Advancements in Hydrological Modeling: The Role of bRNN-CNN-GRU in Predicting Dam Reservoir Inflow Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Overview of the Data Collection and Data Preprocessing
2.3. An Overview of DNN, GRU, and LSTM
2.4. GRU-LSTM and bRNN-CNN-GRU Hybrid Model
2.5. Model Training Scenarios
2.6. Model Evaluation Metrics
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khedre, A.M.; Ramadan, S.A.; Ashry, A.; Alaraby, M. Abundance and Risk Assessment of Microplastics in Water, Sediment, and Aquatic Insects of the Nile River. Chemosphere 2024, 353, 141557. [Google Scholar] [CrossRef] [PubMed]
- Połomski, M.; Wiatkowski, M. Impounding Reservoirs, Benefits and Risks: A Review of Environmental and Technical Aspects of Construction and Operation. Sustainability 2023, 15, 16020. [Google Scholar] [CrossRef]
- García-Feal, O.; González-Cao, J.; Fernández-Nóvoa, D.; Astray Dopazo, G.; Gómez-Gesteira, M. Comparison of machine learning techniques for reservoir outflow forecasting. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 2022, 1–27. [Google Scholar] [CrossRef]
- Babaei, M.; Moeini, R.; Ehsanzadeh, E. Artificial Neural Network and Support Vector Machine Models for Inflow Prediction of Dam Reservoir (case study: Zayandehroud Dam Reservoir). Water Resour. Manag. 2019, 33, 2203–2218. [Google Scholar] [CrossRef]
- Emadi, A.; Zamanzad-Ghavidel, S.; Boroomandnia, A.; Fazeli, S.; Sobhani, R. Modeling the Total Outflow of Reservoirs Using Wavelet-Developed Approaches: A Case Study of the Mahabad Dam Reservoir, Iran. Water Supply 2023, 23, 4645–4671. [Google Scholar] [CrossRef]
- Chang, Z.; Jiang, Z.; Wang, P. Inflow combination forecast of reservoir based on SWAT, XAJ model and Bayes model averaging method. Water Supply 2022, 22, 8440–8464. [Google Scholar] [CrossRef]
- Rahman, K.U.; Balkhair, K.S.; Almazroui, M.; Masood, A. Sub-Catchments Flow Losses Computation Using Muskingum–Cunge Routing Method and HEC-HMS GIS Based Techniques, Case Study of Wadi Al-Lith, Saudi Arabia. Model. Earth Syst. Environ. 2017, 3, 4. [Google Scholar] [CrossRef]
- Salvati, A.; Moghaddam Nia, A.; Salajegheh, A.; Shirzadi, A.; Shahabi, H.; Ahmadisharaf, E.; Clague, J.J. A Systematic Review of Muskingum Flood Routing Techniques. Hydrol. Sci. J. 2024, 69, 810–831. [Google Scholar] [CrossRef]
- Myronidis, D.; Ioannou, K.; Fotakis, D.; Dörflinger, G. Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus. Water Resour. Manag. 2018, 32, 1759–1776. [Google Scholar] [CrossRef]
- Nguyen, X.H. Combining Statistical Machine Learning Models with ARIMA for Water Level Forecasting: The Case of the Red River. Adv. Water Resour. 2020, 142, 103656. [Google Scholar]
- Wegayehu, E.B.; Muluneh, F.B. Multivariate streamflow simulation using hybrid deep learning models. Comput. Intell. Neurosci. 2021, 2021, 5172658. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Chen, Y.; Liu, J. Application of a new hybrid deep learning model that considers temporal and feature dependencies in rainfall–runoff simulation. Remote Sens. 2023, 15, 1395. [Google Scholar] [CrossRef]
- Guo, W.D.; Chen, W.B.; Chang, C.H. Prediction of hourly inflow for reservoirs at mountain catchments using residual error data and multiple-ahead correction technique. Hydrol. Res. 2023, 54, 1072–1093. [Google Scholar] [CrossRef]
- Moeini, R.; Nasiri, K.; Hosseini, S.H. Predicting the Water Inflow into the Dam Reservoir Using the Hybrid Intelligent GP-ANN-NSGA-II Method. Water Resour. Manag. 2024, 38, 4137–4159. [Google Scholar] [CrossRef]
- Neshaei, S.A.; Mehrdad, M.A.; Molatefat, S.H. Investigation of discharge and sedimentation rates of the sefid-roud river after de-siltation of the sefid-roud dam, Iran. WIT Trans. Ecol. Environ. 2017, 221, 1–12. [Google Scholar]
- García, S.; Luengo, J.; Herrera, F. Data Preprocessing in Data Mining; Springer International Publishing: Cham, Switzerland, 2015; Volume 72, pp. 59–139. [Google Scholar]
- Wang, S.; Celebi, M.E.; Zhang, Y.D.; Yu, X.; Lu, S.; Yao, X.; Tyukin, I. Advances in data preprocessing for biomedical data fusion: An overview of the methods, challenges, and prospects. Inf. Fusion 2021, 76, 376–421. [Google Scholar] [CrossRef]
- Peng, S.; Sun, S.; Yao, Y.D. A survey of modulation classification using deep learning: Signal representation and data preprocessing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7020–7038. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Bae, J.H.; Lee, G.; Yang, D.; Hong, J.; Lim, K.J. Development of multi-inflow prediction ensemble model based on auto-sklearn using combined approach: Case study of soyang river dam. Hydrology 2023, 10, 90. [Google Scholar] [CrossRef]
- Petropoulos, F.; Svetunkov, I. A simple combination of univariate models. Int. J. Forecast. 2020, 36, 110–115. [Google Scholar] [CrossRef]
- Abdel-Aal, R.E. Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks. Comput. Ind. Eng. 2008, 54, 903–917. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.V.T.; Nguyen, T.A.; Ly, H.B.; Tran, V.Q. Investigation of ANN Model Containing One Hidden Layer for Predicting Compressive Strength of Concrete with Blast-Furnace Slag and Fly Ash. Adv. Mater. Sci. Eng. 2021, 2021, 5540853. [Google Scholar] [CrossRef]
- Mittal, S. A Survey on Modeling and Improving Reliability of DNN Algorithms and Accelerators. J. Syst. Archit. 2020, 104, 101689. [Google Scholar] [CrossRef]
- Zhen, L.; Bărbulescu, A. Comparative Analysis of Convolutional Neural Network-Long Short-Term Memory, Sparrow Search Algorithm-Backpropagation Neural Network, and Particle Swarm Optimization-Extreme Learning Machine Models for the Water Discharge of the Buzău River, Romania. Water 2024, 16, 289. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Liu, K.; Wu, L. A parallel GRU recurrent network model and its application to multi-channel time-varying signal classification. IEEE Access 2019, 7, 118739–118748. [Google Scholar] [CrossRef]
- Choe, D.E.; Kim, H.C.; Kim, M.H. Sequence-Based Modeling of Deep Learning with LSTM and GRU Networks for Structural Damage Detection of Floating Offshore Wind Turbine Blades. Renew. Energy 2021, 174, 218–235. [Google Scholar] [CrossRef]
- Ge, K.; Zhao, J.Q.; Zhao, Y.Y. Gr-gnn: Gated recursion-based graph neural network algorithm. Mathematics 2022, 10, 1171. [Google Scholar] [CrossRef]
- Madaeni, F.; Chokmani, K.; Lhissou, R.; Gauthier, Y.; Tolszczuk-Leclerc, S. Convolutional neural network and long short-term memory models for ice-jam predictions. Cryosphere 2022, 16, 1447–1468. [Google Scholar] [CrossRef]
- Sunny, M.A.I.; Maswood, M.M.S.; Alharbi, A.G. Deep learning-based stock price prediction using LSTM and bi-directional LSTM model. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; pp. 87–92. [Google Scholar]
- Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of long short-term memory (LSTM) neural network for flood forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef]
- Nifa, K.; Boudhar, A.; Ouatiki, H.; Elyoussfi, H.; Bargam, B.; Chehbouni, A. Deep Learning Approach with LSTM for Daily Streamflow Prediction in a Semi-Arid Area: A Case Study of Oum Er-Rbia River Basin, Morocco. Water 2023, 15, 262. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Li, C.; Song, Y.; Qin, Y.; Chen, C. Network Intrusion Detection Model Based on CNN and GRU. Appl. Sci. 2022, 12, 4184. [Google Scholar] [CrossRef]
- Jafari, S.; Byun, Y.C. A CNN-GRU Approach to the Accurate Prediction of Batteries’ Remaining Useful Life from Charging Profiles. Computers 2023, 12, 219. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE). Geosci. Model Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Ćalasan, M.; Aleem, S.H.A.; Zobaa, A.F. On the Root Mean Square Error (RMSE) Calculation for Parameter Estimation of Photovoltaic Models: A Novel Exact Analytical Solution Based on Lambert W Function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Duc, L.; Sawada, Y. A Signal-Processing-Based Interpretation of the Nash–Sutcliffe Efficiency. Hydrol. Earth Syst. Sci. 2023, 27, 1827–1839. [Google Scholar] [CrossRef]
- Santos, A.A.; Nogales, F.J.; Ruiz, E. Comparing univariate and multivariate models to forecast portfolio value-at-risk. J. Financ. Econom. 2013, 11, 400–441. [Google Scholar] [CrossRef]
- Moodi, F.; Jahangard Rafsanjani, A.; Zarifzadeh, S.; Zare Chahooki, M.A. Advanced Stock Price Forecasting Using a 1D-CNN-GRU-LSTM Model. J. AI Data Min. 2024, 12, 393–408. [Google Scholar]
- Hadiyan, P.P.; Moeini, R.; Ehsanzadeh, E. Application of Static and Dynamic Artificial Neural Networks for Forecasting Inflow Discharges, Case Study: Sefidroud Dam Reservoir. Sustain. Comput. Inform. Syst. 2020, 27, 100401. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Zhang, Y.; Yao, Y.; Wang, R.; Dai, Y. Water-Level Prediction Analysis for the Three Gorges Reservoir Area Based on a Hybrid Model of LSTM and Its Variants. Water 2024, 16, 1227. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Z.; Wang, D.; Wu, J.; Chen, L. An Ensemble CNN-LSTM and GRU Adaptive Weighting Model Based Improved Sparrow Search Algorithm for Predicting Runoff Using Historical Meteorological and Runoff Data as Input. J. Hydrol. 2023, 625, 129977. [Google Scholar] [CrossRef]
- Zamani, M.G.; Nikoo, M.R.; Al-Rawas, G.; Nazari, R.; Rastad, D.; Gandomi, A.H. Hybrid WT–CNN–GRU-Based Model for the Estimation of Reservoir Water Quality Variables Considering Spatio-Temporal Features. J. Environ. Manag. 2024, 358, 120756. [Google Scholar] [CrossRef]
- Khorram, S.; Jehbez, N. Enhancing Accuracy of Forecasting Monthly Reservoir Inflow by Using Comparison of Three New Hybrid Models: A Case Study of the Droodzan Dam in Iran. Iran. J. Sci. Technol. Trans. Civil. Eng. 2024, 48, 3735–3759. [Google Scholar] [CrossRef]
- Shabbir, M.; Chand, S.; Iqbal, F.; Kisi, O. Novel Hybrid Approach for River Inflow Modeling: Case Study of the Indus River Basin, Pakistan. J. Hydrol. Eng. 2025, 30, 04025006. [Google Scholar] [CrossRef]
Statistical Criteria | Maximum | Average | Minimum | Standard Deviation | Number of Zero |
---|---|---|---|---|---|
Water Level (m) | 272.79 | 252.01 | 236.81 | 10.83 | 0 |
Evaporation (MCM) | 0.541 | 0.116 | 0 | 0.098 | 5 |
Min Temperature (°C) | 40.6 | 12.28 | −3 | 7.86 | 8 |
Max Temperature (°C) | 45.0 | 23.91 | 0 | 8.22 | 3 |
River Inflow (MCM) | 41.99 | 4.026 | 0.009 | 5.94 | 0 |
Type of Parameters | Values/Layer |
---|---|
Network Type | Feed-forward propagation |
Data Division | Train (80%) Test (20%) |
Number of Hidden Layers (Neurons) | 10–55 |
Batch Size | 34–210 |
learning Function | 0.01–0.046 |
Activation Function | Ramp, Tanh, Cosh |
Normalization Function | Batch Normalization |
Training Function | Adam |
Scenario | Input | Model | Output |
---|---|---|---|
Scenario (1) | Water Level, Evaporation, Tmin, Tmax | DNN, GRU-LSTM, bRNN-CNN-GRU | Reservoir Inflow |
Scenario (2) | First Delay, Second Delay, Third Delay | DNN, CNN-LSTM, bRNN-CNN-GRU | Reservoir Inflow |
Scenario | Model | r | RMSE (MCM) | NSE |
---|---|---|---|---|
Scenario (1) | DNN | 0.7803 | 2.0176 | 0.5785 |
GRU-LSTM | 0.8276 | 1.9853 | 0.5984 | |
bRNN-CNN-GRU | 0.8706 | 1.7217 | 0.7323 | |
Scenario (2) | DNN | 0.9485 | 1.3354 | 0.8132 |
GRU-LSTM | 0.9677 | 0.8584 | 0.9233 | |
bRNN-CNN-GRU | 0.9734 | 0.7099 | 0.9474 |
Scenario | Model | Maximum | Average | Minimum | Standard Deviation |
---|---|---|---|---|---|
Actual | 17.194 | 2.762 | 0.043 | 3.095 | |
Scenario (1) | DNN | 8.343 | 3.203 | 0.183 | 2.302 |
GRU-LSTM | 13.376 | 2.497 | 0.026 | 2.766 | |
bRNN-CNN-GRU | 16.391 | 2.631 | 0.450 | 2.512 | |
Scenario (2) | DNN | 15.508 | 3.629 | 1.772 | 2.758 |
GRU-LSTM | 14.517 | 2.757 | 0.770 | 2.620 | |
bRNN-CNN-GRU | 16.186 | 2.795 | 0.195 | 2.971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, E.; Taghi Sattari, M.; Milewski, A.; Ibrahim, O.R. Advancements in Hydrological Modeling: The Role of bRNN-CNN-GRU in Predicting Dam Reservoir Inflow Patterns. Water 2025, 17, 1660. https://doi.org/10.3390/w17111660
Abdi E, Taghi Sattari M, Milewski A, Ibrahim OR. Advancements in Hydrological Modeling: The Role of bRNN-CNN-GRU in Predicting Dam Reservoir Inflow Patterns. Water. 2025; 17(11):1660. https://doi.org/10.3390/w17111660
Chicago/Turabian StyleAbdi, Erfan, Mohammad Taghi Sattari, Adam Milewski, and Osama Ragab Ibrahim. 2025. "Advancements in Hydrological Modeling: The Role of bRNN-CNN-GRU in Predicting Dam Reservoir Inflow Patterns" Water 17, no. 11: 1660. https://doi.org/10.3390/w17111660
APA StyleAbdi, E., Taghi Sattari, M., Milewski, A., & Ibrahim, O. R. (2025). Advancements in Hydrological Modeling: The Role of bRNN-CNN-GRU in Predicting Dam Reservoir Inflow Patterns. Water, 17(11), 1660. https://doi.org/10.3390/w17111660