An Overview of Machine-Learning Methods for Soil Moisture Estimation
Abstract
:1. Introduction
2. Artificial Intelligence-Based Models for Soil Moisture Prediction
2.1. Artificial Neural Network Models
2.2. Deep Learning
2.3. Kernel Models
2.4. Hybrid Models
3. Discussion
4. Conclusions and Future Directions
- Incorporation of Explainable AI (XAI): Future SM modeling efforts should integrate XAI techniques to enhance transparency, interpretability, and stakeholder trust, particularly in operational and policy-making contexts.
- Model Transferability and Scalability: Research should focus on evaluating and improving the transferability of models across diverse climatic regions and soil types.
- Hybrid Physical-AI Approaches: Combining physically based models with data-driven AI techniques can bridge the gap between accuracy and interpretability, leading to more reliable predictions.
- Integration of Satellite and Remote Sensing Data: Leveraging high-resolution satellite data can improve spatial and temporal prediction accuracy, particularly when used with deep-learning models capable of capturing complex patterns.
- Depth-Specific Modeling: Further investigation is needed into the role of soil properties at deeper layers as climate variables become less informative with increasing depth.
Author Contributions
Funding
Conflicts of Interest
References
- Taheri, M.; Bigdeli, M.; Imanian, H.; Mohammadian, A. An Overview of Evapotranspiration Estimation Models Utilizing Artificial Intelligence. Water 2025, 17, 1384. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of Strong Coupling Between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Anguela, T.P.; Zribi, M.; Hasenauer, S.; Habets, F.; Loumagne, C. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France). Hydrol. Earth Syst. Sci. 2008, 12, 1415–1424. [Google Scholar] [CrossRef]
- Verhoest, N.E.C.; Lievens, H.; Wagner, W.; Álvarez-Mozos, J.; Moran, M.S.; Mattia, F. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar. Sensors 2008, 8, 4213–4248. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Heathman, G.C.; Starks, P.J.; Ahuja, L.R.; Jackson, T.J. Assimilation of surface soil moisture to estimate profile soil water content. J. Hydrol. 2003, 279, 1–17. [Google Scholar] [CrossRef]
- Gao, X.; Wu, P.; Zhao, X.; Zhang, B.; Wang, J.; Shi, Y. Estimating the spatial means and variability of root-zone soil moisture in gullies using measurements from nearby uplands. J. Hydrol. 2013, 476, 28–41. [Google Scholar] [CrossRef]
- Han, E.; Merwade, V.; Heathman, G.C. Application of data assimilation with the Root Zone Water Quality Model for soil moisture profile estimation in the upper Cedar Creek, Indiana. Hydrol. Process. 2012, 26, 1707–1719. [Google Scholar] [CrossRef]
- Bonan, G. Ecological Climatology: Concepts and Applications; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Verma, P.; Yeates, J.; Daly, E. A stochastic model describing the impact of daily rainfall depth distribution on the soil water balance. Adv. Water Resour. 2011, 34, 1039–1048. [Google Scholar] [CrossRef]
- Ahmed, A.; Zhang, Y.; Nichols, S. Review and evaluation of remote sensing methods for soil-moisture estimation. SPIE Rev. 2011, 2, 028001. [Google Scholar]
- Prakash, S.; Sahu, S.S. Soil moisture prediction using shallow neural network. Int. J. Adv. Res. Eng. Technol. 2020, 11, 426–435. [Google Scholar]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef]
- Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition. Geoderma 2018, 330, 136–161. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 2013, 476, 460–489. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Ochsner, E.; Cosh, M.H.; Cuenca, R.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.G.; Zreda, M. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
- Ding, X.-H.; Luo, B.; Zhou, H.-T.; Chen, Y.-H. Generalized solutions for advection–dispersion transport equations subject to time- and space-dependent internal and boundary sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Lakhankar, T.; Jones, A.S.; Combs, C.L.; Sengupta, M.; Haar, T.H.V.; Khanbilvardi, R. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method. Sensors 2010, 10, 913–932. [Google Scholar] [CrossRef]
- Wetzel, P.J.; Woodward, R.H. Soil Moisture Estimation Using GOES-VISSR Infrared Data: A Case Study with a Simple Statistical Method. J. Clim. Appl. Meteorol. 1987, 26, 107–117. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef]
- Jiang, H.; Cotton, W.R. Soil moisture estimation using an artificial neural network: A feasibility study. Can. J. Remote Sens. 2004, 30, 827–839. [Google Scholar] [CrossRef]
- Jain, S.K.; Mani, P.; Prakash, P.; Singh, V.P.; Tullos, D.; Kumar, S.; Agarwal, S.P.; Dimri, A.P. A Brief review of flood forecasting techniques and their applications. Int. J. River Basin Manag. 2018, 16, 329–344. [Google Scholar] [CrossRef]
- Dawson, C.W.; Abrahart, R.J.; Shamseldin, A.Y.; Wilby, R.L. Flood estimation at ungauged sites using artificial neural networks. J. Hydrol. 2006, 319, 391–409. [Google Scholar] [CrossRef]
- Breen, K.H.; James, S.C.; White, J.D.; Allen, P.M.; Arnold, J.G. A Hybrid Artificial Neural Network to Estimate Soil Moisture Using SWAT+ and SMAP Data. Mach. Learn. Knowl. Extr. 2020, 2, 283–306. [Google Scholar] [CrossRef]
- Daw, A.; Karpatne, A.; Watkins, W.; Read, J.; Kumar, V. Physics-guided neural networks (pgnn): An application in lake temperature modeling. arXiv 2017, arXiv:1710.11431. [Google Scholar]
- Bergen, K.J.; Johnson, P.A.; de Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef]
- Noé, F.; Olsson, S.; Köhler, J.; Wu, H. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science 2019, 365, eaaw1147. [Google Scholar] [CrossRef]
- Riley, P. Three pitfalls to avoid in machine learning. Nature 2019, 572, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Walczak, S.; Cerpa, N. Artificial Neural Networks, Encyclopedia of Physical Science and Technology; Academic Press: Cambridge, MA, USA, 2003; pp. 631–645. [Google Scholar]
- Malekian, A.; Chitsaz, N. Concepts, procedures, and applications of artificial neural network models in streamflow forecasting. In Advances in Streamflow Forecasting; Elsevier: Amsterdam, The Netherlands, 2021; pp. 115–147. [Google Scholar]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Nugroho, A.S. Information Analysis Using Softcomputing: The Applications to Character Recognition, Meteorological Prediction, and Bioinformatics Problems. Ph.D. Thesis, Nagoya Institute of Technology, Nagoya, Japan, 2003. [Google Scholar]
- Kolassa, J.; Reichle, R.H.; Liu, Q.; Alemohammad, S.H.; Gentine, P.; Aida, K.; Asanuma, J.; Bircher, S.; Caldwell, T.; Colliander, A.; et al. Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens. Environ. 2018, 204, 43–59. [Google Scholar] [CrossRef]
- Satalino, G.; Mattia, F.; Davidson, M.; Le Toan, T.; Pasquariello, G.; Borgeaud, M. On current limits of soil moisture retrieval from ERS-SAR data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2438–2447. [Google Scholar] [CrossRef]
- Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [Google Scholar] [CrossRef]
- Arif, C.; Mizoguchi, M.; Setiawan, B.I. Estimation of soil moisture in paddy field using artificial neural networks. arXiv 2013, arXiv:1303.1868. [Google Scholar] [CrossRef]
- Elshorbagy, A.; Parasuraman, K. On the relevance of using artificial neural networks for estimating soil moisture content. J. Hydrol. 2008, 362, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Mei, L.; Ooi, S.K. Prediction of soil moisture based on extreme learning machine for an apple orchard. In Proceedings of the 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, Shenzhen, China, 27–29 November 2014; IEEE: New York, NY, USA, 2014; pp. 400–404. [Google Scholar]
- Li, P.; Zha, Y.; Shi, L.; Tso, C.-H.M.; Zhang, Y.; Zeng, W. Comparison of the use of a physical-based model with data assimilation and machine learning methods for simulating soil water dynamics. J. Hydrol. 2020, 584, 124692. [Google Scholar] [CrossRef]
- Paul, S.; Satwinder, S. Soil Moisture Prediction Using Machine Learning Techniques. In Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems, New York, NY, USA, 13–15 November 2020; pp. 1–7. [Google Scholar]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Baghdadi, N.; Cresson, R.; Hajj, M.E.; Ludwig, R.; Jeunesse, I.L. Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks. Hydrol. Earth Syst. Sci. 2012, 16, 1607–1621. [Google Scholar] [CrossRef]
- Baghdadi, N.; Gaultier, S.; King, C. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Can. J. Remote Sens. 2002, 28, 701–711. [Google Scholar] [CrossRef]
- Singh, A.; Gaurav, K. Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images. Sci. Rep. 2023, 13, 2251. [Google Scholar] [CrossRef]
- Nadeem, A.A.; Zha, Y.; Shi, L.; Ali, S.; Wang, X.; Zafar, Z.; Afzal, Z.; Tariq, M.A.U.R. Spatial Downscaling and Gap-Filling of SMAP Soil Moisture to High Resolution Using MODIS Surface Variables and Machine Learning Approaches over ShanDian River Basin, China. Remote Sens. 2023, 15, 812. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Z.; Pu, Q.; Lou, F.; Gao, J.; Tan, S.; Gao, C.; Shen, X. Estimation of soil water content based on simulated multi-spectral broadband reflectance and machine learning. Rev. Bras. Eng. Agríc. Ambient. 2025, 29, e287460. [Google Scholar] [CrossRef]
- Vahidi, M.; Shafian, S.; Frame, W.H. Precision Soil Moisture Monitoring Through Drone-Based Hyperspectral Imaging and PCA-Driven Machine Learning. Sensors 2025, 25, 782. [Google Scholar] [CrossRef]
- Prasad, R.; Kumar, R.; Singh, D. A radial basis function approach to retrieve soil moisture and crop variables from X-band scatterometer observations. Prog. Electromagn. Res. B 2009, 12, 201–217. [Google Scholar] [CrossRef]
- Xie, X.M.; Xu, J.W.; Zhao, J.F.; Liu, S.; Wang, P. Soil moisture inversion using AMSR-E remote sensing data: An artificial neural network approach. Appl. Mech. Mater. 2014, 501, 2073–2076. [Google Scholar]
- Pasolli, L.; Notarnicola, C.; Bruzzone, L. Estimating soil moisture with the support vector regression technique. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1080–1084. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3274–3284. [Google Scholar] [CrossRef]
- Lakhankar, T.; Ghedira, H.; Temimi, M.; Sengupta, M.; Khanbilvardi, R.; Blake, R. Non-parametric methods for soil moisture retrieval from satellite remote sensing data. Remote Sens. 2009, 1, 3–21. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application. Water Resour. Manag. 2013, 27, 3127–3144. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Kolassa, J.; Prigent, C.; Aires, F.; Gentine, P. Global downscaling of remotely sensed soil moisture using neural networks. Hydrol. Earth Syst. Sci. 2018, 22, 5341–5356. [Google Scholar] [CrossRef]
- Senanayake, I.; Yeo, I.-Y.; Walker, J.; Willgoose, G. Estimating catchment scale soil moisture at a high spatial resolution: Integrating remote sensing and machine learning. Sci. Total. Environ. 2021, 776, 145924. [Google Scholar] [CrossRef]
- Gill, M.K.; Asefa, T.; Kemblowski, M.W.; McKee, M. Soil Moisture Prediction Using Support Vector Machines. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 1033–1046. [Google Scholar] [CrossRef]
- Hecht-Nielsen, R. Applications of counterpropagation networks. Neural Netw. 1988, 1, 131–139. [Google Scholar] [CrossRef]
- Gu, Z.; Zhu, T.; Jiao, X.; Xu, J.; Qi, Z. Neural network soil moisture model for irrigation scheduling. Comput. Electron. Agric. 2021, 180, 105801. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Root-zone soil moisture estimation using data-driven methods. Water Resour. Res. 2014, 50, 2946–2962. [Google Scholar] [CrossRef]
- Souissi, R.; Al Bitar, A.; Zribi, M. Accuracy and transferability of artificial neural networks in predicting in situ root-zone soil moisture for various regions across the globe. Water 2020, 12, 3109. [Google Scholar] [CrossRef]
- Souissi, R.; Zribi, M.; Corbari, C.; Mancini, M.; Muddu, S.; Tomer, S.K.; Upadhyaya, D.B.; Al Bitar, A. Integrating process-related information into an artificial neural network for root-zone soil moisture prediction. Hydrol. Earth Syst. Sci. 2022, 26, 3263–3297. [Google Scholar] [CrossRef]
- Pan, X.; Kornelsen, K.C.; Coulibaly, P. Estimating root zone soil moisture at continental scale using neural networks. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 220–237. [Google Scholar] [CrossRef]
- Xu, J.W.; Zhao, J.F.; Zhang, W.C.; Xu, X.X. A novel soil moisture predicting method based on artificial neural network and Xinanjiang model. Adv. Mater. Res. 2010, 121, 1028–1032. [Google Scholar]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. Improving soil moisture prediction using a novel encoder-decoder model with residual learning. Comput. Electron. Agric. 2022, 195, 106816. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, Canada, 7–12 December 2015. [Google Scholar]
- Sobayo, R.; Wu, H.-H.; Ray, R.; Qian, L. Integration of convolutional neural network and thermal images into soil moisture estimation. In Proceedings of the 2018 1st International Conference on Data Intelligence and Security (ICDIS), South Padre Island, TX, USA, 8–10 April 2018; IEEE: New York, NY, USA, 2018; pp. 207–210. [Google Scholar]
- Tseng, D.; Wang, D.; Chen, C.; Miller, L.; Song, W.; Viers, J.; Vougioukas, S.; Carpin, S.; Ojea, J.A.; Goldberg, K. Towards automating precision irrigation: Deep learning to infer local soil moisture conditions from synthetic aerial agricultural images. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; IEEE: New York, NY, USA, 2018; pp. 284–291. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the Computer Vision–ECCV 2016, 14th European Conference Part IV, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 630–645. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yu, J.; Tang, S.; Zhangzhong, L.; Zheng, W.; Wang, L.; Wong, A.; Xu, L. A Deep Learning Approach for Multi-Depth Soil Water Content Prediction in Summer Maize Growth Period. IEEE Access 2020, 8, 199097–199110. [Google Scholar] [CrossRef]
- Mao, H.; Kathuria, D.; Duffield, N.; Mohanty, B.P. Gap filling of high-resolution soil moisture for SMAP/sentinel-1: A two-layer machine learning-based framework. Water Resour. Res. 2019, 55, 6986–7009. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors 2018, 18, 3408. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Pan, M.; Shen, C. The Value of SMAP for Long-Term Soil Moisture Estimation with the Help of Deep Learning. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2221–2233. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C. Near-Real-Time Forecast of Satellite-Based Soil Moisture Using Long Short-Term Memory with an Adaptive Data Integration Kernel. J. Hydrometeorol. 2020, 21, 399–413. [Google Scholar] [CrossRef]
- Connor, J.; Martin, R.; Atlas, L. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 1994, 5, 240–254. [Google Scholar] [CrossRef]
- Woo, W.-C.; Wong, W.-K. Operational Application of Optical Flow Techniques to Radar-Based Rainfall Nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef]
- Srivastava, N.; Mansimov, E.; Salakhudinov, R. Unsupervised learning of video representations using LSTMs. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; PMLR: New York, NY, USA, 2015; pp. 843–852. [Google Scholar]
- Li, Q.; Wang, Z.; Shangguan, W.; Li, L.; Yao, Y.; Yu, F. Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning. J. Hydrol. 2021, 600, 126698. [Google Scholar] [CrossRef]
- ElSaadani, M.; Habib, E.; Abdelhameed, A.M.; Bayoumi, M. Assessment of a Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and Filling the Gaps in Between Soil Moisture Observations. Front. Artif. Intell. 2021, 4, 636234. [Google Scholar] [CrossRef]
- Diouf, D.; Mejia, C.; Seck, D. Soil Moisture Prediction Model from ERA5-Land Parameters using a Deep Neural Networks. In Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020), Budapest, Hungary, 2–4 November 2020; pp. 389–395. [Google Scholar]
- Lakra, D.; Pipil, S.; Srivastava, P.K.; Singh, S.K.; Gupta, M.; Prasad, R. Soil moisture retrieval over agricultural region through machine learning and sentinel 1 observations. Front. Remote Sens. 2025, 5, 1513620. [Google Scholar] [CrossRef]
- Nijaguna, G.S.; Manjunath, D.R.; Abouhawwash, M.; Askar, S.S.; Basha, D.K.; Sengupta, J. Deep Learning-Based Improved WCM Technique for Soil Moisture Retrieval with Satellite Images. Remote Sens. 2023, 15, 2005. [Google Scholar] [CrossRef]
- Farhangmehr, V.; Imanian, H.; Mohammadian, A.; Cobo, J.H.; Shirkhani, H.; Payeur, P. A spatiotemporal CNN-LSTM deep learning model for predicting soil temperature in diverse large-scale regional climates. Sci. Total Environ. 2025, 968, 178901. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Jia, Y.; Jin, S.; Savi, P.; Yan, Q.; Li, W. Modeling and Theoretical Analysis of GNSS-R Soil Moisture Retrieval Based on the Random Forest and Support Vector Machine Learning Approach. Remote Sens. 2020, 12, 3679. [Google Scholar] [CrossRef]
- Khalil, A.; Gill, M.; McKee, M. New applications for information fusion and soil moisture forecasting. In Proceedings of the 2005 7th International Conference on Information Fusion, Philadelphia, PA, USA, 25–28 July 2005; IEEE: New York, NY, USA, 2005. [Google Scholar]
- Lamorski, K.; Pastuszka, T.; Krzyszczak, J.; Sławiński, C.; Witkowska-Walczak, B. Soil Water Dynamic Modeling Using the Physical and Support Vector Machine Methods. Vadose Zone J. 2013, 12, vzj2013.05.0085. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Matei, O.; Rusu, T.; Petrovan, A.; Mihuţ, G. A Data Mining System for Real Time Soil Moisture Prediction. Procedia Eng. 2017, 181, 837–844. [Google Scholar] [CrossRef]
- Hong, Z.; Kalbarczyk, Z.; Iyer, R.K. A data-driven approach to soil moisture collection and prediction. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Wu, W.; Wang, X.; Xie, D.; Liu, H. Soil Water content forecasting by support vector machine in purple hilly region. In Computer and Computing Technologies in Agriculture, Proceedings of the First IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture (CCTA 2007), Wuyishan, China, 18–20 August 2007; Springer: Berlin/Heidelberg, Germany, 2008; Volume I, pp. 223–230. [Google Scholar]
- Okujeni, A.; Van der Linden, S.; Jakimow, B.; Rabe, A.; Verrelst, J.; Hostert, P. A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover. Remote Sens. 2014, 6, 6324–6346. [Google Scholar] [CrossRef]
- Achieng, K.O. Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Comput. Geosci. 2019, 133, 104320. [Google Scholar] [CrossRef]
- Acharya, U.; Daigh, A.L.M.; Oduor, P.G. Machine learning for predicting field soil moisture using soil. crop, and nearby weather station data in the Red River Valley of the North. Soil Syst. 2021, 5, 57. [Google Scholar] [CrossRef]
- Prakash, S.; Sharma, A.; Sahu, S.S. Soil moisture prediction using machine learning. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Shahriari, M.A.; Aghighi, H.; Azadbakht, M.; Ashourloo, D.; Matkan, A.A.; Brakhasi, F.; Walker, J.P. Soil moisture estimation using combined SAR and optical imagery: Application of seasonal machine learning algorithms. Adv. Space Res. 2025, 75, 6207–6221. [Google Scholar] [CrossRef]
- Jiaxin, Q.; Jie, Y.; Weidong, S.; Lingli, Z.; Lei, S.; Chaoya, D. Evaluation and improvement of temporal robustness and transfer performance of surface soil moisture estimated by machine learning regression algorithms. Comput. Electron. Agric. 2024, 217, 108518. [Google Scholar] [CrossRef]
- Asadollah, S.B.H.S.; Sharafati, A.; Saeedi, M.; Shahid, S. Estimation of soil moisture from remote sensing products using an ensemble machine learning model: A case study of Lake Urmia Basin, Iran. Earth Sci. Inform. 2024, 17, 385–400. [Google Scholar] [CrossRef]
- Parewai, I.; Köppen, M. A Digital Twin Approach for Soil Moisture Measurement with Physically Based Rendering Simulations and Machine Learning. Electronics 2025, 14, 395. [Google Scholar] [CrossRef]
- Zaman, B.; McKee, M.; Neale, C.M.U. Fusion of remotely sensed data for soil moisture estimation using relevance vector and support vector machines. Int. J. Remote Sens. 2012, 33, 6516–6552. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. A comparison of numerical and machine-learning modeling of soil water content with limited input data. J. Hydrol. 2016, 543, 892–909. [Google Scholar] [CrossRef]
- Tsang, S.; Jim, C. Applying artificial intelligence modeling to optimize green roof irrigation. Energy Build. 2016, 127, 360–369. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Deo, R.C.; Raj, N.; Ghahramani, A.; Feng, Q.; Yin, Z.; Yang, L. Deep learning forecasts of soil moisture: Convolutional neural network and gated recurrent unit models coupled with satellite-derived MODIS, observations and synoptic-scale climate index data. Remote Sens. 2021, 13, 554. [Google Scholar] [CrossRef]
- Liu, H.; Xie, D.; Wu, W. Soil water content forecasting by ANN and SVM hybrid architecture. Environ. Monit. Assess. 2008, 143, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.; Fung, A.; Manry, M. A robust statistical-based estimator for soil moisture retrieval from radar measurements. IEEE Trans. Geosci. Remote Sens. 1997, 35, 57–67. [Google Scholar] [CrossRef]
- Jin, Y.; Ge, Y.; Liu, Y.; Chen, Y.; Zhang, H.; Heuvelink, G.B.M. A Machine Learning-Based Geostatistical Downscaling Method for Coarse-Resolution Soil Moisture Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1025–1037. [Google Scholar] [CrossRef]
- Ronghua, J.; Shulei, Z.; Lihua, Z.; Qiuxia, L.; Saeed, I.A. Prediction of soil moisture with complex-valued neural network. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; IEEE: New York, NY, USA, 2017; pp. 1231–1236. [Google Scholar]
- Pasolli, L.; Notarnicola, C.; Bruzzone, L.; Bertoldi, G.; Della Chiesa, S.; Niedrist, G.; Tappeiner, U.; Zebisch, M. Polarimetric RADARSAT-2 imagery for soil moisture retrieval in alpine areas. Can. J. Remote Sens. 2011, 37, 535–547. [Google Scholar] [CrossRef]
- Huang, C.; Li, L.; Ren, S.; Zhou, Z. Research of soil moisture content forecast model based on genetic algorithm BP neural network. In Computer and Computing Technologies in Agriculture IV Selected Papers, Part II, Proceedings of the 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, 22–25 October 2010; Springer: Berlin/Heidelberg, Germany, 2011; pp. 309–316. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Cheng, Q.; Zhang, H.; Gong, W. A hybrid model for soil moisture prediction by using artificial neural networks. Rev. Fac. Ing. UCV 2017, 32, 265–271. [Google Scholar]
- Xiaoxia, Y.; Chengming, Z. A soil moisture prediction algorithm base on improved BP. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Maroufpoor, S.; Maroufpoor, E.; Bozorg-Haddad, O.; Shiri, J.; Yaseen, Z.M. Soil moisture simulation using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm. J. Hydrol. 2019, 575, 544–556. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating soil moisture content under maize coverage using UAV multimodal data by machine learning algorithms. J. Hydrol. 2023, 617, 129086. [Google Scholar] [CrossRef]
- Han, Q.; Zeng, Y.; Zhang, L.; Wang, C.; Prikaziuk, E.; Niu, Z.; Su, B. Global long term daily 1 km surface soil moisture dataset with physics informed machine learning. Sci. Data 2023, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Ming, W.; Luo, X.; Yang, L.; Li, M.; Yang, P.; Ji, X.; Li, Y. Leveraging multisource data for accurate agricultural drought monitoring: A hybrid deep learning model. Agric. Water Manag. 2024, 293, 108692. [Google Scholar] [CrossRef]
- Blanka-Végi, V.; Tobak, Z.; Sipos, G.; Barta, K.; Szabó, B.; van Leeuwen, B. Estimation of the Spatiotemporal Variability of Surface soil Moisture Using Machine Learning Methods Integrating Satellite and Ground-based Soil Moisture and Environmental Data. Water Resour. Manag. 2025, 39, 2317–2334. [Google Scholar] [CrossRef]
- Imanian, H.; Shirkhani, H.; Mohammadian, A.; Cobo, J.H.; Payeur, P. Spatial Interpolation of Soil Temperature and Water Content in the Land-Water Interface Using Artificial Intelligence. Water 2023, 15, 473. [Google Scholar] [CrossRef]
- Bakhshian, S.; Zarepakzad, N.; Nevermann, H.; Hohenegger, C.; Or, D.; Shokri, N. Field-scale soil moisture dynamics predicted by deep learning. Adv. Water Resour. 2025, 201, 104976. [Google Scholar] [CrossRef]
- Celik, M.F.; Isik, M.S.; Yuzugullu, O.; Fajraoui, N.; Erten, E. Soil moisture prediction from remote sensing images coupled with climate, soil texture and topography via deep learning. Remote Sens. 2022, 14, 5584. [Google Scholar] [CrossRef]
- Hrast Essenfelder, A.; Toreti, A.; Seguini, L. Expert-driven explainable artificial intelligence models can detect multiple climate hazards relevant for agriculture. Commun. Earth Environ. 2025, 6, 207. [Google Scholar] [CrossRef]
- Abekoon, T.; Sajindra, H.; Rathnayake, N.; Ekanayake, I.U.; Jayakody, A.; Rathnayake, U. A novel application with explainable machine learning (SHAP and LIME) to predict soil N, P, and K nutrient content in cabbage cultivation. Smart Agric. Technol. 2025, 11, 100879. [Google Scholar] [CrossRef]
Research | Models | Input | Output | Performance Criteria | Year of Study |
---|---|---|---|---|---|
Satalino et al. [40] | IEM, NNs | Relative dielectric constant, roughness | SM | Root Mean Square (RMS) | 2002 |
Baghdadi et al. [49] | MLP | Surface roughness, SM, backscattering coefficients | SM, surface roughness | RMSE, MAE, Bias, Index of Agreement (IoA) | 2002 |
Jiang and Cotton [27] | ANN | Precipitation, NDVI, infrared skin temperature, SM | RZSM | R, RMSE, Bias | 2004 |
Gill et al. [62] | ANN, SVM | Air temperature, relative humidity, average solar radiation, soil temperature, soil temperature | SM | RMSE, MAE, R | 2006 |
Notarnicola et al. [41] | ANN | Backscattering coefficients and emissivity | SM, dielectric constant | Mean Square Error (MSE), Mean Absolute Deviation (MAD), Mean Relative Error (MRE) | 2008 |
Elshorbagy and Parasuraman [43] | ANN | Air temperature, soil temperature, net radiation, ground temperature, precipitation | SM dynamics | RMSE, Mean Absolute Relative Error (MARE), R | 2008 |
Paloscia et al. [57] | FFNN, Bayesian method, Nelder–Mead simplex algorithm | SM, surface roughness, vegetation parameters (plant height, density, leaf number, leaf dimension, fresh biomass), backscattering coefficients | SM, surface roughness, vegetation parameters | R2, Mean Error (ME) | 2008 |
Prasad et al. [54] | Conventional RBFNN and generalized regression neural network (GRNN) | Backscattering coefficients | SM, biomass content, LAI | Time series analysis | 2009 |
Lakhankar et al. [58] | ANN, fuzzy logic | NDVI, Vegetation Water Content (VWC), Vegetation Optical Depth (VOD), backscatter, soil texture, SM | SM | RMSE, R | 2009 |
Xu et al. [69] | ANN combined with Xinanjiang model | Precipitation, pan evaporation | SM | Time series analysis | 2010 |
Pasolli et al. [56] | MLP, SVR | Passive and active microwave measurements | SM | MSE, MRE, R2 | 2011 |
Baghdadi et al. [48] | MLP | Surface height, SM, backscattering coefficients | SSM, surface roughness | RMSE, Bias | 2012 |
Arif et al. [42] | ANN | Evapotranspiration, precipitation | SM | R2 | 2013 |
Paloscia et al. [47] | ANN | Backscattering coefficients, incidence angle, NDVI | SM | Timeliness, RMSE | 2013 |
Srivastava et al. [59] | ANN, SVM, RVM, GLM | Evapotranspiration, land surface temperature, SM, rain gauge and river flow data | Land surface temperature, SM | R2, Bias, RMSE | 2013 |
Liu et al. [44] | ELM, SVM | Rainfall, air temperature, relative humidity, wind speed, solar radiation, SM | SM | MAE | 2014 |
Kornelsen and Coulibaly [65] | ANN | SM, temperature, relative humidity, solar radiation, wind speed, evapotranspiration, antecedent precipitation index, silt and clay content, leaf area index | RZSM | RMSE, R | 2014 |
Xie et al. [55] | BPNN | Brightness temperature at different polarizations | SSM | RMSE, R | 2014 |
Hassan-Esfahani [26] | ANN | Optical, NIR, and thermal imagery, NDVI, Vegetation Condition Index (VCI), Enhanced Vegetation Index (EVI), Vegetation Health Index (VHI), field capacity | SSM | RMSE, MAE, R, R2 | 2015 |
Pan et al. [68] | ANN | Soil texture, SSM, and the cumulative values of air temperature, surface soil temperature, rainfall, and snowfall | RZSM | RMSE, ubRMSE, R | 2017 |
Alemohammad et al. [60] | ANN | SMAP soil moisture observations, NDVI, topographic index or topographic wetness index, SM | SSM | R2, unbiased Root Mean Square Difference (ubRMSD), Coefficient of Variation (CV) | 2018 |
Li et al. [45] | ANN | SM, potential evapotranspiration, precipitation | SM | RMSE, NSE, SD | 2020 |
Souissi et al. [66] | ANN | Evapotranspiration, soil texture, SSM, air temperature, surface soil temperature, rainfall, snowfall | RZSM | RMSE | 2020 |
Senanayake et al. [61] | RT, ANN, GPR | LST, clay content, NDVI | SSM | RMSE, unbiased Root Mean Square Error (ubRMSE) | 2021 |
Gu et al. [64] | ANN | Climatic data, rooting depth, SM | RZSM | R2, Normalized Mean Bias Error (NMBE), Normalized Mean Absolute Error (NMAE), Normalized Root Mean Square Error (NRMSE) | 2021 |
Souissi et al. [67] | ANN | Vegetation stress, water storage change, SSM, NDVI | RZSM | RMSE, R | 2022 |
Singh et al. [50] | ANN, Generalised Regression Neural Network (GRNN), Radial Basis Network (RBN), Exact RBN (ERBN), Gaussian Process Regression (GPR), SVR, RF, Boosting Ensemble Learning (Boosting EL), RNN, Binary Decision Tree (BDT), and Automated Machine Learning (AutoML) | Rainfall, air temperature, relative humidity, spectral data, soil moisture | SSM | R, RMSE, Bias | 2023 |
Nadeem et al. [51] | ANN, RF | Soil moisture, soil temperature, and precipitation | SM | R, Bias, RMSE, unbiased (ubRMSE) | 2023 |
Chen et al. [52] | ELM, RF, out-of-bag and random forest (OOB-RF) | Soil water content | SM | R2, RMSE, and relative percent deviation (RPD) | 2025 |
Vahidi et al. [53] | ANN, SVM, RF, Gradient Boosting (XGBoost) | Rainfall, air temperature, spectral data, soil moisture | SM | RMSE, R2, percent bias (PBIAS) and Bayesian Information Criterion (BIC) | 2025 |
Research | Models | Input | Output | Performance Criteria | Year of Study |
---|---|---|---|---|---|
Fang et al. [81] | LSTM | SMAP level-3 moisture product, atmospheric forcings (precipitation, temperature, radiation, humidity, and wind speed), model-simulated moisture, static physiographic attributes | SSM | R2, RMSE, Bias | 2017 |
Sobayo et al. [75] | CNN, DNN | Soil temperature | SM | RMSE, MARE, R2 | 2018 |
Tseng et al. [76] | SVM, RF, ANN, CNN | Synthetic Red–Green–Blue (RGB) aerial image | SM | Median absolute error | 2018 |
Adeyemi et al. [82] | LSTM | SM, precipitation, climatic measurements | Temporal SM fluxes | R2, RMSE, MAE | 2018 |
Fang et al.l. [83] | LSTM | Atmospheric forcing data, static physiographic attributes | SSM, RZSM | RMSE, Bias, R, ubRMSE | 2018 |
Mao et al. [80] | ConvLSTM | Soil properties (bulk density, clay content, and sand content), Land Use Land Cover (LULC), soil temperature, vegetation water content, vegetation opacity, roughness coefficient | RZSM, brightness temperature | R, ubRMSE | 2019 |
Cai et al. [13] | DNNR | Meteorological data (air pressure, air temperature, relative humidity, wind speed, surface temperature, precipitation), soil moisture | SM | MAE, MSE, RMSE, R2 | 2019 |
Fang et al. [84] | LSTM with a novel data integration kernel | Climatic forcing time series, static physiographic attributes | SM | Time-averaged difference (bias), RMSE, ubRMSE, R | 2020 |
Yu et al. [79] | ResBiLSTM | Soil and vegetation conditions, human activity, weather forecast information | SM | MSE, MAE, RMSE, Mean Absolute Percentage Error (MAPE), R2 | 2020 |
Diouf et al. [90] | DNNR | Meteorological parameters (air temperature, precipitation, dewpoint temperature, wind speed), soil properties (sensible heat flux, evaporation), soil moisture in different depths | SM | MAE, R2 | 2020 |
Li et al. [88] | CNN, LSTM, ConvLSTM | Lagged SM, soil temperature, season, precipitation | SSM | R2, RMSE | 2021 |
ElSaadani et al. [89] | CNN, LSTM, ConvLSTM | Soil moisture, LULC, precipitation, longwave and shortwave fluxes, baseflow-groundwater runoff, storm surface runoff, moisture availability | SM | NRMSE, R | 2021 |
Nijaguna et al. [92] | Deep Max Out Network (DMN), Bidirectional Gated Recurrent Unit (Bi-GRU), water cloud model (WCM) | NDVI, GLAI, Green NDVI, and WDRVI features | SM | ME, RMSE, MARE, MAPE | 2023 |
Lakra et al. [91] | SVM, RVM, RF, ANN, and CNN | Soil moisture, Synthetic Aperture Radar (SAR) data | SM | RMSE, R2, Bias, R | 2025 |
Research | Models | Input | Output | Performance Criteria | Kernel Function | Year of Study |
---|---|---|---|---|---|---|
Khalil et al. [96] | SVM, RVM | Soil moisture, meteorological data (including relative humidity, average solar radiation, soil temperature at 5 cm and 10 cm, air temperature, and wind speed) | SM | Bias, RMSE | - | 2005 |
Gill et al. [62] | SVM, ANN | meteorological data (air temperature, relative humidity, average solar radiation, and soil temperature at 5 and 10 cm), soil moisture | SM | RMSE, MAE, R | RBF | 2006 |
Wu et al. [101] | SVM, ANN | Soil moisture | SM | Relative Mean Errors (RME), RMSE, CV | Linear, Polynomial, RBF | 2008 |
Ahmad et al. [98] | SVM, ANN, MLR, VIC | Backscatter and incidence angle from TRMM, NDVI | SM | RMSE, MAE, R | RBF | 2010 |
Pasolli et al. [56] | MLPNN, SVR | Passive and active microwave measurements acquired using various sensor frequencies, polarizations, and acquisition geometries | SM | MSE, MRE | Gaussian RBF | 2011 |
Zaman et al. [110] | RVM, SVM | Land surface temperature, surface reflectance data, air temperature, precipitation, LAI, soil temperature, soil moisture, soil water-holding capacity | SSM | MAE, RMSE, IoA, Coefficient of Efficiency (CoE) | Gaussian kernel | 2012 |
Lamorski et al. [97] | SVM | Air temperature, humidity, atmospheric pressure, insolation, shortwave and longwave radiation, photosynthetically active radiation, albedo, wind direction and speed, soil temperature and moisture, precipitation (type and intensity) | SM | R2, RMSE, CRM | RBF | 2013 |
Liu et al. [44] | ELM, SVM | soil moisture, flow measurement, weather data (minimum, maximum, and average wind speed, average wind direction, rainfall, barometric pressure, solar radiation, relative humidity, air temperature | SM | MAE | Polynomial kernel function | 2014 |
Hong et al. [100] | SVM, RVM | Meteorological data (temperature, humidity, wind speed, solar radiation, precipitation), soil temperature, soil moisture | SM | MSE, MAE, R2 | RBF | 2016 |
Matei et al. [99] | A data mining system consisting of SVM, ANN, k-NN, linear regression, logistic regression, decision tree, fast large margin, RF | Timestamp, soil moisture at three depths of 10, 30, 50 cm, air temperature, precipitation | SM | Accuracy, error | - | 2017 |
Prakash et al. [105] | MLR, SVR, RRN | Soil moisture, soil temperature | SM | MSE, R2 | Linear kernel | 2018 |
Achieng et al. [103] | SVR, ANN, DNN | Soil moisture, soil suction | SM | RMSE, IoA, R2 | RBF, linear, polynomial | 2019 |
Jia et al. [95] | RF, SVM | Reflectivity, elevation angle, dielectric constant, soil moisture | SM | R, RMSE | RBF | 2020 |
Paul and Singh [46] | Linear regression, SVM, PCA, Naïve Bayes | Soil moisture, soil temperature, humidity | SM | F1 Score | Linear kernel | 2020 |
Acharya et al. [104] | CART, RF, BRT, MLR, SVR, ANN | Rainfall, soil moisture, bulk density, residue cover, soil texture, saturated hydraulic conductivity | SM | RMSE, MAE, R2 | RBF | 2021 |
Jiaxin et al. [107] | MLR: Extremely randomized trees (ET), Gaussian process regression (GPR), Generalized regression neural network (GRNN) | Soil moisture, backscattering, multispectrum, brightness temperature, land cover type, soil texture, soil organic matter, soil roughness, crop parameters, radar incidence angle (RIA) | SM | R, RMSE, MAE | Nonlinear kernel | 2024 |
Asadollah et al. [108] | VR, GB, and SVR | Soil moisture, air and soil temperature, land cover type, soil texture, soil organic matter | SM | Correlation coefficient, RMSE, and MAE | linear, polynomial | 2024 |
Shahriari et al. [106] | RF, SVR | Soil moisture | SM | RMSE | RBF | 2025 |
Parewai and Köppen [109] | ANN, SVM, RF | Soil moisture, soil texture | SM | Accuracy (A), precision (P), recall (R), F1-score (F1), Matthews Correlation Coefficient | RBF, linear, polynomial | 2025 |
Research | Models | Input | Output | Performance Criteria | Year of Study |
---|---|---|---|---|---|
Dawson et al. [115] | MLPBF-IEM | Multifrequency and multiangle POLARSCAT data | SM, roughness | MSE | 1997 |
Liu et al. [114] | A hybrid model based on the divide-and-conquer principle, ANN, SVM | Air temperature, precipitation | SM | RME, RMSE, CV | 2008 |
Pasolli et al. [118] | SVR combined with an innovative multi-objective model selection strategy | Air temperature and humidity, precipitation, wind speed and direction, solar radiation | SM | RMSE, R2, slope of linear regression between observations and predictions | 2011 |
Karandish and Šimůnek [111] | MLR, ANFIS, SVM | Pan evaporation, air temperature, crop coefficient, cumulative growth degree days, net irrigation depth, water deficit | SM | RMSE, Mean Bias Error (MBE), Model Efficiency (EF), R | 2016 |
Tsang and Jim [112] | ANN, Fuzzy logic | Air temperature, relative humidity, solar radiation, wind speed | SM | Percentage Error (PE), time series analysis | 2016 |
Ronghua et al. [117] | MLMVN-PCA | Rainfall, temperature, wind speed, soil moisture | SM | RMSE | 2017 |
Maroufpoor et al. [123] | ANFIS-GWO, ANN, SVR, ANFIS | Dielectric constant, soil bulk density, clay content, organic matter | SM | MBE, RMSE, R2, Global Performance Indicator (GPI) | 2019 |
Jin et al. [116] | SVATARK | Soil temperature | SSM | RMSE, MAE, R, slope of linear regression between observations and predictions | 2020 |
Souissi et al. [66] | ANN | Soil moisture | RZSM | Bias, R, NSE, RMSE | 2020 |
Breen et al. [30] | LSTM- MLP | Precipitation, temperature, solar radiation, relative humidity, wind speed | SM | MSE, RMSE | 2020 |
Ahmed et al. [113] | CEEMDAN-CNN-GRU | Rainfall, wind, sea surface temperature, cloudiness meteorological variables, climate indices, MODIS Satellite Dataset | SSM | R, RMSE, NSE, MAE, Kling-Gupta efficiency (KGE), MAPE, Willmott’s Index (WI), Legates–McCabe’s Index (LM), Relative Root Mean Squared Error (RRMSE), Relative Mean Absolute Error (RMAE), Absolute Percentage Bias (APB) | 2021 |
Li et al. [71] | EDT-LSTM | Air temperature, relative humidity, wind speed, radiation, precipitation | SSM | R2, MAE, Bias, ubRMSE | 2022 |
Zhang et al. [124] | Partial least squares regression (PLSR), K nearest neighbor (KNN), and random forest regression (RFR) | Soil moisture, RGB, multispectral, and thermal infrared features | SM | RMSE, R2 | 2023 |
Han et al. [125] | RF | Soil moisture, soil temperature, precipitation, evaporation, and runoff | SSM | R, RMSE, ubRMSE | 2023 |
Xiao et al. [126] | CNN, RF, CNN-RF | Precipitation, soil moisture, temperature, relative humidity, wind speed and sunshine duration | SM | Correlation coefficient, RMSE, MAE, and KGE | 2024 |
Model Group | Accuracy | Computational Efficiency | Data Requirements |
---|---|---|---|
ANNs | Moderate to High; generalization is limited | Moderate; relatively fast training | Medium; requires preprocessing |
DL Models (e.g., CNN, LSTM) | High; spatiotemporal predictions | Low to Moderate; Deep training | High; require large and diverse datasets |
Kernel-Based Models (e.g., SVM, RF) | High; even in limited data | Moderate; poorly with large datasets | Low to Medium; small to moderate datasets with limited preprocessing. |
Hybrid Models (e.g., ANFIS, ANN-PSO, SVM-GA) | Very High; benefit from combining model strengths. | Variable; intensive due to optimization layers. | Variable; requiring balanced data diversity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taheri, M.; Bigdeli, M.; Imanian, H.; Mohammadian, A. An Overview of Machine-Learning Methods for Soil Moisture Estimation. Water 2025, 17, 1638. https://doi.org/10.3390/w17111638
Taheri M, Bigdeli M, Imanian H, Mohammadian A. An Overview of Machine-Learning Methods for Soil Moisture Estimation. Water. 2025; 17(11):1638. https://doi.org/10.3390/w17111638
Chicago/Turabian StyleTaheri, Mercedeh, Mostafa Bigdeli, Hanifeh Imanian, and Abdolmajid Mohammadian. 2025. "An Overview of Machine-Learning Methods for Soil Moisture Estimation" Water 17, no. 11: 1638. https://doi.org/10.3390/w17111638
APA StyleTaheri, M., Bigdeli, M., Imanian, H., & Mohammadian, A. (2025). An Overview of Machine-Learning Methods for Soil Moisture Estimation. Water, 17(11), 1638. https://doi.org/10.3390/w17111638