Kinetic Analysis and Transformation Pathways of Sulfamethoxazole Degradation in Water and Wastewater Under Electron Beam Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Irradiation Process
2.3. SMX Degradation
2.4. Analytical Methods
2.4.1. Product Identification and Qualitative/Quantitative Analysis
2.4.2. Ion Chromatography
3. Results and Discussion
3.1. Dose Influence
3.2. Effect of Initial Concentration
3.3. Effect of Initial pH on SMX Degradation
3.4. Effect of Reactive Species
3.5. SMX Degradation in Wastewater
3.6. Mineralization of Sulfamethoxazole in Water and Wastewater
3.7. LC-MS Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kümmerer, K. Antibiotics in the Aquatic Environment—A Review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Gobel, A.; Mcardell, C.; Joss, A.; Siegrist, H.; Giger, W. Fate of Sulfonamides, Macrolides, and Trimethoprim in Different Wastewater Treatment Technologies. Sci. Total Environ. 2007, 372, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of Antibiotics in Conventional and Advanced Wastewater Treatment: Implications for Environmental Discharge and Wastewater Recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban Wastewater Treatment Plants as Hotspots for Antibiotic Resistant Bacteria and Genes Spread into the Environment: A Review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.; et al. Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environ. Health Perspect. 2012, 120, 1221–1229. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling Antibiotic Resistance: The Environmental Framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Yang, J.; Lv, G.; Zhang, C.; Wang, Z.; Sun, X. Indirect Photodegradation of Sulfamethoxazole and Trimethoprim by Hydroxyl Radicals in Aquatic Environment: Mechanisms, Transformation Products and Eco-Toxicity Evaluation. Int. J. Mol. Sci. 2020, 21, 6276. [Google Scholar] [CrossRef]
- Joss, A.; Keller, E.; Alder, A.C.; Göbel, A.; McArdell, C.S.; Ternes, T.; Siegrist, H. Removal of Pharmaceuticals and Fragrances in Biological Wastewater Treatment. Water Res. 2005, 39, 3139–3152. [Google Scholar] [CrossRef]
- Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes. Environ. Int. 2009, 35, 402–417. [Google Scholar] [CrossRef]
- Abellán, M.N.; Bayarri, B.; Giménez, J.; Costa, J. Photocatalytic Degradation of Sulfamethoxazole in Aqueous Suspension of TiO2. Appl. Catal. B Environ. 2007, 74, 233–241. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J. Degradation of Sulfamethoxazole by Ozonation Combined with Ionizing Radiation. J. Hazard. Mater. 2021, 407, 124377. [Google Scholar] [CrossRef] [PubMed]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced Oxidation Process-Mediated Removal of Pharmaceuticals from Water: A Review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Zhuan, R.; Wang, J. Degradation of Sulfamethoxazole by Ionizing Radiation: Kinetics and Implications of Additives. Sci. Total Environ. 2019, 668, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Getoff, N. Radiation-Induced degradation of water pollutants—State of The art. Radiat. Phys. Chem. 1996, 47, 581–593. [Google Scholar] [CrossRef]
- Ponomarev, A.V.; Ershov, B.G. The Green Method in Water Management: Electron Beam Treatment. Environ. Sci. Technol. 2020, 54, 5331–5344. [Google Scholar] [CrossRef]
- Şolpan, D.; Güven, O. Decoloration and Degradation of Some Textile Dyes by Gamma Irradiation. Radiat. Phys. Chem. 2002, 65, 549–558. [Google Scholar] [CrossRef]
- Khedr, T.; Hammad, A.A.; Elmarsafy, A.M.; Halawa, E.; Soliman, M. Degradation of Some Organophosphorus Pesticides in Aqueous Solution by Gamma Irradiation. J. Hazard. Mater. 2019, 373, 23–28. [Google Scholar] [CrossRef]
- Zhu, F.; Pan, J.; Zou, Q.; Wu, M.; Wang, H.; Xu, G. Electron Beam Irradiation of Typical Sulfonamide Antibiotics in the Aquatic Environment: Kinetics, Removal Mechanisms, Degradation Products and Toxicity Assessment. Chemosphere 2021, 274, 129713. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Huang, W.; Li, Z.; Shao, H.; Wu, M.; Lei, J.; Tang, L. Radiolytic Decomposition of Sulfonamide Antibiotics: Implications to the Kinetics, Mechanisms and Toxicity. Sep. Purif. Technol. 2018, 202, 259–265. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.D.; Kim, H.Y.; Lim, S.J.; Lee, M.; Yu, S. Degradation and Toxicity Assessment of Sulfamethoxazole and Chlortetracycline Using Electron Beam, Ozone and UV. J. Hazard. Mater. 2012, 227–228, 237–242. [Google Scholar] [CrossRef] [PubMed]
- ISO/ASTM-51401-2013; Practice for Use of a Dichromate Dosimetry System. International Organization for Standardization: Geneva, Switzerland, 2013.
- Wang, S.; Wang, J. Radiation-Induced Degradation of Sulfamethoxazole in the Presence of Various Inorganic Anions. Chem. Eng. J. 2018, 351, 688–696. [Google Scholar] [CrossRef]
- Bojanowska-Czajka, A.; Kciuk, G.; Gumiela, M.; Borowiecka, S.; Nałęcz-Jawecki, G.; Koc, A.; Garcia-Reyes, J.F.; Ozbay, D.S.; Trojanowicz, M. Analytical, Toxicological and Kinetic Investigation of Decomposition of the Drug Diclofenac in Waters and Wastes Using Gamma Radiation. Environ. Sci. Pollut. Res. 2015, 22, 20255–20270. [Google Scholar] [CrossRef]
- Rivas-Ortiz, I.B.; Cruz-González, G.; Lastre-Acosta, A.M.; Manduca-Artiles, M.; Rapado-Paneque, M.; Chávez-Ardanza, A.; Teixeira, A.C.S.C.; Jáuregui-Haza, U.J. Optimization of Radiolytic Degradation of Sulfadiazine by Combining Fenton and Gamma Irradiation Processes. J. Radioanal. Nucl. Chem. 2017, 314, 2597–2607. [Google Scholar] [CrossRef]
- Yu, S.; Lee, B.; Lee, M.; Cho, I.-H.; Chang, S.-W. Decomposition and Mineralization of Cefaclor by Ionizing Radiation: Kinetics and Effects of the Radical Scavengers. Chemosphere 2008, 71, 2106–2112. [Google Scholar] [CrossRef]
- Sayed, M.; Ismail, M.; Khan, S.; Tabassum, S.; Khan, H.M. Degradation of Ciprofloxacin in Water by Advanced Oxidation Process: Kinetics Study, Influencing Parameters and Degradation Pathways. Environ. Technol. 2016, 37, 590–602. [Google Scholar] [CrossRef]
- Zhuan, R.; Wang, J. Enhanced Degradation and Mineralization of Sulfamethoxazole by Integrating Gamma Radiation with Fenton-like Processes. Radiat. Phys. Chem. 2020, 166, 108457. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Sun, Z.; Cao, X.; Zhang, J.; Chen, Q.; Ma, R. The Influence of pH on Sulfamethoxazole in Soil Systems: Migration and Degradation. Water Air Soil. Pollut. 2024, 235, 767. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, S.; Zhao, Y.; Cao, H.; Liu, F. Radiolytic Decomposition of Ciprofloxacin Using γ Irradiation in Aqueous Solution. Environ. Sci. Pollut. Res. 2015, 22, 15772–15780. [Google Scholar] [CrossRef] [PubMed]
- Basfar, A.A.; Khan, H.M.; Al-Shahrani, A.A. Trihalomethane Treatment Using Gamma Irradiation: Kinetic Modeling of Single Solute and Mixtures. Radiat. Phys. Chem. 2005, 72, 555–563. [Google Scholar] [CrossRef]
- Dorfman, L.M. Reactivity of the Hydroxyl Radical in Aqueous Solutions; National Bureau of Standards: Gaithersburg, MD, USA, 1973.
- Kengne, B.T.; Wang, S.; Sun, Y.; Wang, J.; Bulka, S. Electron Beam Irradiation-Induced Degradation of Sulfadiazine in Aqueous Solutions. Water 2025, 17, 1077. [Google Scholar] [CrossRef]
- López Peñalver, J.J.; Gómez Pacheco, C.V.; Sánchez Polo, M.; Rivera Utrilla, J. Degradation of Tetracyclines in Different Water Matrices by Advanced Oxidation/Reduction Processes Based on Gamma Radiation. J. Chem. Tech. Biotech. 2013, 88, 1096–1108. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Effect of Inorganic Anions on the Performance of Advanced Oxidation Processes for Degradation of Organic Contaminants. Chem. Eng. J. 2021, 411, 128392. [Google Scholar] [CrossRef]
- Boreen, A.L.; Arnold, W.A.; McNeill, K. Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environ. Sci. Technol. 2004, 38, 3933–3940. [Google Scholar] [CrossRef]
- Dirany, A.; Sirés, I.; Oturan, N.; Özcan, A.; Oturan, M.A. Electrochemical Treatment of the Antibiotic Sulfachloropyridazine: Kinetics, Reaction Pathways, and Toxicity Evolution. Environ. Sci. Technol. 2012, 46, 4074–4082. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, T.-H.; Cha, S.M.; Yu, S. Degradation of Sulfamethoxazole by Ionizing Radiation: Identification and Characterization of Radiolytic Products. Chem. Eng. J. 2017, 313, 556–566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kengne, B.T.; Sun, Y.; Wang, S.; Wang, J.; Bulka, S.; Pyszynska, M.; Sudlitz, M. Kinetic Analysis and Transformation Pathways of Sulfamethoxazole Degradation in Water and Wastewater Under Electron Beam Irradiation. Water 2025, 17, 1596. https://doi.org/10.3390/w17111596
Kengne BT, Sun Y, Wang S, Wang J, Bulka S, Pyszynska M, Sudlitz M. Kinetic Analysis and Transformation Pathways of Sulfamethoxazole Degradation in Water and Wastewater Under Electron Beam Irradiation. Water. 2025; 17(11):1596. https://doi.org/10.3390/w17111596
Chicago/Turabian StyleKengne, Boris Tende, Yongxia Sun, Shizong Wang, Jianlong Wang, Sylwester Bulka, Marta Pyszynska, and Marcin Sudlitz. 2025. "Kinetic Analysis and Transformation Pathways of Sulfamethoxazole Degradation in Water and Wastewater Under Electron Beam Irradiation" Water 17, no. 11: 1596. https://doi.org/10.3390/w17111596
APA StyleKengne, B. T., Sun, Y., Wang, S., Wang, J., Bulka, S., Pyszynska, M., & Sudlitz, M. (2025). Kinetic Analysis and Transformation Pathways of Sulfamethoxazole Degradation in Water and Wastewater Under Electron Beam Irradiation. Water, 17(11), 1596. https://doi.org/10.3390/w17111596