 8.45 | 6.46 | 56.80 | 11.88 | 16.41 | 0.87 |
Ca2+ | 76.96 | 7.09 | 7.93 | 2.80 | 5.22 | 0.88 |
Mg2+ | 75.52 | 15.33 | 5.57 | 0.80 | 2.78 | 0.85 |
HCO3− | 32.54 | 12.23 | 27.33 | 11.90 | 16.00 | 0.87 |
Cl− | 45.95 | 19.21 | 9.78 | 12.05 | 13.01 | 0.79 |
Mn | 22.22 | 67.90 | 4.12 | 0.37 | 5.39 | 0.46 |
NO3− | 22.42 | 44.83 | 16.14 | 7.63 | 8.98 | 0.62 |
NO2− | 1.70 | 42.44 | 10.19 | 40.75 | 4.93 | 0.43 |
NH4+ | 2.00 | 51.46 | 12.49 | 12.49 | 21.56 | 0.61 |
As | 0.43 | 0.62 | 0.49 | 78.13 | 20.33 | 0.78 |
TDS | 67.60 | 8.95 | 8.01 | 5.76 | 9.68 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, H.; Qu, J.; Kong, C. Chemical Characterization and Source Analysis of Shallow Groundwater in a Typical Area of Huaihe River Basin. Water 2025, 17, 1959. https://doi.org/10.3390/w17131959
Li Y, Zhang H, Qu J, Kong C. Chemical Characterization and Source Analysis of Shallow Groundwater in a Typical Area of Huaihe River Basin. Water. 2025; 17(13):1959. https://doi.org/10.3390/w17131959
Chicago/Turabian StyleLi, Yuepeng, Hao Zhang, Jihong Qu, and Can Kong. 2025. "Chemical Characterization and Source Analysis of Shallow Groundwater in a Typical Area of Huaihe River Basin" Water 17, no. 13: 1959. https://doi.org/10.3390/w17131959
APA StyleLi, Y., Zhang, H., Qu, J., & Kong, C. (2025). Chemical Characterization and Source Analysis of Shallow Groundwater in a Typical Area of Huaihe River Basin. Water, 17(13), 1959. https://doi.org/10.3390/w17131959