An Analysis of Society’s Willingness to Restore the Aquatic Environment in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Research
Method of Carrying Out the Survey
2.3. Methodology for Processing the Results
- H0: the null hypothesis is that the groups are equal;
- H1: the alternative hypothesis is that the groups are not equal.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amoros, C.; Bornette, G. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw. Biol. 2002, 47, 761–776. [Google Scholar] [CrossRef]
- Radinger, J.; Hölker, F.; Horký, P.; Slavík, O.; Wolter, C. Improved river continuity facilitates fishes’ abilities to track future environmental changes. J. Environ. Manag. 2018, 208, 169–179. [Google Scholar] [CrossRef]
- Hermoso, V.; Kennard, M.; Linke, S. Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Divers. Distrib. 2012, 18, 448–458. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, B.; Du, J.; Wang, Q.; Yu, S.; Yang, W. A method for evaluating the longitudinal functional connectivity of a river–lake–marsh system and its application in China. Hydrol. Process. 2020, 34, 5278–5297. [Google Scholar] [CrossRef]
- Vagheei, H.; Laini, A.; Vezza, P.; Palau-Salvador, G.; Boano, F. Ecohydrologic modeling using nitrate, ammonium, phosphorus, and macroinvertebrates as aquatic ecosystem health indicators of Albaida Valley (Spain). J. Hydrol. Reg. Stud. 2022, 42, 101155. [Google Scholar] [CrossRef]
- da Silva, D.F.M.; da Silva, L.M.L.; Garnier, J.; Araújo, D.F.; Mulholland, D.S. Linking multivariate statistical methods and water quality indices to evaluate the natural and anthropogenic geochemical processes controlling the water quality of a tropical watershed. Environ. Monit. Assess. 2023, 195, 1240. [Google Scholar] [CrossRef]
- Shi, J. Identifying the influence of natural and human factors on seasonal water quality in China: Current situation of China’s water environment and policy impact. Environ. Sci. Pollut. Res. 2023, 30, 104852–104869. [Google Scholar] [CrossRef]
- Li, Y.; Mi, W.; Ji, L.; He, Q.; Yang, P.; Xie, S.; Bi, Y. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality. Sci. Total Environ. 2023, 20, 162559. [Google Scholar] [CrossRef]
- Callow, J.N.; Smettem, K.R.J. The effect of farm dams and constructed banks on hydrologic connectivity and runoff estimation in agricultural landscapes. Environ. Model. Softw. 2009, 24, 959–968. [Google Scholar]
- Bracken, L.J.; Wainwright, J.; Ali, G.A.; Tetzlaff, D.; Smith, M.W.; Reaney, S.M.; Roy, A.G. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Sci. Rev. 2013, 119, 17–34. [Google Scholar]
- Segurado, P.; Branco, P.; Ferreira, M.T. Prioritizing restoration of structural connectivity in rivers: A graph-based approach. Landsc. Ecol. 2013, 28, 1231–1238. [Google Scholar]
- Wohl, E. Connectivity in rivers. Prog. Phys. Geogr. 2017, 41, 345–362. [Google Scholar] [CrossRef]
- Deng, X.; Xu, Y.; Han, L.; Song, S.; Xu, G.; Xiang, J. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. J. Hydrol. 2018, 566, 846–859. [Google Scholar] [CrossRef]
- Kennedy, T.A.; Naeem, S.; Howe, K.M.; Knops, J.M.H.; Tilman, D.; Reich, P. Biodiversity as a Barrier to Ecological Invasion. Nature 2002, 417, 636–638. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Kerry, R.; Turner, K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Mahmoud, M.; Liu, Y.; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.; Dominguez, D.; Dominguez, F.; et al. A Formal Framework for Scenario Development in Support of Environmental Decision-Making. Environ. Model. Softw. 2009, 24, 798–808. [Google Scholar] [CrossRef]
- Fullerton, A.; Burnett, K.; Steel, E.; Flitcroft, R.; Pess, G.; Feist, B.; Torgersen, C.; Miller, D.; Sanderson, B. Hydrological connectivity for riverine fish: Measurement challenges and research opportunities. Freshw. Biol. 2010, 55, 2215–2237. [Google Scholar] [CrossRef]
- Couvet, D.; Jiguet, F.; Julliard, R.; Levrel, H.; Teyssèdre, A. Enhancing citizen contributions to biodiversity science and public policy. Interdiscip. Sci. Rev. 2008, 31, 95–103. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.V.; O’Neil, R.; Paruelo, J.G.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Jansson, R.; Nilsson, C.; Malmqvist, B. Restoring Freshwater Ecosystems in Riverine Landscapes: The Roles of Connectivity and Recovery Processes. Freshw. Biol. 2007, 52, 589–596. [Google Scholar] [CrossRef]
- Boyé, H.; de Vivo, M. The Environmental and Social Acceptability of Dams. Field Actions Sci. Rep. 2016, 14, 32–37. Available online: http://journals.openedition.org/factsreports/4055 (accessed on 25 January 2024).
- Verkerk, P.; Sánchez, A.; Libbrecht, S.; Broekman, A.; Bruggeman, A.; Daly-Hassen, H.; Giannkis, E.; Jebari, S.; Kok, K.; Klemencic, A.K.; et al. A Participatory Approach for Adapting River Basins to Climate Change. Water 2017, 9, 958. [Google Scholar] [CrossRef]
- Lindqvist, A.N.; Fornell, R.; Prade, T.; Khalil, S.; Tufvesson, L.; Kopainsky, B. Impacts of future climate on local water supply and demand—A socio-hydrological case study in the Nordic region. J. Hydrol. Reg. Stud. 2022, 41, 101066. [Google Scholar] [CrossRef]
- Pringle, C. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process 2003, 17, 2685–2689. [Google Scholar] [CrossRef]
- Fencl, J.; Mather, M.; Costigan, K.; Daniels, M. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation. PLoS ONE 2015, 10, e0141210. [Google Scholar] [CrossRef]
- Branco, P.; Amaral, S.D.; Ferreira, M.T.; Santos, J.M. Do small Barriers Affect the Movement of Freshwater Fish by Increasing Residency? Sci. Total Environ. 2017, 581–582, 486–494. [Google Scholar] [CrossRef]
- Anderson, E.; Jenkins, C.; Heilpern, S.; Maldonado-Ocampo, J.; Carvajal-Vallejos, F.; Encalada, A.; Rivadeneira, J.; Hidalgo, M.; Cañas, C.; Ortega, H.; et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 2018, 4, eaao1642. [Google Scholar] [CrossRef]
- Jungwirth, M.; Muhar, S.; Schmutz, S. Fundamentals of fish ecological integrity and their relation to the extended serial discontinuity concept. Hydrobiologia 2000, 422–423, 85–97. [Google Scholar] [CrossRef]
- Garcia de Leaniz, C. Weir Removal in Salmonid Streams: Implications, Challenges and Practicalities. Hydrobiologia 2008, 609, 83–96. [Google Scholar] [CrossRef]
- Holmquist, J.G.; Schmidt-Gengenbach, J.; Yoshioka, B.B. High dams and marine-freshwater linkages: Effects on native and introduced fauna in the caribbean. Conserv. Biol. 1998, 12, 621–630. [Google Scholar] [CrossRef]
- Limburg, K.E.; Waldman, J.R. Dramatic Declines in North Atlantic Diadromous Fishes. BioScience 2009, 59, 955–965. [Google Scholar] [CrossRef]
- González-Ferreras, A.; Bertuzzo, E.; Barquín, J.; Carraro, L.; Alonso, C.; Rinaldo, A. Effects of altered river network connectivity on the distribution of Salmo trutta: Insights from a metapopulation model. Freshw. Biol. 2019, 64, 1877–1895. [Google Scholar] [CrossRef]
- Fernández, S.; Rodríguez-Martínez, S.; Martínez, J.L.; Garcia-Vazquez, E.; Ardura, A. How Can eDNA Contribute in Riverine Macroinvertebrate Assessment? A Metabarcoding Approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 2019, 1, 385–401. [Google Scholar] [CrossRef]
- Clavero, M.; Blanco-Garrido, F.; Prenda, J. Fish Fauna in Iberian Mediterranean River Basins: Biodiversity, Introduced Species and Damming Impacts. Aquat. Conserv. Mar. Freshw. Ecosyst. 2004, 14, 575–585. [Google Scholar]
- Johnson, P.T.; Olden, J.D.; Vander Zanden, M.J. Dam Invaders: Impoundments Facilitate Biological Invasions into Freshwaters. Front. Ecol. Environ. 2008, 6, 357–363. [Google Scholar]
- Santos, J.M.; Reino, L.; Porto, M.; Oliveira, J.; Pinheiro, P.; Almeida, P.R.; Cortes, R.; Ferreira, M.T. Complex size-dependent habitat associations in potamodromous fish species. Aquat. Sci. 2011, 73, 233–245. [Google Scholar]
- Wohl, E. Forgotten Legacies: Understanding and Mitigating Historical Human Alterations of River Corridors. Water Resour. Res. 2019, 55, 5181–5201. [Google Scholar] [CrossRef]
- Shaw, E.; Coldwell, D.; Cox, A.; Duffy, M.; Firth, C.; Fulton, B.; Goodship, S.; Hyslop, S.; Rowley, D.; Walker, R.; et al. Urban Rivers Corridors in the Don Catchment, UK: From Ignored, Ignoble and Industrial to Green, Seen and Celebrated. Sustainability 2021, 13, 7646. [Google Scholar] [CrossRef]
- Wohl, E.; Rathburn, S.; Dunn, S.; Iskin, E.; Katz, A.; Marshall, A.; Means-Brous, M.; Scamardo, J.; Triantafillou, S.; Uno, H. Geomorphic context in process-based river restoration. River Res. Appl. 2024, 40, 1–19. [Google Scholar] [CrossRef]
- Kemp, P.S.; O’Hanley, J.R. Procedures for evaluating and priori tising the, removal of fish passage barriers: A synthesis. Fish. Manag. Ecol. 2010, 17, 297–322. [Google Scholar]
- Pe’er, G.; Henle, K.; Dislich, C.; Frank, K. Breaking functional connectivity into components: A novel approach using an individ ual-based model, and first outcomes. PLoS ONE 2011, 6, e22355. [Google Scholar]
- Eros, T.; Olden, J.D.; Schick, R.S.; Schmera, D.; Fortin, M.-J. Characterizing connectivity relationships in freshwaters using patch based graphs. Landsc. Ecol. 2012, 27, 303–317. [Google Scholar]
- McKay, J.K.; Kuntz, J.; Naswall, K. The effect of affective commitment, communication and participation on resistance to change: The role of change readiness. N. Z. J. Psychol. 2013, 42, 29–40. [Google Scholar]
- Kondolf, G.; Boulton, A.; O’Daniel, S.; Poole, G.; Rahel, F.; Stanley, E.; Wohl, E.; Bång, Å.; Carlström, J.; Cristoni, C.; et al. Process-Based Ecological River Restoration: Visualizing Three-Dimensional Connectivity and Dynamic Vectors to Recover Lost Linkages. Ecol. Soc. 2006, 11, 1–16. [Google Scholar] [CrossRef]
- Wainwright, J.; Turnbull, L.; Ibrahim, T.; Lexartza-Artza, I.; Thornton, S.; Brazier, R. Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology 2008, 126, 387–404. [Google Scholar] [CrossRef]
- Rodeles, A.A.; Galicia, D.; Miranda, R. A new method to include fish biodiversity in river connectivity indices with applications in dam impact assessments. Ecol. Indic. 2020, 117, 106605–106614. [Google Scholar] [CrossRef]
- Hermida, M.A.; Cabrera-Jara, N.; Osorio, P.; Cabrera, S. Methodology for the assessment of connectivity and comfort of urban rivers. Cities 2019, 95, 102376. [Google Scholar] [CrossRef]
- Negi, G.C.S.; Punetha, D. People’s perception on impacts of hydro-power projects in Bhagirathi river valley, India. Environ. Monit. Assess. 2017, 189, 138. [Google Scholar] [CrossRef]
- Tomáš, G.; Václav, Š.; Stanislav, R. Impact of check dam series on coarse sediment connectivity. Geomorphology 2021, 377, 107595. [Google Scholar] [CrossRef]
- Fernandez, S.; Arboleya, E.; Dopico, E.; Garcia-Vazquez, E. Dams in South Europe: Socio-environmental approach and eDNA-metabarcoding to study dam acceptance and ecosystem health. Wetl. Ecol. Manag. 2022, 30, 341–355. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Podolak, K. Urban rivers: Landscapes of leisure and consumption. In Globalization and Metropolization—Theory and Practice from Europe’s West Coast; Santos, P.M., Seixas, P.C., Eds.; Berkeley Public Policy Press, Institute of Governmental Studies: Berkeley, CA, USA, 2014; pp. 33–44. [Google Scholar]
- Kondolf, G.M.; Pinto, P.J. The social connectivity of urban rivers. Geomorphology 2017, 277, 182–196. [Google Scholar] [CrossRef]
- National Institute of Statistics of Romania. Available online: https://insse.ro/cms/en (accessed on 10 January 2024).
- National Administration of Romanian Waters. Available online: https://rowater.ro/activitatea-institutiei/departamente/managementul-european-integrat-resurse-de-apa/planurile-de-management-ale-bazinelor-hidrografice/planuri-de-management-nationale/ (accessed on 11 January 2024).
- European Commission 2000 Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy. OJ L327. 22 December 2000. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32000L0060 (accessed on 10 January 2024).
- Questionnaire on River Connectivity. Available online: https://forms.gle/DCSr39enTMBdszCT7 (accessed on 7 January 2024).
- Thode, H.C. Testing for Normality (Statistics: Textbooks and Monographs), 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Bagdonavičius, V.B.; Levuliene, R.J.; Nikulin, M.S. Chi-Squared Goodness-of-Fit Tests for Parametric Accelerated Failure Time Models. Commun. Stat. Theory Methods 2013, 42, 2768–2785. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Pal, S. A Comprehensive Textbook on Sample Surveys; Indian Statistical Institute Series; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Eichhorn, J. Survey Research and Sampling; Sage Research Methods, The SAGE Quantitative Research Kit; SAGE Publications Ltd.: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.A. Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; Sage: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Tomczak, M.T.; Tomczak, E. The Need to Report Effect Size Estimates Revisited. An Overview of Some Recommended Measures of Effect Size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Lejon, A.G.C.; Malm Renöfält, B.; Nilsson, C. Conflicts Associated with Dam Removal in Sweden. Ecol. Soc. 2009, 14, 4. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.; Tang, C.; Zhang, S. Evaluation of river longitudinal connectivity based on landscape pattern and its application in the middle and lower reaches of the Yellow River, China. Environ. Sci. Pollut. Res. 2022, 30, 30779–30792. [Google Scholar]
- Peptenatu, D.; Merciu, C.; Merciu, G.; Draghici, C.; Cercleux, L. Specific features of environment risk management in emerging territorial structures. Carpathian J. Earth Environ. Sci. 2012, 7, 135–143. [Google Scholar]
- Petrișor, A.I.; Andronache, I.; Petrisor, L.E.; Ciobotaru, A.M.; Peptenatu, D. Assessing the fragmentation of the green infrastructure in Romanian cities using fractal models and numerical taxonomy. Procedia Environ. Sci. 2016, 32, 110–123. [Google Scholar] [CrossRef]
- Drăghici, C.C.; Andronache, I.; Ahammer, H.; Peptanatu, D.; Pintilii, R.D.; Ciobotaru, A.-M.; Simion, A.; Dobrea, R.C.; Diaconu, D.C.; Vișan, M.-C.; et al. Spatial evolution of forest areas in the northern Carpathian Mountains of Romania. Acta Agric. Slov. 2017, 22, 95–106. [Google Scholar]
- Andronache, I.; Fensholt, R.; Ahammer, H.; Ciobotaru, A.-M.; Pintilii, R.-D.; Peptenatu, D.; Drăghici, C.C.; Diaconu, D.C.; Radulović, M.; Pulighe, G.; et al. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis. Forests 2017, 8, 54. [Google Scholar] [CrossRef]
- Andronache, I.; Marin, M.; Fischer, R.; Ahammer, H.; Radulovic, M.; Ciobotaru, A.M.; Jelinek, H.F.; Di Ieva, A.; Pintilii, R.-D.; Drăghici, C.-C.; et al. Dynamics of Forest Fragmentation and Connectivity Using Particle and Fractal Analysis. Sci. Rep. 2019, 9, 12228. [Google Scholar] [CrossRef]
- Diaconu, D.C.; Andronache, I.; Pintilii, R.D.; Brețcan, P.; Simion, A.G.; Drăghici, C.C.; Gruia, K.A.; Grecu, A.; Marin, M.; Peptenatu, D. Using fractal fragmentation and compaction index in analysis of the deforestation process in Bucegi Mountains Group, Romania. Carpathian J. Earth Environ. Sci. 2019, 14, 431–438. [Google Scholar] [CrossRef]
- Diaconu, D.C.; Peptenatu, D.; Tanislav, T.; Mailat, E. The importance of the number of points, transect location and interpolation techniques in the analysis of bathymetric measurements. J. Hydrol. 2019, 570, 774–785. [Google Scholar]
- Popa, M.C.; Simion, A.G.; Peptenatu, D.; Dima, C.; Drăghici, C.C.; Florescu, M.S.; Dobrea, R.C.; Diaconu, D.C. Spatial assessment of flash-flood vulnerability in the Moldova river catchment (N Romania) using the FFPI. J. Flood Risk Manag. 2020, 13, e12624. [Google Scholar] [CrossRef]
- Simion, A.G.; Andronache, I.; Ahammer, H.; Marin, M.; Loghin, V.; Nedelcu, I.D.; Popa, M.C.; Peptenatu, D.; Jelinek, H.F. Particularities of Forest Dynamics Using Higuchi Dimension. Parâng Mountains as a Case Study. Fractal Fract. 2021, 5, 96. [Google Scholar] [CrossRef]
- Larinier, M. Environmental Issues, Dams and Fish Migration. Dams, Fish and Fisheries, Opportunities, Challenges and Conflict Resolution; Marmulla, G., Ed.; FAO Fisheries Technical Paper 419; FAO: Rome, Italy, 2001; pp. 45–89. [Google Scholar]
- Côté, D.; Kehler, D.G.; Bourne, C.; Wiersma, Y.F. A new measure of longitudinal connectivity for stream networks. Landsc. Ecol. 2009, 24, 101–113. [Google Scholar]
- Hackbart, V.C.S.; de Lima, G.T.N.P.; Dos Santos, R.F. Theory and Practice of Water Ecosystem Services Valuation: Where Are We Going? Ecosyst. Serv. 2017, 23, 218–227. [Google Scholar] [CrossRef]
Index | Mean (EUR) | Standard Deviation (EUR) | Sum (EUR) | Skewness | Kurtosis | |
---|---|---|---|---|---|---|
Action | ||||||
1. Building fish migration passages | 22.71 | 23.8 | 11,604.6 | 1.7 | 2.8 | |
2. Conservation of indigenous fish species and their numbers | 23.05 | 24.3 | 11,779.6 | 1.8 | 2.9 | |
3. Improvement in fish stocks for fishing purposes | 24.79 | 25.9 | 12,670.6 | 1.5 | 1.6 | |
4. Conservation of all fish species in the river | 25.96 | 27.6 | 13,266.2 | 1.6 | 1.5 | |
5. Improving the aquatic environment | 30.47 | 30.7 | 15,572.8 | 1.2 | 0.2 |
Action | 1.Building Fish Migration Passages | 2.Conservation of Indigenous Fish Species and Their Numbers | 3.Improvement in Fish Stocks for Fishing Purposes | 4.Conservation of All Fish Species in the River | 5.Improving the Aquatic Environment | |
---|---|---|---|---|---|---|
Socio-Demographic Characteristics | ||||||
Gender | α > 0.05 | α > 0.05 | α > 0.05 | α < 0.05 small effect size | α > 0.05 | |
Age | α > 0.05 | α > 0.05 | α < 0.05 small effect size | α > 0.05 | α < 0.05 small effect size | |
Level of education | α < 0.05 small effect size | α < 0.05 small effect size | α < 0.05 small effect size | α > 0.05 | α < 0.05 small effect size | |
Residential environment | α > 0.05 | α > 0.05 | α > 0.05 | α < 0.05 small effect size | α > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaconu, D.C.; Ardelean, A.; Toma, F.; Diaconu, D.C.; Gruia, A.R.; Peptenatu, D. An Analysis of Society’s Willingness to Restore the Aquatic Environment in Romania. Water 2024, 16, 1159. https://doi.org/10.3390/w16081159
Diaconu DC, Ardelean A, Toma F, Diaconu DC, Gruia AR, Peptenatu D. An Analysis of Society’s Willingness to Restore the Aquatic Environment in Romania. Water. 2024; 16(8):1159. https://doi.org/10.3390/w16081159
Chicago/Turabian StyleDiaconu, Daniel Constantin, Andreea Ardelean, Florentina Toma, Dragoș Cristian Diaconu, Andrei Rafael Gruia, and Daniel Peptenatu. 2024. "An Analysis of Society’s Willingness to Restore the Aquatic Environment in Romania" Water 16, no. 8: 1159. https://doi.org/10.3390/w16081159
APA StyleDiaconu, D. C., Ardelean, A., Toma, F., Diaconu, D. C., Gruia, A. R., & Peptenatu, D. (2024). An Analysis of Society’s Willingness to Restore the Aquatic Environment in Romania. Water, 16(8), 1159. https://doi.org/10.3390/w16081159