Modelling Trace Metals in River and Sediment Compartments to Assess Water Quality
Abstract
1. Introduction
2. Material and Methods
2.1. Study Sites Description and Dataset
2.2. Methodology
2.3. Model Implementation
3. Results and Discussion
3.1. Calibration of Specific Parameters Involved in Equations Describing TM Behaviour
3.1.1. Urban Emission Rates
3.1.2. Soil Leaching Functions
3.1.3. Settling Velocities
3.2. Characterisation of Trace Metal Dynamics with a Pressure–Impact Model
3.2.1. Assessment of Sediment Distribution by Class
3.2.2. Trace Metal Contamination of the River Ecosystem (Sediment and Water Column)
3.3. Distribution by Class of Particulate Trace Metal
3.4. Optimisation of the Suspended Sediments Modelling
3.5. Validation of SS and TM Modelling on Other Datasets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AERM | Agence de l’Eau Rhin-Meuse |
BS | Bed sediment |
C | Clay |
CS | Coarse silt |
FS | Fine silt |
Kd | Partitioning coefficient |
MicMod | Micropollutant modelling |
POMD | Processes of organic matter degradation |
RWS | Rijkswaterstaat |
SPW | Service public wallon |
SS | Suspended sediment |
TM | Trace metal |
WFD | Water Framework Directive 2000/60/EC |
WWTP | Waste water treatment plant |
References
- Meybeck, M.; Lestel, L.; Bonté, P.; Moilleron, R. Historical Perspective of Heavy Metals Contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River Basin (France) Following a DPSIR Approach (1950–2005). Sci. Total Environ. 2007, 375, 204–231. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace Elements in River Waters. In Treatise on Geochemistry; Drever, J.I., Ed.; Surface and Ground Water, Weathering, Erosion and Soils; Elsevier: Amsterdam, The Netherlands, 2004; Volume 5, pp. 225–272. ISBN 978-0-08-098300-4. [Google Scholar]
- Yang, Z.; Wang, Y.; Shen, Z.; Niu, J.; Tang, Z. Distribution and Speciation of Heavy Metals in Sediments from the Mainstream, Tributaries, and Lakes of the Yangtze River Catchment of Wuhan, China. J. Hazard. Mater. 2008, 166, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Meybeck, M. Man and River Interface: Multiple Impacts on Water and Particulates Chemistry Illustrated in the Seine River Basin. Hydrobiologia 1998, 373, 1–20. [Google Scholar] [CrossRef]
- Ollivier, P.; Hamelin, B.; Radakovitch, O. Seasonal Variations of Physical and Chemical Erosion: A Three-Year Survey of the Rhone River (France). Geochim. Cosmochim. Acta 2010, 74, 907–927. [Google Scholar] [CrossRef]
- Thévenot, D.; Moilleron, R.; Lestel, L.; Gromaire, M.-C.; Rocher, V.; Cambier, P.; Bonté, P.; Colin, J.-L.; Pontevès, C.; Meybeck, M. Critical Budget of Metal Sources and Pathways in the Seine River Basin (1994–2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. Sci. Total Environ. 2007, 375, 180–203. [Google Scholar] [CrossRef] [PubMed]
- Carone, M.T.; Simoniello, T.; Manfreda, S.; Caricato, G. Watershed Influence on Fluvial Ecosystems: An Integrated Methodology for River Water Quality Management. Environ. Monit. Assess. 2009, 152, 327–342. [Google Scholar] [CrossRef]
- Dou, M.; Li, G.; Li, C. Quantitative Relations between Chemical Oxygen Demand Concentration and Its Influence Factors in the Sluice-Controlled River Reaches of Shaying River, China. Environ. Monit. Assess. 2014, 187, 4139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, Z.; Zeng, G.; Li, J.; Fang, Y.; Yuan, Q.; Wang, Y.; Ye, F. Assessment of Surface Water Quality Using Multivariate Statistical Techniques in Red Soil Hilly Region: A Case Study of Xiangjiang Watershed, China. Environ. Monit. Assess. 2009, 152, 123–131. [Google Scholar] [CrossRef]
- Garneau, C.; Sauvage, S.; Sánchez-Pérez, J.-M.; Lofts, S.; Brito, D.; Neves, R.; Probst, A. Modelling Trace Metal Transfer in Large Rivers under Dynamic Hydrology: A Coupled Hydrodynamic and Chemical Equilibrium Model. Environ. Model. Softw. 2017, 89, 77–96. [Google Scholar] [CrossRef]
- Guéguen, C.; Dominik, J. Partitioning of Trace Metals between Particulate, Colloidal and Truly Dissolved Fractions in a Polluted River: The Upper Vistula River (Poland). Appl. Geochem. 2003, 18, 457–470. [Google Scholar] [CrossRef]
- Dendievel, A.-M.; Grosbois, C.; Ayrault, S.; Evrard, O.; Coynel, A.; Debret, M.; Gardes, T.; Euzen, C.; Schmitt, L.; Chabaux, F.; et al. Key Factors Influencing Metal Concentrations in Sediments along Western European Rivers: A Long-Term Monitoring Study (1945–2020). Sci. Total Environ. 2022, 805, 149778. [Google Scholar] [CrossRef] [PubMed]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, 327, 72. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2000:327:FULL&from=EN (accessed on 20 June 2025).
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical Composition of Suspended Sediments in World Rivers: New Insights from a New Database. Sci. Total Environ. 2008, 407, 853–868. [Google Scholar] [CrossRef]
- Meybeck, M. Heavy Metal Contamination in Rivers across the Globe: An Indicator of Complex Interactions between Societies and Catchments. IAHS-AISH Proc. Rep. 2013, 361, 3–16. [Google Scholar]
- Grard, A.; Deliège, J.-F. Characterizing Trace Metal Contamination and Partitioning in the Rivers and Sediments of Western Europe Watersheds. Hydrology 2023, 10, 51. [Google Scholar] [CrossRef]
- Deliège, J.-F.; Everbecq, E.; Magermans, P.; Grard, A.; Bourouag, T.; Blockx, C. Pegase, A Software Dedicated to Surface Water Quality Assessment and to European Database Reporting. In Proceedings of the European conference of the Czech Presidency of the Council of the EU Towards Environment, Opportunities of SEIS and SIZE: Integrating Environmental Knowledge in Europe, Brno, Czech Republic, 1 January 2009; pp. 24–32. [Google Scholar]
- Commission Internationale de La Meuse (CIM). District Hydrographique International de La Meuse-Analyse, Rapport Faîtier; Commission Internationale de La Meuse: Liège, Belgium, 2005; Available online: http://www.meuse-maas.be (accessed on 20 June 2025).
- Etat de l’Environnement Wallon. Direction de l’Etat Environnemental. SPW. 2021. Available online: http://etat.environnement.wallonie.be/contents/indicatorsheets/EAU%202.html (accessed on 12 October 2022).
- Agence de l’Eau Rhin-Meuse. Caractéristiques et Priorités Dans La Territoire D’Interventions Moselle Amont. 2003. Available online: https://www.documentation.eauetbiodiversite.fr/ (accessed on 20 June 2025).
- Waterinfo, Rijkswaterstaat, Ministerie van Infrastructuur En Waterstaat. Available online: https://waterinfo.rws.nl (accessed on 7 July 2021).
- INRAE (Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement, Antony, France): The Sunshine Web Apps. Available online: https://sunshine.inrae.fr/app/profilsHydro (accessed on 12 October 2022).
- HydroPortail-Eaufrance. Available online: https://www.hydro.eaufrance.fr/ (accessed on 20 June 2025).
- Syndicat Mixte Moselle Aval. Dossier de Candidature à la Labellisation «Programme d’Actions de Prévention des Inondations (PAPI)». 2019. Available online: https://www.moselleaval.fr/fr/accueil.html (accessed on 15 October 2022).
- Knöchel, A. Book Review: Cation Binding by Humic Substances By Edward Tipping. Angew. Chem. Int. Ed. 2003, 42, 2817. [Google Scholar] [CrossRef]
- Etat Des Lieux. Éléments de Diagnostic de La Partie Française Du District Du Rhin et Du District de La Meuse. Adopté Au Comité de Bassin de l’Agence de l’Eau Rhin-Meuse. 2019. Available online: https://www.eau-rhin-meuse.fr/etat-des-lieux-des-districts-du-rhin-et-de-la-meuse (accessed on 20 June 2025).
- Naïades-Données Sur La Qualité Des Eaux de Surface. Available online: https://naiades.eaufrance.fr/ (accessed on 10 June 2023).
- Deliège, J.-F. Méthode d’Intégration de Modèles Adaptée Aux Systèmes Hydrologiques Multicompartimentés. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2013. [Google Scholar]
- Everbecq, E.; Grard, A.; Magermans, P.; Deliège, J.-F. Water Framework Directive and Modelling Using PEGOPERA Simulation Software. J. Model. Optim. 2019, 11, 36–50. [Google Scholar] [CrossRef]
- Pelletier, G.J.; Chapra, S.C.; Tao, H. QUAL2Kw—A Framework for Modeling Water Quality in Streams and Rivers Using a Genetic Algorithm for Calibration. Environ. Model. Softw. 2006, 21, 419–425. [Google Scholar] [CrossRef]
- Wool, T.; Ambrose, R.B.; Martin, J.L.; Comer, A. WASP 8: The Next Generation in the 50-Year Evolution of USEPA’s Water Quality Model. Water 2020, 12, 1398. [Google Scholar] [CrossRef]
- Park, R.A.; Clough, J.S.; Wellman, M.C. AQUATOX: Modeling Environmental Fate and Ecological Effects in Aquatic Ecosystems. Ecol. Model. 2008, 213, 1–15. [Google Scholar] [CrossRef]
- Owens, P.N.; Petticrew, E.L. Bernd Westrich, Ulrich Förstner (Eds.): Sediment Dynamics and Pollutant Mobility in Rivers—An Interdisciplinary Approach. J. Soils Sediments 2008, 8, 151–153. [Google Scholar] [CrossRef]
- Trento, A.; Álvarez, A. A Numerical Model for the Transport of Chromium and Fine Sediments. Environ. Model. Assess. 2011, 16, 551–564. [Google Scholar] [CrossRef]
- Tercier-Waeber, M.-L.; Stoll, S.; Slaveykova, V.I. Trace Metal Behavior in Surface Waters: Emphasis on Dynamic Speciation, Sorption, Processes and Bioavailability. Arch. Sci. Ed. Société Phys. D’histoire Nat. Genève 2012, 65, 119–142. [Google Scholar]
- Coquery, M.; Miege, C.; Choubert, J.M.; Ruel, S.M.; Gabet, V.; Lardy, S.; Esperanza, M.; Budzinski, H. Projet AMPERES: Analyse de micropolluants prioritaires et émergents dans les rejets et les eaux superficielles. In Proceedings of the 5èmes Journées Techniques Eaux et Déchets, Toulouse, France, 11 June 2008; p. 19. [Google Scholar]
- Chang, C.-L.; Yu, Z.-E. Application of Water Quality Model to Analyze Pollution Hotspots and the Impact on Reservoir Eutrophication. Environ. Monit. Assess. 2020, 192, 495. [Google Scholar] [CrossRef]
- Wan, L.; Wang, H. Control of Urban River Water Pollution Is Studied Based on SMS. Environ. Technol. Innov. 2021, 22, 101468. [Google Scholar] [CrossRef]
- Hatten, J.; Goni, M.; Wheatcroft, R. Chemical Characteristics of Particulate Organic Matter from a Small, Mountainous River System in the Oregon Coast Range, USA. Biogeochemistry 2012, 107, 43–66. [Google Scholar] [CrossRef]
- Li, R.; Tang, C.; Cao, Y.; Jiang, T.; Chen, J. The Distribution and Partitioning of Trace Metals (Pb, Cd, Cu, and Zn) and Metalloid (As) in the Beijiang River. Environ. Monit Assess 2018, 190, 399. [Google Scholar] [CrossRef]
- Grard, A.; Everbecq, E.; Magermans, P.; Deliège, J.-F. Modelling a Severe Transient Anoxia of Continental Freshwaters Due to a Scheldt Accidental Release (Sugar Industry). Hydrology 2021, 8, 175. [Google Scholar] [CrossRef]
- Fournier, J.; Bonnot-Courtois, C.; Paris, R.; Vot, M. Analyses Granulométriques. Principes et Méthodes; CNRS: Dinard, France, 2012; p. 100. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Friedman, G.M.; Sanders, J.B. Principles of Sedimentology. J. Sediment. Petrol. 1979, 49, 679–680. [Google Scholar]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Everbecq, E.; Grard, A.; Magermans, P.; Deliège, J.-F. Pegase: Description des Paramètres du Modèle Pegase. Rapport de Recherche Interne. 2022. Available online: https://orbi.uliege.be/handle/2268/198392 (accessed on 20 June 2025).
- Tipping, E. Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic Substances. Aquat. Geochem. 1998, 4, 3–47. [Google Scholar] [CrossRef]
- Ollivier, P.; Radakovitch, O.; Hamelin, B. Major and Trace Element Partition and Fluxes in the Rhône River. Chem. Geol. 2011, 285, 15–31. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.W.; Wang, J.H. Trace-Metal Chemistry of the Huanghe (Yellow River), China—Examination of the Data from in Situ Measurements and Laboratory Approach. Chem. Geol. 1994, 114, 83–94. [Google Scholar] [CrossRef]
- Ciffroy, P.; Durrieu, G.; Garnier, J.-M. Probabilistic Distribution Coefficients (Kds) in Freshwater for Radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th—Implications for Uncertainty Analysis of Models Simulating the Transport of Radionuclides in Rivers. J. Environ. Radioact. 2009, 100, 785–794. [Google Scholar] [CrossRef]
- Deliège, J.; Everbecq, E.; Magermans, P.; Grard, A.; Bourouag, T.; Blockx, C. Pegase, An Integrated River/Basin Model Dedicated to Surface Water Quality Assessment: Application to Cocaine Environmental and Industrial Toxicology. Acta Clin. Belg. 2010, 65, 42–48. [Google Scholar] [CrossRef]
- RSDE—Campagnes. Analyses Des Résultats Sur Les Bassins Rhône-Méditerranée et Corse. Synthèse (Mars 2020). Agence de l’eau Rhône Méditerranée Corse. Available online: https://www.eaurmc.fr/jcms/pro_99324/fr/rsde-campagnes-2018-analyses-des-resultats-sur-les-bassins-rhone-mediterranee-et-corse (accessed on 20 June 2025).
- Le, N.D. Relations Entre La Variabilité de La Pollution Urbaine et Le Contexte Socio-Culturel Du Bassin de Collecte. Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2013. [Google Scholar]
- Ayrault, S.; Meybeck, M.; Mouchel, J.-M.; Gaspéri, J.; Lestel, L.; Lorgeoux, C.; Boust, D. Sedimentary Archives Reveal the Concealed History of Micropollutant Contamination in the Seine River Basin. In The Seine River Basin; Flipo, N., Labadie, P., Lestel, L., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2021; pp. 269–300. ISBN 978-3-030-54260-3. [Google Scholar] [CrossRef]
- Everbecq, E.; Bourouag, M.; Grard, A.; Deliège, J.-F.; Smitz, J. Uitvoeren van een Studie voor de Risico-Analyse 2015 in Het Scheldestroomgebied met Behulp van het PEGASE-Model van het Scheldestroomgebied: Derde Technisch-Wetenschappelijk Rapport-Zware metalen en Zwevende Stoffen Modellering; Vlaamse MilieuMaatschappij: Brussels, Belgium, 2008. [Google Scholar]
- Bass, J.A.B.; Blust, R.; Clarke, R.T.; Corbin, T.A.; Davison, W.; de Schamphelaere, K.A.C.; Janssen, C.R.; Kalis, E.J.J.; Kelly, M.G.; Kneebone, N.T.; et al. Environmental Quality Standards for Trace Metals in the Aquatic Environment. Environ. Agency 2008, 177, SC030194. [Google Scholar]
- Agence de l’Eau Seine-Normandie. Guide Pratique Des Micropolluants Dans Les Eaux Du Bassin Seine-Normandie; Agence de l’Eau Seine-Normandie: Courbevoie, France, 2018. [Google Scholar]
- INERIS. Données Technico-Économiques Sur Les Substances Chimiques En France: Cuivre, Composés et Alliages. DRC-14-136881-02236A. 2014. Available online: https://substances.ineris.fr/sites/default/files/archives/7440-50-8%20--%20Cuivre%20--%20FTE.pdf (accessed on 20 June 2025).
- Pertsemli, E.; Voutsa, D. Distribution of Heavy Metals in Lakes Doirani and Kerkini, Northern Greece. J. Hazard. Mater. 2007, 148, 529–537. [Google Scholar] [CrossRef]
- Liu, W.-C.; Chen, W.-B.; Chang, Y.-P. Modeling the Transport and Distribution of Lead in Tidal Keelung River Estuary. Environ. Earth Sci.-Environ. Earth Sci. 2012, 65, 39–47. [Google Scholar] [CrossRef]
- Cho, E.; Arhonditsis, G.B.; Khim, J.; Chung, S.; Heo, T.-Y. Modeling Metal-Sediment Interaction Processes: Parameter Sensitivity Assessment and Uncertainty Analysis. Environ. Model. Softw. 2016, 80, 159–174. [Google Scholar] [CrossRef]
- Chalov, S.; Moreido, V.; Sharapova, E.; Efimova, L.; Efimov, V.; Lychagin, M.; Kasimov, N. Hydrodynamic Controls of Particulate Metals Partitioning Along the Lower Selenga River—Main Tributary of The Lake Baikal. Water 2020, 12, 1345. [Google Scholar] [CrossRef]
- Dietrich, W.E. Settling Velocity of Natural Particles. Water Resour. Res. 1982, 18, 1615–1626. [Google Scholar] [CrossRef]
- Cheng, N.-S. Simplified Settling Velocity Formula for Sediment Particle. J. Hydraul. Eng.-ASCE 1997, 123, 149–152. [Google Scholar] [CrossRef]
- Vilmin, L.; Aissa-Grouz, N.; Garnier, J.; Billen, G.; Mouchel, J.-M.; Poulin, M.; Flipo, N. Impact of Hydro-Sedimentary Processes on the Dynamics of Soluble Reactive Phosphorus in the Seine River. Biogeochemistry 2015, 122, 229–251. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Wodrich, R.; Hesse, C. The Effects of Scaling and Model Complexity in Simulating the Transport of Inorganic Micropollutants in a Lowland River Reach. Water Qual. Res. J. Can. 2006, 41, 24–36. [Google Scholar] [CrossRef]
- El Ganaoui Mourlan, O.; Schaaff, E.; Boyer, P.; Amielh, M.; Anselmet, F.; Grenz, C. The Deposition and Erosion of Cohesive Sediments Determined by a Multi-Class Model. Estuar. Coast. Shelf Sci. 2004, 60, 457–475. [Google Scholar] [CrossRef]
Meuse Fluxes (2020) kg/y | Mosel Fluxes (2020) kg/y | |
---|---|---|
Cu-d | 576 | 826 |
Cu-t | 1000 | 1555 |
Zn-d | 1830 | 3091 |
Zn-t | 5980 | 8928 |
Input Parameter | Units | Value |
---|---|---|
Urban emission rates | mg/PE/d | |
Cu | 8.5 | |
Zn | 10.0 | |
Soil loads functions | mg/m3 | |
Diss. Cu | 1.0 | |
Part. Cu | 0.5 | |
Diss. Zn | 4.0 | |
Part. Zn | 2.5 | |
Settling velocities | m/s | |
Clay | 9.3 × 10−6 | |
Fine silt | 1.2 × 10−5 | |
Coarse silt | 2.3 × 10−5 |
Cu | Zn | Source |
---|---|---|
6.0 | 35.0 | [6] |
3.2 | 18.0 | [53] |
- | 7.45 | [52] |
8.5 | 46.0 | [55] |
8.5 | 10.0 | This study |
Settling Velocity Range (m/s) | Diameter (µm) | Source |
---|---|---|
1.0 × 10−6–1.0 × 10−3 | Very fine SS 1 | [10] |
1.0 × 10−5–1.0 × 10−3 | Fine SS 2 | |
9.0 × 10−6–2.0 × 10−3 | - | [61] |
1.0 × 10−4 | Silt < 30 µm | [34] |
Clay < 2 µm | ||
5.7 × 10−7 | 1 µm | [64] |
5.6 × 10−5 | 10 µm | |
1.4 × 10−3 | 50 µm | |
9.3 × 10−6 | Clay < 2 µm | This study |
1.2 × 10−5 | Fine silt < 16 µm | |
2.3 × 10−5 | Coarse silt < 64 µm |
1-Class Model (Mean Particle) | 4-Classes Model | |||||||
---|---|---|---|---|---|---|---|---|
Cu-d | Cu-t | Zn-d | Zn-t | Cu-d | Cu-t | Zn-d | Zn-t | |
P10 | 1.23 | 1.82 | 5.39 | 7.87 | 0.99 | 1.77 | 3.50 | 6.23 |
P50 | 1.55 | 2.02 | 6.62 | 8.78 | 1.21 | 2.04 | 4.21 | 8.90 |
P90 | 2.21 | 2.46 | 8.50 | 14.71 | 1.42 | 2.43 | 4.53 | 14.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grard, A.; Deliège, J.-F. Modelling Trace Metals in River and Sediment Compartments to Assess Water Quality. Water 2025, 17, 1876. https://doi.org/10.3390/w17131876
Grard A, Deliège J-F. Modelling Trace Metals in River and Sediment Compartments to Assess Water Quality. Water. 2025; 17(13):1876. https://doi.org/10.3390/w17131876
Chicago/Turabian StyleGrard, Aline, and Jean-François Deliège. 2025. "Modelling Trace Metals in River and Sediment Compartments to Assess Water Quality" Water 17, no. 13: 1876. https://doi.org/10.3390/w17131876
APA StyleGrard, A., & Deliège, J.-F. (2025). Modelling Trace Metals in River and Sediment Compartments to Assess Water Quality. Water, 17(13), 1876. https://doi.org/10.3390/w17131876