Groundwater Sustainability and Land Subsidence in California’s Central Valley
Abstract
:1. Introduction and Background
1.1. California Water Supply
1.2. Sustainable Groundwater Management Act (SGMA)
- Groundwater-level declines;
- Groundwater storage reductions;
- Seawater intrusion;
- Water-quality degradation;
- Land subsidence;
- Interconnected surface-water depletions.
1.3. California’s Central Valley
2. Central Valley Geology and Texture
3. Central Valley Hydrologic Model (CVHM)
4. Enhancements and Limitations
Calibration
5. Results and Discussion
5.1. Hydrologic Budgets
5.1.1. Surface-Water Inflows, Reuse, Diversions, and Water Rights
5.1.2. Underflow from Adjacent Watersheds and Surface-Water Flow from Small Ungauged Basins
5.1.3. Managed Aquifer Recharge (MAR)
5.1.4. Changes in Groundwater Storage
5.2. Land Subsidence
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, S.W.D.; Hejazi, M.; Calvin, K.; Kyle, P.; Kim, S. A Pathway of Global Food Supply Adaptation in a World with Increasingly Constrained Groundwater. Sci. Total Environ. 2019, 673, 165–176. [Google Scholar] [CrossRef] [PubMed]
- California Department of Water Resources. California’s Groundwater Update 2020 (Bulletin 118); California Department of Water Resources: Sacramento, CA, USA, 2020. [Google Scholar]
- De Graaf, I.E.M.; Sutanudjaja, E.H.; Van Beek, L.P.H.; Bierkens, M.F.P. A High-Resolution Global-Scale Groundwater Model. Hydrol. Earth Syst. Sci. 2015, 19, 823–837. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Wada, Y. Non-Renewable Groundwater Use and Groundwater Depletion: A Review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Faunt, C.C. (Ed.) Groundwater Availability of the Central Valley Aquifer, California; U.S. Geological Survey Professional Paper 1766; U.S. Geological Survey: Reston, VA, USA, 2009; ISBN 978-1-4113-2515-9.
- California Department of Water Resources. The California Water System. Available online: https://water.ca.gov/Water-Basics/The-California-Water-System (accessed on 24 November 2023).
- Dettinger, M.D.; Cayan, D.R.; Meyer, M.K.; Jeton, A.E. Simulated Hydrologic Responses to Climate Variations and Change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099. Clim. Chang. 2004, 62, 283–317. [Google Scholar] [CrossRef]
- Kattelmann, R. Very Warm Storms and Sierra Nevada Snowpacks. In Proceedings of the 65th Annual Western Snow Conference, Banff, AB, Canada, 4–8 May 1997; pp. 125–129. [Google Scholar]
- Cayan, D.; Tyree, M.; Dettinger, M.; Hidalgo, H.; Das, T.; Maurer, E.; Bromirski, P.D.; Flick, R.E. Climate Change Scenarios and Sea Level Rise Estimates for the California 2009 Climate Change Scenarios Assessment; Oceanography Program, California Department of Parks & Recreation; UC San Diego: San Diego, CA, USA, 2009. [Google Scholar]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric Rivers, Floods and the Water Resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- United States Census Bureau. United States Census Bureau California Statistis. Available online: https://data.census.gov/profile/California (accessed on 1 April 2024).
- Hanak, E.; Lund, J.R.; Mount, J.; Gurdak, J.; Harter, T.; Viers, J.; Escriva-Bou, A.; Fisher, A.T.; Fogg, G.; Gray, B. California’s Water: Storing Water; Public Policy Institute of California: San Francisco, CA, USA, 2018; p. 4. [Google Scholar]
- Dettinger, M.D.; Anderson, M.L. Storage in California’s Reservoirs and Snowpack in This Time of Drought. San Fr. Estuary Watershed Sci. 2015, 13, 1. [Google Scholar] [CrossRef]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water Availability and Land Subsidence in the Central Valley, California, USA. Hydrogeol. J. 2016, 24, 675–684. [Google Scholar] [CrossRef]
- California Department of Water Resources. Sustainable Groundwater Management Act (SGMA). Available online: https://water.ca.gov/Programs/Groundwater-Management/SGMA-Groundwater-Management (accessed on 24 November 2023).
- California Department of Water Resources. Basin Prioritization. Available online: https://water.ca.gov/Programs/Groundwater-Management/Basin-Prioritization (accessed on 24 November 2023).
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; de Linage, C.R.; Rodell, M. Satellites Measure Recent Rates of Groundwater Depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, L03403. [Google Scholar] [CrossRef]
- Xiao, M.; Koppa, A.; Mekonnen, Z.; Pagán, B.R.; Zhan, S.; Cao, Q.; Aierken, A.; Lee, H.; Lettenmaier, D.P. How Much Groundwater Did California’s Central Valley Lose during the 2012–2016 Drought? Geophys. Res. Lett. 2017, 44, 4872–4879. [Google Scholar] [CrossRef]
- Bertoldi, G.L.; Johnston, R.H.; Evenson, K.D. Ground Water in the Central Valley, California: A Summary Report; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1991; p. 56.
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; Circular; U.S. Geological Survey: Reston, VA, USA, 1999; p. 177.
- Williamson, A.K.; Prudic, D.E.; Swain, L.A. Ground-Water Flow in the Central Valley, California; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1989; p. 127.
- Gailey, R.M. Inactive Supply Wells as Conduits for Flow and Contaminant Migration: Conditions of Occurrence and Suggestions for Management. Hydrogeol. J. 2017, 25, 2163–2183. [Google Scholar] [CrossRef]
- Levy, Z.F.; Jurgens, B.C.; Burow, K.R.; Voss, S.A.; Faulkner, K.E.; Arroyo-Lopez, J.A.; Fram, M.S. Critical Aquifer Overdraft Accelerates Degradation of Groundwater Quality in California’s Central Valley During Drought. Geophys. Res. Lett. 2021, 48, 10. [Google Scholar] [CrossRef]
- Duffy, W.G.; Kahara, S.N. Wetland Ecosystem Services in California’s Central Valley and Implications for the Wetland Reserve Program. Ecol. Appl. 2011, 21, S128–S134. [Google Scholar] [CrossRef]
- Gailey, R.M.; Lund, J.R.; Medellín-Azuara, J. Domestic Well Reliability: Evaluating Supply Interruptions from Groundwater Overdraft, Estimating Costs and Managing Economic Externalities. Hydrogeol. J. 2019, 27, 1159–1182. [Google Scholar] [CrossRef]
- Hanak, E.; Lund, J.; Arnold, B.; Escriva-Bou, A.; Gray, B.; Green, S.; Harter, T.; Howitt, R.; MacEwan, D.; Medellín-Azuara, J. Water Stress and a Changing San Joaquin Valley; Public Policy Institute of California: San Francisco, CA, USA, 2017; p. 48. [Google Scholar]
- Hanak, E.; Escriva-Bou, A.; Gray, B.; Green, S.; Harter, T.; Jezdimirovic, J.; Lund, J.; Medellín-Azuara, J.; Moyle, P.; Seavy, N. Water and the Future of the San Joaquin Valley; Public Policy Institute of California: San Francisco, CA, USA, 2019; p. 15. [Google Scholar]
- Seymour, W.A.; Faunt, C.C. Central Valley Hydrologic Model Version 2 (CVHM2): Land Use Properties (Ver. 3.0, October 2023); U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Mall, N.K.; Herman, J.D. Water Shortage Risks from Perennial Crop Expansion in California’s Central Valley. Environ. Res. Lett. 2019, 14, 9. [Google Scholar] [CrossRef]
- California Department of Water Resources Land IQ California 2014. Available online: https://catalog.data.gov/dataset/i15-crop-mapping-2014-dec52 (accessed on 15 April 2024).
- Brush, C.F.; Belitz, K.; Phillips, S.P. Estimation of a Water Budget for 1972–2000 for the Grasslands Area, Central Part of the Western San Joaquin Valley, California; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2004; p. 59.
- Marcelli, M.F.; Shepherd, M.M.; Faunt, C.C. Central Valley Hydrologic Model Version 2 (CVHM2): Well Log Lithology Database and Texture Model; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Faunt, C.C.; Belitz, K.; Hanson, R.T. Development of a Three-Dimensional Model of Sedimentary Texture in Valley-Fill Deposits of Central Valley, California, USA. Hydrogeol. J. 2010, 18, 625–649. [Google Scholar] [CrossRef]
- Knight, R.; Smith, R.; Asch, T.; Abraham, J.; Cannia, J.; Viezzoli, A.; Fogg, G. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California. Groundwater 2018, 56, 893–908. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Knight, R. Modeling Land Subsidence Using InSAR and Airborne Electromagnetic Data. Water Resour. Res. 2019, 55, 2801–2819. [Google Scholar] [CrossRef]
- California Department of Water Resources. Airborne Electromagnetic (AEM) Surveys. Available online: https://water.ca.gov/Programs/SGMA/AEM (accessed on 25 November 2023).
- Brush, C.F.; Dogrul, E.C.; Kadir, T.N. Development and Calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), version 3.02-CG; Technical Memorandum; California Department of Water Resources: Sacramento, CA, USA, 2013.
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater Depletion and Sustainability of Irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef]
- Faunt, C.C.; Sneed, M. Water Availability and Subsidence in California’s Central Valley. San Fr. Estuary Watershed Sci. 2015, 13, 4. [Google Scholar] [CrossRef]
- California Department of Water Resources. C2VSimCG, version 1.0; California Department of Water Resources: Sacramento, CA, USA, 2022.
- California Department of Water Resources. C2VSimFG, version 1.01; California Department of Water Resources: Sacramento, CA, USA, 2023.
- Bond, S.; Jachens, E.R.; Faunt, C.C. Central Valley Hydrologic Model Version 2 (CVHM2): Water Banking for Water Years 1961–2019 (Ver. 2.0, Aug 2023); U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Earll, M.M. Central Valley Hydrologic Model Version 2 (CVHM2): Surface Water Network for Water Years 1922–2019; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Faunt, C.C. Central Valley Hydrologic Model Version 2 (CVHM2): Model Setup Files; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Faunt, C.C.; Stamos-Pfeiffer, C.L.; Brandt, J.; Sneed, M.; Boyce, S.E. Central Valley Hydrologic Model Version 2 (CVHM2): Observation Data (Groundwater Level, Streamflow, Subsidence) from 1916 to 2018 (Ver. 2.0, June 2023); U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Seymour, W.A.; Martin, D. Central Valley Hydrologic Model Version 2 (CVHM2): Climate Data (Precipitation, Evapotranspiration, Recharge, Runoff) from the Basin Characterization Model for Water Years 1922–2019 (Ver. 2.0, June 2023); U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Traum, J.A. Central Valley Hydrologic Model Version 2 (CVHM2): Subsidence Package; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Traum, J.A.; Faunt, C.C. Central Valley Hydrologic Model Version 2 (CVHM2): Groundwater Pumping; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process; Techniques and Methods 6-A16; U.S. Geological Survey: Reston, VA, USA, 2005. [CrossRef]
- Hoffmann, J.; Leake, S.A.; Galloway, D.L.; Wilson, A.M. MODFLOW-2000 Ground-Water Model-User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2003; p. 44.
- Boyce, S.E. MODFLOW One-Water Hydrologic Flow Model (MF-OWHM) Conjunctive Use and Integrated Hydrologic Flow Modeling Software, version 2.3.0; U.S. Geological Survey Software Release; U.S. Geological Survey: Reston, VA, USA, 2024. [CrossRef]
- Boyce, S.E.; Hanson, R.T.; Ferguson, I.; Schmid, W.; Henson, W.R.; Reimann, T.; Mehl, S.W.; Earll, M.M. One-Water Hydrologic Flow Model: A MODFLOW Based Conjunctive-Use Simulation Software; Techniques and Methods 6-A60; U.S. Geological Survey: Reston, VA, USA, 2020; 435p. [CrossRef]
- Halford, K.J.; Hanson, R.T. User Guide for the Drawdown-Limited, Multi-Node Well (MNW) Package for the U.S. Geological Survey’s Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, Versions MODFLOW-96 and MODFLOW-2000; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2002; p. 33.
- Konikow, L.F.; Hornberger, G.Z.; Halford, K.J.; Hanson, R.T.; Harbaugh, A.W. Revised Multi-Node Well (MNW2) Package for MODFLOW Ground-Water Flow Model; Techniques and Methods 6-A30; U.S. Geological Survey: Reston, VA, USA, 2009; 67p. [CrossRef]
- Flint, L.E.; Flint, A.L.; Stern, M.A. The Basin Characterization Model—A Regional Water Balance Software Package; Techniques and Methods 6-H1; U.S. Geological Survey: Reston, VA, USA, 2021; 85p. [CrossRef]
- Schmid, W.; Hanson, R.T. The Farm Process Version 2 (FMP2) for MODFLOW-2005—Modifications and Upgrades to FMP1; Techniques and Methods 6-A32; U.S. Geological Survey: Reston, VA, USA, 2009; 102p.
- Galloway, D.L.; Erkens, G.; Kuniansky, E.L.; Rowland, J.C. Preface: Land Subsidence Processes. Hydrogeol. J. 2016, 24, 547–550. [Google Scholar] [CrossRef]
- Traum, J.A.; Faunt, C.C.; Boyce, S.E. MODFLOW-OWHM Used to Characterize the Groundwater Flow System of the Central Valley, California; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2024. [CrossRef]
- California Department of Water Resources. Drought. Available online: https://water.ca.gov/Water-Basics/Drought (accessed on 3 April 2024).
- Argus, D.F.; Martens, H.R.; Borsa, A.A.; Knappe, E.; Wiese, D.N.; Alam, S.; Anderson, M.; Khatiwada, A.; Lau, N.; Peidou, A.; et al. Subsurface Water Flux in California’s Central Valley and Its Source Watershed From Space Geodesy. Geophys. Res. Lett. 2022, 49, e2022GL099583. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Alley, W.M.; Konikow, L.F. Bringing GRACE Down to Earth, Groundwater. Groundwater 2015, 53, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Rateb, A.; Scanlon, B.R.; Pool, D.R.; Sun, A.; Zhang, Z.; Chen, J.; Clark, B.; Faunt, C.C.; Haugh, C.J.; Hill, M.; et al. Comparison of Groundwater Storage Changes From GRACE Satellites With Monitoring and Modeling of Major U.S. Aquifers. Water Resour. Res. 2020, 56, e2020WR027556. [Google Scholar] [CrossRef]
- National Groundwater Association. Managed Aquifer Recharge. Available online: https://www.ngwa.org/what-is-groundwater/groundwater-issues/managed-aquifer-recharge (accessed on 25 November 2023).
- Wendt, D.E.; Loon, A.F.V.; Scanlon, B.R.; Hannah, D.M. Managed Aquifer Recharge as a Drought Mitigation Strategy in Heavily-Stressed Aquifers. Environ. Res. Lett. 2021, 16, 014046. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Kanyerere, T. A Review of the Managed Aquifer Recharge: Historical Development, Current Situation and Perspectives. Phys. Chem. Earth Parts ABC 2020, 118–119, 102887. [Google Scholar] [CrossRef]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty Years of Global Progress in Managed Aquifer Recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef]
- Water Education Foundation. Groundwater Banking. Available online: https://www.watereducation.org/aquapedia/groundwater-banking (accessed on 24 November 2023).
- California Department of Water Resources. Statewide Groundwater Management. Available online: https://water.ca.gov/Programs/Groundwater-Management (accessed on 25 November 2023).
- Holzer, T.L. Preconsolidation Stress of Aquifer Systems in Areas of Induced Land Subsidence. Water Resour. Res. 1981, 17, 693–703. [Google Scholar] [CrossRef]
- Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D.F.; Farr, T.G. Sustained Groundwater Loss in California’s Central Valley Exacerbated by Intense Drought Periods. Water Resour. Res. 2018, 54, 4449–4460. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional Land Subsidence Accompanying Groundwater Extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Galloway, D.; Riley, F.S. San Joaquin Valley, California. Land Subsid. U. S. US Geol. Surv. Circ. 1999, 1182, 23–34. [Google Scholar]
- Luhdorff and Scalmanini Consulting Engineers; Borchers, J.W.; Carpenter, M.; Grabert, V.K.; Dalgish, B.; Cannon, D. Land Subsidence from Groundwater Use in California; California Water Foundation: Sacramento, CA, USA, 2014. [Google Scholar]
- Burbey, T.J. Stress-Strain Analyses for Aquifer-System Characterization. Groundwater 2001, 39, 128–136. [Google Scholar] [CrossRef]
- Jacob, C.E. On the Flow of Water in an Elastic Artesian Aquifer. Eos Trans. Am. Geophys. Union 1940, 21, 574–586. [Google Scholar] [CrossRef]
- Terzaghi, K. Principles of Soil Mechanics. IV. Settlement and Consolidation of Clay. Eng. News-Rec. 1925, 95, 874. [Google Scholar]
- Poland, J.F.; Lofgren, B.E.; Ireland, R.L.; Pugh, R.G. Land Subsidence in the San Joaquin Valley, California, as of 1972; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1975; p. 77.
- Galloway, D.L. Subsidence Induced by Underground Extraction. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2013; pp. 979–986. ISBN 978-1-4020-4399-4. [Google Scholar]
- California Department of Water Resources. SGMA Data Viewer. Available online: https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#currentconditions (accessed on 15 April 2024).
- California Natural Resources Agency. TRE ALTAMIRA InSAR Subsidence Data—California Natural Resources Agency Open Data. Available online: https://data.cnra.ca.gov/dataset/tre-altamira-insar-subsidence (accessed on 4 April 2024).
- Weissmann, G.S.; Bennett, G.L.; Lansdale, A.L. Factors Controlling Sequence Development on Quaternary Fluvial Fans, San Joaquin Basin, California, USA. In Alluvial Fans: Geomorphology, Sedimentology, Dynamics; Harvey, A.M., Mather, A.E., Stokes, M., Eds.; Geological Society of London: London, UK, 2005; Volume 251, pp. 169–186. ISBN 978-1-86239-189-5. [Google Scholar]
- Ireland, R.L. Land Subsidence in the San Joaquin Valley, California, as of 1983; Water-Resources Investigations Report; U.S. Geological Survey: Reston, VA, USA, 1986; p. 50.
- U.S. Geological Survey. USGS Groundwater Data for the Nation; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2024. Available online: https://waterdata.usgs.gov/nwis/gw (accessed on 15 April 2024).
- California Department of Water Resources. California Statewide Groundwater Elevation Monitoring (CASGEM). Available online: https://water.ca.gov/Programs/Groundwater-Management/Groundwater-Elevation-Monitoring--CASGEM (accessed on 4 April 2024).
- Escriva-Bou, A.; Jezdimirovic, J.; Hanak, E. Sinking Lands, Damaged Infrastructure: Will Better Groundwater Management End Subsidence? Available online: https://www.ppic.org/blog/sinking-lands-damaged-infrastructure-will-better-groundwater-management-end-subsidence (accessed on 24 November 2023).
- Poland, J.F. Guidebook to Studies of Land Subsidence Due to Ground-Water Withdrawal; Studies and Reports in Hydrology; UNESCO: Paris, France, 1984; p. 323. [Google Scholar]
- Bureau of Reclamation. Friant-Kern Canal Middle Reach Capacity Correction Project. Available online: https://www.usbr.gov/mp/sccao/fkc-fr.html (accessed on 25 November 2023).
- California Department of Water Resources. Flood-MAR Using Flood Water for Managed Aquifer Recharge to Support Sustainable Water Resources; California Department of Water Resources: Sacramento, CA, USA, 2018.
- California Department of Water Resources. Flood-Managed Aquifer Recharge (Flood-MAR). Available online: https://water.ca.gov/Programs/All-Programs/Flood-MAR (accessed on 24 November 2023).
- Quinn, N.; Jacquemin, C.; Heinzer, T. WESTSIM: A GIS-Based Application of the Integrated GW Surface Water Model (IGSM) to the Western San Joaquin Basin for Conjunctive Use Plannning and Drainage Prediction; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2001.
- California State Water Resources Control Board Office of the Delta Watermaster. Available online: https://www.waterboards.ca.gov/water_issues/programs/delta_watermaster/ (accessed on 8 April 2024).
- California Department of Water Resources Land Use Surveys. Available online: https://water.ca.gov/Programs/Water-Use-And-Efficiency/Land-And-Water-Use/Land-Use-Surveys (accessed on 15 April 2024).
- California State Water Resources Control Board California River Indices. Available online: https://www.waterboards.ca.gov/waterrights/water_issues/programs/hearings/daviswoodland/daviswoodland_cspa_bj11.pdf (accessed on 15 April 2024).
- U.S. Geological Survey Spirit Leveling. Available online: https://www.usgs.gov/centers/land-subsidence-in-california/science/spirit-leveling (accessed on 2 April 2024).
- Riley, F.S. Analysis of Borehole Extensometer Data from Central California. In Land Subsidence: Proceedings of the Tokyo Symposium; International Association of Scientific Hydrology: Tokyo, Japan, 1970; pp. 423–431. [Google Scholar]
- Riley, F.S. Developments in Borehole Extensometry. In Proceedings of the Third International Symposium on Land Subsidence, Venice, Italy, 19–25 March 1984; pp. 169–186. [Google Scholar]
- Ikehara, M.E.; Predmore, S.K.; Swope, D.J. Geodetic Network to Evaluate Historical Elevation Changes and to Monitor Land Subsidence in Lower Coachella Valley, California, 1996; Water-Resources Investigations Report; U.S. Geological Survey: Reston, VA, USA, 1997.
- Sneed, M.; Ikehara, M.E.; Stork, S.V.; Amelung, F.; Galloway, D.L. Detection and Measurement of Land Subsidence Using Interferometric Synthetic Aperture Radar and Global Positioning System, San Bernardino County, Mojave Desert, California; Water-Resources Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2003; p. 69.
- Armstrong, M.; Schenewerk, M.; Mader, G.; Martin, D.; Stone, B.; Foote, R. OPUS-Projects: Online Positioning User Service Baseline Processing and Adjustment Software User Instructions and Technical Guide; National Oceanic and Atmospheric Administration, National Geodetic Survey: Silver Spring, MD, USA, 2015; p. 118.
- Zilkoski, D.B.; D’Onofrio, J.D.; Frakes, S.J. Guidelines for Establishing GPS-Derived Ellipsoid Heights (Standards: 2 CM and 5 CM) Version 4.3. NOAA Tech. Memo. 1997, 58. [Google Scholar]
- Bureau of Reclamation Subsidence Monitoring—San Joaquin River Restoration Program. Available online: https://www.restoresjr.net/science/subsidence-monitoring/ (accessed on 1 April 2024).
- EarthScope GAGE GNSS Analysis Center Derived Data Products. Available online: https://www.unavco.org/data/gps-gnss/derived-products/derived-products.html (accessed on 24 November 2023).
- EarthScope Plate Boundary Observatory (PBO). Available online: https://www.unavco.org/projects/past-projects/pbo/pbo.html (accessed on 24 November 2023).
- EarthScope NOTA Network Monitoring. Available online: https://www.unavco.org/instrumentation/networks/status/nota/ (accessed on 22 February 2018).
- Langbein, J. Noise in GPS Displacement Measurements from Southern California and Southern Nevada. J. Geophys. Res. 2008, 113, 2007JB005247. [Google Scholar] [CrossRef]
- Williams, S.D.P.; Bock, Y.; Fang, P.; Jamason, P.; Nikolaidis, R.M.; Prawirodirdjo, L.; Miller, M.; Johnson, D.J. Error Analysis of Continuous GPS Position Time Series. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Zerbini, S.; Richter, B.; Negusini, M.; Romagnoli, C.; Simon, D.; Domenichini, F.; Schwahn, W. Height and Gravity Variations by Continuous GPS, Gravity and Environmental Parameter Observations in the Southern Po Plain, near Bologna, Italy. Earth Planet. Sci. Lett. 2001, 192, 267–279. [Google Scholar] [CrossRef]
- Bawden, G.W.; Sneed, M.; Stork, S.V.; Galloway, D.L. Measuring Human-Induced Land Subsidence from Space; Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2003; p. 4.
- Sneed, M.; Brandt, J.T.; Solt, M. Land Subsidence along the Delta-Mendota Canal in the Northern Part of the San Joaquin Valley, California, 2003-10; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2013; p. 86.
- Farr, T.G.; Jones, C.E.; Liu, Z. Progress Report: Subsidence in California, March 2015—September 2016; Jet Propulsion Laborator: Pasadena, CA, USA, 2016; p. 37.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Prudic, D.E.; Konikow, L.F.; Banta, E.R. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2004; p. 104.
- Niswonger, R.G.; Prudic, D.E. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams—A Modification to SFR1; U.S. Geological Survey Techniques and Methods 6–A13; U.S. Geological Survey: Reston, VA, USA, 2005; 51p. [CrossRef]
- Burrough, P.A.; McDonnell, R.; Lloyd, C.D. Principles of Geographical Information Systems, 3rd ed.; Oxford University Press: Oxford, NY, USA, 2015; ISBN 978-0-19-874284-5. [Google Scholar]
- Sneed, M. Aquifer-System Compaction and Land Subsidence: Data and Simulations, the Holly Site, Edwards Air Force Base, California. Master’s Thesis, California State University, Sacramento, Sacramento, CA, USA, 2008. [Google Scholar]
- Helm, D.C. One-dimensional Simulation of Aquifer System Compaction near Pixley, California: 1. Constant Parameters. Water Resour. Res. 1975, 11, 465–478. [Google Scholar] [CrossRef]
- Helm, D.C. One-dimensional Simulation of Aquifer System Compaction near Pixley, California: 2. Stress-Dependent Parameters. Water Resour. Res. 1976, 12, 375–391. [Google Scholar] [CrossRef]
- Helm, D.C. Estimating Parameters of Compacting Fine-Grained Interbeds Within a Confined Aquifer System by a One-Dimensional Simulation of Field Observations. In Proceedings of the Second International Symposium on Land Subsidence, Anaheim, CA, USA, 13–17 December 1976; International Association of Hydrological Sciences: Anaheim, CA, USA, 1977; pp. 145–156. [Google Scholar]
- Ireland, R.L.; Poland, J.F.; Riley, F.S. Land Subsidence in the San Joaquin Valley, California, as of 1980; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1984; p. 93.
- Doherty, J. Calibration and Uncertainty Analysis for Complex Environmental Models; Watermark Numerical Computing: Brisbane, Australia, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faunt, C.C.; Traum, J.A.; Boyce, S.E.; Seymour, W.A.; Jachens, E.R.; Brandt, J.T.; Sneed, M.; Bond, S.; Marcelli, M.F. Groundwater Sustainability and Land Subsidence in California’s Central Valley. Water 2024, 16, 1189. https://doi.org/10.3390/w16081189
Faunt CC, Traum JA, Boyce SE, Seymour WA, Jachens ER, Brandt JT, Sneed M, Bond S, Marcelli MF. Groundwater Sustainability and Land Subsidence in California’s Central Valley. Water. 2024; 16(8):1189. https://doi.org/10.3390/w16081189
Chicago/Turabian StyleFaunt, Claudia C., Jonathan A. Traum, Scott E. Boyce, Whitney A. Seymour, Elizabeth R. Jachens, Justin T. Brandt, Michelle Sneed, Sandra Bond, and Marina F. Marcelli. 2024. "Groundwater Sustainability and Land Subsidence in California’s Central Valley" Water 16, no. 8: 1189. https://doi.org/10.3390/w16081189
APA StyleFaunt, C. C., Traum, J. A., Boyce, S. E., Seymour, W. A., Jachens, E. R., Brandt, J. T., Sneed, M., Bond, S., & Marcelli, M. F. (2024). Groundwater Sustainability and Land Subsidence in California’s Central Valley. Water, 16(8), 1189. https://doi.org/10.3390/w16081189