Water and Energy Sustainability of Swimming Pools: A Case Model on the Costa Brava, Catalonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydraulic Model of the Pool
2.2. Energy Model of the Pool
- Thermal losses: Evaporation of water is a significant source of heat loss in swimming pools, especially in outdoor pools. The use of covers or dehumidification systems in indoor pools can control these losses. In addition, the thermal insulation of the pool and minimizing transmission losses through the pool walls and bottom are key strategies to maintain a favorable energy balance.
- Water heating: The energy required to heat pool water represents one of the largest energy demands. The use of more efficient heating systems, such as heat pumps, solar thermal systems or grey water heat recovery, can significantly reduce this consumption.
- Filtration and pumping systems: These systems are essential for maintaining water quality, but they also consume energy. Optimizing their operation and using energy-efficient equipment can reduce the associated energy costs.
- Air conditioning system: The air conditioning and heat treatment system in indoor swimming pools controls temperature, humidity, and air quality, ensuring comfort and protecting the infrastructure.
- the manometric head (pressure) at which the pump works, in m.w.c.
2.3. Experimental Design of Monitoring and Simulation in Swimming Pools
- is the evaporation value, in mm/day per unit area of the pool.
- is the average temperature.
- is the latitude, in degree of the location.
- is the temperature of Dew.
- is the height above sea level of the location.
- is the evaporation value, in mm/day per unit area.
- is a coefficient that depends on the depth of the water body (0.36 for deep water bodies and 0.5 for shallow or shallow water bodies). For swimming pools, 0.5 is used as the coefficient .
- is the saturation pressure of water vapour at water surface temperature (mmHg).
- is the saturation pressure of water vapour above the water surface at a given height (mmHg).
- is the daily average wind speed at a height of 9 m above the surface (km/h).
3. Results
- In heated indoor pools, the largest energy consumption is attributed to the water heating system described in Equation (6), where a steady-state installation, on one side of the equation, and the heat produced by the pool heating system offsetting, on the other side of the equation, all describe the various heat loss variables of the pool. This is a critical factor, as maintaining a comfortable pool water temperature requires a significant amount of energy, especially in colder climates or during low temperature seasons.
- On the other hand, in outdoor pools, where water heating systems are not usually used, the main energy consumer is the filtration system described in Equation (9), which describes the calculation of the power required by the filtration pump to recirculate the water, which is necessary for the correct treatment of the water. Filtration pumps are essential for maintaining water quality, removing impurities, and ensuring adequate sanitary conditions for users. However, these systems require a continuous use of energy to operate effectively.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gössling, S.; Scott, D.; Hall, C.M. Pandemics, Tourism and Global Change: A Rapid Assessment of COVID-19. J. Sustain. Tour. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Scott, D.; Gössling, S.; Hall, C.M. International Tourism and Climate Change. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 213–232. [Google Scholar] [CrossRef]
- Uzunlar, A.; Dis, M.O. Novel Approaches for the Empirical Assessment of Evapotranspiration over the Mediterranean Region. Water 2024, 16, 507. [Google Scholar] [CrossRef]
- Saurí, D.; Olcina, J.; Vera, J.; Martin-Vide, J.; March, H.; Serra-Llobet, A.; Padilla, E. Tourism, Climate Change and Water Resources: Coastal Mediterranean Spain as an Example; Wiley: Hoboken, NJ, USA, 2013; pp. 231–252. ISBN 9780470977415. [Google Scholar]
- World Tourism Organisation (UNWTO). UNWTO World Tourism Barometer. 2022. Available online: https://webunwto.s3.eu-west-1.amazonaws.com/s3fs-public/2022-09/UNWTO_Barom22_05_Sept_EXCERPT.pdf?VersionId=pYFmf7WMvpcfjUDuhNzbQ_G.4phQX79q (accessed on 12 June 2023).
- Generalitat de Catalunya. El Canvi Climàtic a Catalunya—3er Informe Sobre El Canvi Climàtic a Catalunya; Barcelona, Spain; 2017. Available online: https://canviclimatic.gencat.cat/web/.content/03_AMBITS/adaptacio/Informes_del_canvi_climatic_a_catalunya/WEB_RESUM_EXECUTIU_2017.pdf (accessed on 7 January 2024).
- Mellou, K.; Mplougoura, A.; Mandilara, G.; Papadakis, A.; Chochlakis, D.; Psaroulaki, A.; Mavridou, A. Swimming Pool Regulations in the COVID-19 Era: Assessing Acceptability and Compliance in Greek Hotels in Two Consecutive Summer Touristic Periods. Water 2022, 14, 796. [Google Scholar] [CrossRef]
- Villar-Navascués, R.A.; Pérez-Morales, A. Factors Affecting Domestic Water Consumption on the Spanish Mediterranean Coastline. Prof. Geogr. 2018, 70, 513–525. [Google Scholar] [CrossRef]
- Mendoza, E.; Ferrero, G.; Slokar, Y.M.; Amores, X.; Azzellino, A.; Buttiglieri, G. Water Management Practices in Euro-Mediterranean Hotels and Resorts. Int. J. Water Resour. Dev. 2023, 39, 485–506. [Google Scholar] [CrossRef]
- Iraldo, F.; Nucci, B. Proactive Environmental Management in Hotels: What Difference Does It Make? Econ. Policy Energy Environ. 2016, 2016, 81–106. [Google Scholar] [CrossRef]
- Sun, R.; Gao, J. Theories Study of Modelling Tourism Impacts on Coastal Environment. Adv. Mater. Res. 2012, 573, 358–361, ISBN 9783037854952. [Google Scholar] [CrossRef]
- Puig, R.; Kiliç, E.; Navarro, A.; Albertí, J.; Chacón, L.; Fullana-i-Palmer, P. Inventory Analysis and Carbon Footprint of Coastland-Hotel Services: A Spanish Case Study. Sci. Total. Environ. 2017, 595, 244–254. [Google Scholar] [CrossRef]
- Kiper, V.O.; Sarac, O.; Batman, O. Drought Tourism: Adopting Tourism for Water Scarcity. In Reviving Tourism in the Post-Pandemic Era; Christou, E., Fotiadis, A., Eds.; School of Economics and Business, International Hellenic University: Nea Moudania, Greece, 2022; pp. 531–541. ISBN 9786185630065. [Google Scholar]
- Saló, A.; Garriga, A.; Rigall-I-Torrent, R.; Vila, M.; Fluvià, M. Do Implicit Prices for Hotels and Second Homes Show Differences in Tourists’ Valuation for Public Attributes for Each Type of Accommodation Facility? Int. J. Hosp. Manag. 2014, 36, 120–129. [Google Scholar] [CrossRef]
- Soifer, I.; Choi, E.-K.; Lee, E. Do Hotel Attributes and Amenities Affect Online User Ratings Differently across Hotel Star Ratings? J. Qual. Assur. Hosp. Tour. 2021, 22, 539–560. [Google Scholar] [CrossRef]
- Bočkus, D.; Tammi, T.; Vento, E.; Komppula, R. Wellness Tourism Service Preferences and Their Linkages to Motivational Factors: A Multiple Case Study. Int. J. Spa Wellness 2023, 6, 78–108. [Google Scholar] [CrossRef]
- Heilgeist, S.; Sahin, O.; Sekine, R.; Stewart, R.A. Mapping the Complex Journey of Swimming Pool Contaminants: A Multi-Method Systems Approach. Water 2022, 14, 2062. [Google Scholar] [CrossRef]
- Al Khatib, I.A.; Ghannam, R.S. Microbiological Water Quality and Sampling Policy of Public Swimming Pools. Int. J. Environ. Eng. 2011, 3, 192. [Google Scholar] [CrossRef]
- Ministerio de Sanidad, Servicios Sociales e Igualdad. Gobierno de España; Real Decreto 742/2013, de 27 de Septiembre, Por El Que Se Establecen Los Criterios Técnico-Sanitarios de Las Piscinas. Available online: https://www.boe.es/buscar/pdf/2013/BOE-A-2013-10580-consolidado.pdf (accessed on 13 July 2023).
- Gallion, T.; Harrison, T.; Hulverson, R.; Hristovski, K. Estimating Water, Energy, and Carbon Footprints of Residential Swimming Pools. In Water Reclamation and Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 343–359. ISBN 9780124165762. [Google Scholar]
- Rico, A.; Martínez-Blanco, J.; Montlleó, M.; Rodríguez, G.; Tavares, N.; Arias, A.; Oliver-Solà, J. Carbon Footprint of Tourism in Barcelona. Tour. Manag. 2019, 70, 491–504. [Google Scholar] [CrossRef]
- Díaz Pérez, F.J.; Chinarro, D.; Guardiola Mouhaffel, A.; Díaz Martín, R.; Pino Otín, M. aR Comparative Study of Carbon Footprint of Energy and Water in Hotels of Canary Islands Regarding Mainland Spain. Environ. Dev. Sustain. 2019, 21, 1763–1780. [Google Scholar] [CrossRef]
- Generatlitat de Catalunya Resolució ACC/220/2024, d’1 de Febrer, per La Qual Es Declara L’estat D’emergència I per Sequera Hidrològica a Les Unitats d’explotació Embassaments Del Ter-Llobregat, Embassaments Del Ter i Embassaments Del Llobregat, Es Declara La Sortida D’alerta de La Unitat D’explotació Del Consorci d’Aigües de Tarragona i S’actualitzen Diversos Estats de Sequera Pluviomètrica. Available online: https://dogc.gencat.cat/ca/document-del-dogc/?documentId=977626 (accessed on 2 March 2024).
- Generalitat de Catalunya (Agència Catalana de l’Aigua) El Visor de La Sequera. Available online: https://aplicacions.aca.gencat.cat/visseq/estat-actual (accessed on 2 March 2024).
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Nardelli, B.B. New Evidence of Mediterranean Climate Change and Variability from Sea Surface Temperature Observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Tramblay, Y.; Llasat, M.C.; Randin, C.; Coppola, E. Climate Change Impacts on Water Resources in the Mediterranean. Reg. Environ. Chang. 2020, 20, 83. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for Drought Assessment in the Mediterranean Region under Future Climate Scenarios. Earth Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Marinopoulos, I.S.; Katsifarakis, K.L. Optimization of Energy and Water Management of Swimming Pools. A Case Study in Thessaloniki, Greece. Procedia Environ. Sci. 2017, 38, 773–780. [Google Scholar] [CrossRef]
- Doménech-Sánchez, A.; Laso, E.; Berrocal, C.I. Water Loss in Swimming Pool Filter Backwashing Processes in the Balearic Islands (Spain). Water Policy 2021, 23, 1314–1328. [Google Scholar] [CrossRef]
- Mancic, M.V.; Zivkovic, D.S.; Djordjevic, M.L.; Jovanovic, M.S.; Rajic, M.N.; Mitrovic, D.M. Techno-economic optimization of configuration and capacity of a polygeneration system for the energy demands of a public swimming pool building. Thermal. Sci. 2018, 22, S1535–S1549. [Google Scholar] [CrossRef]
- Li, Y.; Nord, N.; Huang, G.; Li, X. Swimming Pool Heating Technology: A State-of-the-Art Review. Build. Simul. 2021, 14, 421–440. [Google Scholar] [CrossRef]
- Generalitat de Catalunya DECRET 165/2001, de 12 de Juny, de Modificació Del Decret 95/2000, de 22 de Febrer, Pel Qual s’estableixen Les Normes Sanitàries Aplicables a Les Piscines d’ús Públic. Available online: https://portaljuridic.gencat.cat/ca/document-del-pjur/?documentId=260850 (accessed on 13 July 2023).
- Generalitat de Catalunya DECRET 95/2000, de 22 de Febrer, Pel Qual s’estableixen Les Normes Sanitàries Aplicables a Les Piscines d’ús Públic. Available online: https://portaljuridic.gencat.cat/eli/es-ct/d/2000/02/22/95 (accessed on 13 July 2023).
- Generalitat de Catalunya DECRET 177/2000, de 15 de Maig, Pel Qual Es Modifica La Disposició Transitòria Única Del Decret 95/2000, de 22 de Febrer, Pel Qual s’estableixen Les Normes Sanitàries Aplicables a Les Piscines d’ús Públic. Available online: https://portaljuridic.gencat.cat/ca/document-del-pjur/?documentId=229596 (accessed on 13 July 2023).
- Lugo, S.; Morales, L.I.; Best, R.; Gómez, V.H.; García-Valladares, O. Numerical Simulation and Experimental Validation of an Outdoor-Swimming-Pool Solar Heating System in Warm Climates. Sol. Energy 2019, 189, 45–56. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; Maciá-Mateu, A.; Sirvent-García, G.; Lledó-Llorca, I. Study of Natural Ventilation and Solar Control Strategies to Improve Energy Efficiency and Environmental Quality in Glazed Heated Swimming Pools in a Dry Mediterranean Climate. Sustainability 2022, 14, 8243. [Google Scholar] [CrossRef]
- Lam, J.C.; Chan, W.W. Life Cycle Energy Cost Analysis of Heat Pump Application for Hotel Swimming Pools. Energy Convers. Manag. 2001, 42, 1299–1306. [Google Scholar] [CrossRef]
- Floričić, T. Sustainable Solutions in the Hospitality Industry and Competitiveness Context of “Green Hotels”. Civ. Eng. J. 2020, 6, 1104–1113. [Google Scholar] [CrossRef]
- Bagur-Femenias, L.; Celma, D.; Patau, J. The Adoption of Environmental Practices in Small Hotels. Voluntary or Mandatory? An Empirical Approach. Sustainability 2016, 8, 695. [Google Scholar] [CrossRef]
- Kular, N.K. Energy Conservation in Hotels: A Green Approach. In Managing Sustainability in the Hospitality and Tourism Industry; Apple Academic Press: Palm Bay, FL, USA, 2014; ISBN 9781482223569. [Google Scholar]
- Khatter, A.; McGrath, M.; Pyke, J.; White, L.; Lockstone-Binney, L. Analysis of Hotels’ Environmentally Sustainable Policies and Practices: Sustainability and Corporate Social Responsibility in Hospitality and Tourism. Int. J. Contemp. Hosp. Manag. 2019, 31, 2394–2410. [Google Scholar] [CrossRef]
- Hof, A.; Moran-Tejeda, E.; Lorenzo-Lacruz, J.; Blazquez-Salom, M. Swimming Pool Evaporative Water Loss and Water Use in the Balearic Islands (Spain). Water 2018, 10, 1883. [Google Scholar] [CrossRef]
- Gómez Martínez, G.; Pérez Martín, M.Á. Water Management Adaptation to Climate Change in Mediterranean Semiarid Regions by Desalination and Photovoltaic Solar Energy, Spain. Water 2023, 15, 3239. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The Carbon Footprint of Global Tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- María del Rosario, R.S.; Patricia S., S.M.; René, D.P. Eco-Innovation and Organizational Culture in the Hotel Industry. Int. J. Hosp. Manag. 2017, 65, 71–80. [Google Scholar] [CrossRef]
- Legrand, W.; Dubrocard, N. Freshwater and Waste Water Management in Mediterranean Hotels and Resorts: Owner-Operator Issues. In Sustainable Tourism Practices in the Mediterranean; Routledge: London, UK, 2019; ISBN 978-1-351-59956-6. [Google Scholar]
- Gössling, S. New Performance Indicators for Water Management in Tourism. Tour. Manag. 2015, 46, 233–244. [Google Scholar] [CrossRef]
- Page, S.J.; Essex, S.; Causevic, S. Tourist Attitudes towards Water Use in the Developing World: A Comparative Analysis. Tour. Manag. Perspect. 2014, 10, 57–67. [Google Scholar] [CrossRef]
- Forrest, N.; Williams, E. Life Cycle Environmental Implications of Residential Swimming Pools. Environ. Sci. Technol. 2010, 44, 5601–5607. [Google Scholar] [CrossRef]
- Shah, M.M. Improved Model for Calculation of Evaporation from Water Pools. Sci. Technol. Built. Environ. 2018, 24, 1064–1074. [Google Scholar] [CrossRef]
- Shah, M.M. Evaluation of Methods for Prediction of Evaporation from Water Pools. J. Build. Phys. 2022, 45, 629–648. [Google Scholar] [CrossRef]
- Shah, M.M. Further Development and Verification of the Model for Evaporation from Pools. Sci. Technol. Built. Environ. 2023, 29, 75–85. [Google Scholar] [CrossRef]
- Smith, C.C.; Loef, G.O.G.; Jones, R.W. Rates of Evaporation from Swimming Pools in Active; ASHRAE: Peachtree Corners, GA, USA, 1999. [Google Scholar]
- Linacre, E.T. A Simple Formula for Estimating Evaporation Rates in Various Climates, Using Temperature Data Alone. Agric. Meteorol. 1977, 18, 409–424. [Google Scholar] [CrossRef]
- Meyer, A.F. Computing Runoff from Rainfall and Other Physical Data. Trans. Am. Soc. Civ. Eng. 1915, 79, 1056–1224. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Cloteaux, A.; Gérardin, F.; Midoux, N. Influence of Swimming Pool Design on Hydraulic Behavior: A Numerical and Experimental Study. Engineering 2013, 5, 511–524. [Google Scholar] [CrossRef]
- Dougha, M.; Hasbaia, M.; Girou, A.; Redjem, A. Analysis of Numerical Simulation of the Hydrodynamics in Swimming Pools, in Terms of Water Quality. EuroMediterr. J. Environ. Integr. 2018, 3, 33. [Google Scholar] [CrossRef]
- Golbaz, S.; Nabizadeh, R.; Zarinkolah, S.; Mahvi, A.H.; Alimohammadi, M.; Yousefi, M. An Innovative Swimming Pool Water Quality Index (SPWQI) to Monitor and Evaluate the Pools: Design and Compilation of Computational Model. Environ. Monit. Assess. 2019, 191, 448. [Google Scholar] [CrossRef]
- Orlov, V.; Zotkin, S.; Pelipenko, A. Mathematical Modelling of Water Exchange in Public Swimming Pools. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 042016. [Google Scholar] [CrossRef]
- Zhang, J.; Sinha, N.; Ross, M.; Tejada-Martínez, A.E. Computational Fluid Dynamics Analysis of the Hydraulic (Filtration) Efficiency of a Residential Swimming Pool. J. Water Health 2018, 16, 750–761. [Google Scholar] [CrossRef]
- Mak, A.H.N.; Chang, R.C.Y. The Driving and Restraining Forces for Environmental Strategy Adoption in the Hotel Industry: A Force Field Analysis Approach. Tour. Manag. 2019, 73, 48–60. [Google Scholar] [CrossRef]
- Aldarabseh, S.M.; Merati, P. Experimental Investigation of the Effects of Intermediate Gravity Waves on the Water Evaporation Rate. J. Therm Sci. Eng. Appl. 2022, 14, 081011. [Google Scholar] [CrossRef]
- Ciuman, P.; Lipska, B. Experimental Validation of the Numerical Model of Air, Heat and Moisture Flow in an Indoor Swimming Pool. Build. Environ. 2018, 145, 1–13. [Google Scholar] [CrossRef]
- Foncubierta Blázquez, J.L.; Maestre, I.R.; González Gallero, F.J.; Álvarez Gómez, P. Experimental Test for the Estimation of the Evaporation Rate in Indoor Swimming Pools: Validation of a New CFD-Based Simulation Methodology. Build. Environ. 2018, 138, 293–299. [Google Scholar] [CrossRef]
- Foncubierta Blázquez, J.L.; Maestre, I.R.; González Gallero, F.J.; Pérez-Lombard, L.; Bottarelli, M. Experimental Adjustment of the Turbulent Schmidt Number to Model the Evaporation Rate of Swimming Pools in CFD Programmes. Case Stud. Therm. Eng. 2023, 41, 102665. [Google Scholar] [CrossRef]
- Gallero, F.J.G.; Maestre, I.R.; Foncubierta Blázquez, J.L.; Mena Baladés, J.D. Enhanced CFD-Based Approach to Calculate the Evaporation Rate in Swimming Pools. Sci. Technol. Built. Environ. 2020, 27, 524–532. [Google Scholar] [CrossRef]
- Liew, C.S.M.; Li, X.; Zhang, H.; Lee, H.K. A Fully Automated Analytical Platform Integrating Water Sampling-Miniscale-Liquid-Liquid Extraction-Full Evaporation Dynamic Headspace Concentration-Gas Chromatography-Mass Spectrometry for the Analysis of Ultraviolet Filters. Anal. Chim. Acta 2018, 1006, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Smedegård, O.O.; Aas, B.; Stene, J.; Georges, L. Measurement and Analysis of Evaporation in Indoor Swimming Pools: Comparison with the ASHRAE’ s Activity Factor. In Proceedings of the E3S Web of Conferences, Semarang, Indonesia, 9–10 August 2022; Volume 362. [Google Scholar]
- Alansari, A.; Amburgey, J.; Madding, N. A Quantitative Analysis of Swimming Pool Recirculation System Efficiency. J. Water Health 2018, 16, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Wyczarska-Kokot, J.; Dudziak, M. Reuse-Reduce-Recycle: Water and Wastewater Management in Swimming Pool Facilities. Desalination Water Treat. 2022, 275, 69–80. [Google Scholar] [CrossRef]
- Wyczarska-Kokot, J.; Lempart, A. The influence of the filtration bed type in the pool water treatment system on washings quality. Ecol. Chem. Eng. S-Chem. I Inz. Ekol. S 2019, 26, 535–545. [Google Scholar] [CrossRef]
- Chen, Z.; Ngo, H.H.; Guo, W.; Lim, R.; Wang, X.C.; O’Halloran, K.; Listowski, A.; Corby, N.; Miechel, C. A Comprehensive Framework for the Assessment of New End Uses in Recycled Water Schemes. Sci. Total. Environ. 2014, 470–471, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Poćwiardowski, W. The Potential of Swimming Pool Rinsing Water for Irrigation of Green Areas: A Case Study. Environ. Sci. Pollut. Res. 2023, 30, 57174–57177. [Google Scholar] [CrossRef] [PubMed]
- Studziński, W.; Poćwiardowski, W.; Osińska, W. Application of the Swimming Pool Backwash Water Recovery System with the Use of Filter Tubes. Molecules 2021, 26, 6620. [Google Scholar] [CrossRef] [PubMed]
- Wyczarska-Kokot, J.; Lempart, A. The reuse of washings from pool filtration plants after the use of simple purification processes. Archit. Civ. Eng. Environ. 2018, 11, 163–170. [Google Scholar] [CrossRef]
- Ribeiro, E.; Jorge, H.M.; Quintela, D.A. HVAC system energy optimization in indoor swimming pools. In Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), Leiria, Portugal, 7–9 July 2011; p. 7. [Google Scholar]
- Ilgaz, R.; Yumrutas, R. Heating Performance of Swimming Pool Incorporated Solar Assisted Heat Pump and Underground Thermal Energy Storage Tank: A Case Study. Int. J. Energy Res. 2022, 46, 1008–1031. [Google Scholar] [CrossRef]
- Al-Falahat, A.; Abu, Q.; Alrwashdeh, S. Economic Feasibility of Heating Source Conversion of the Swimming Pools. J. Appl. Eng. Sci. 2022, 20, 230–238. [Google Scholar] [CrossRef]
- Chow, T.T.; Bai, Y.; Fong, K.F.; Lin, Z. Analysis of a Solar Assisted Heat Pump System for Indoor Swimming Pool Water and Space Heating. Appl. Energy 2012, 100, 309–317. [Google Scholar] [CrossRef]
- Xu, Y.C.; Guo, Z.W.; Yuan, C.Q. Feasibility Study of an Integrated Air Source Heat Pump Water Heater/Chillers and Exhaust Gas Boiler Heating System for Swimming Pool on Luxury Cruise Ship. Energy Rep. 2022, 8, 1260–1282. [Google Scholar] [CrossRef]
- Santos, E.T.; Zárate, L.E.; Pereira, E.M.D. Hybrid Thermal Model for Swimming Pools Based on Artificial Neural Networks for Southeast Region of Brazil. Expert Syst. Appl. 2013, 40, 3106–3120. [Google Scholar] [CrossRef]
- Mančić, M.; Živković, D.; Laković Paunović, M.; Mančić, M.; Rajic, M. Experimental Evaluation of Correlations of Evaporation Rates from Free Water Surfaces of Indoor Swimming Pools. In Experimental and Computational Investigations in Engineering: Proceedings of the International Conference of Experimental and Numerical Investigations and New Technologies, CNNTech 2020; Springer International Publishing: Cham, Switzerland, 2021; Volume 153, pp. 378–393. [Google Scholar]
- Mančić, M.V.; Živković, D.S.; Milosavljević, P.M.; Todorović, M.N. Mathematical Modelling and Simulation of the Thermal Performance of a Solar Heated Indoor Swimming Pool. Therm. Sci. 2014, 18, 999–1010. [Google Scholar] [CrossRef]
- Delgado Marín, J.P.; Vera García, F.; García Cascales, J.R. Use of a Predictive Control to Improve the Energy Efficiency in Indoor Swimming Pools Using Solar Thermal Energy. Sol. Energy 2019, 179, 380–390. [Google Scholar] [CrossRef]
- Calise, F.; Figaj, R.; Vanoli, L. Energy and Economic Analysis of Energy Savings Measures in a Swimming Pool Centre by Means of Dynamic Simulations. Energy 2018, 11, 2182. [Google Scholar] [CrossRef]
- Lau, M.J.; Zanil, M.F.; Choong, S.Y.; Tan, J. Modelling and Optimization of the Heat Pump System for the Usage of Swimming Pool. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778, 012097. [Google Scholar] [CrossRef]
- Limane, A.; Fellouah, H.; Galanis, N. Three-Dimensional OpenFOAM Simulation to Evaluate the Thermal Comfort of Occupants, Indoor Air Quality and Heat Losses inside an Indoor Swimming Pool. Energy Build. 2018, 167, 49–68. [Google Scholar] [CrossRef]
- Marin, J.P.D.; Garcia-Cuscales, J.R. Dynamic Simulation Model and Empirical Validation for Estimating Thermal Energy Demand in Indoor Swimming Pools. Energy Effic. 2020, 13, 955–970. [Google Scholar] [CrossRef]
- Smedegård, O.Ø.; Aas, B.; Stene, J.; Georges, L.; Carlucci, S. Systematic and Data-Driven Literature Review of the Energy and Indoor Environmental Performance of Swimming Facilities. Energy Effic. 2021, 14, 74. [Google Scholar] [CrossRef]
- Pop, O.; Pop, I. Solar water heating for a swimming pool. Acta Tech. Napoc. Ser.-Appl. Math. Mech. Eng. 2018, 61, 279–286. [Google Scholar]
- Singh, A.K.; Tiwari, G.N.; Singh, R.G.; Singh, R.K. Active Heating of Outdoor Swimming Pool Water Using Different Solar Collector Systems. J. Sol. Energy Eng.-Trans. ASME 2020, 142, 041008. [Google Scholar] [CrossRef]
- Wache, R.; Fielder, T.; Dickinson, W.E.C.; Hall, J.L.; Adlington, P.; Sweeney, S.J.; Clowes, S.K. Selective Light Transmission as a Leading Innovation for Solar Swimming Pool Covers. Solar Energy 2020, 207, 388–397. [Google Scholar] [CrossRef]
- Zhao, J.; Bilbao, J.I.; Spooner, E.D.; Sproul, A.B. Experimental Study of a Solar Pool Heating System under Lower Flow and Low Pump Speed Conditions. Renew. Energy 2018, 119, 320–335. [Google Scholar] [CrossRef]
- Sakshi; Shashi; Cerchione, R.; Bansal, H. Measuring the Impact of Sustainability Policy and Practices in Tourism and Hospitality Industry. Bus. Strategy Environ. 2020, 29, 1109–1126. [Google Scholar] [CrossRef]
- Santos, E.; Lisboa, I.; Crespo, C.; Moreira, J.; Eugenio, T. Evaluating Economic Sustainability of Nautical Tourism through Brand Equity and Corporate Performance. In Springer Proceedings in Business and Economics; Springer International Publishing: Cham, Switzerland, 2022; pp. 105–118. [Google Scholar]
- Redondo Alamillos, R.; de Mariz, F. How Can European Regulation on ESG Impact Business Globally? J. Risk Financ. Manag. 2022, 15, 291. [Google Scholar] [CrossRef]
- Perales Viscasillas, P. Impacto de La Lucha Contra El Cambio Climático En El Gobierno Corporativo. In Revista de Derecho del Sistema Financiero: Mercados, Operadores y Contratos; Dialnet: Logroño, Spain, 2023; pp. 11–66. [Google Scholar] [CrossRef]
- Krstinić Nižić, M.; Šverko Grdić, Z.; Endres, R. Energy Sustainability and Its Impacts on Croatian Tourism. Croat. Econ. Surv. 2017, 19, 83–104. [Google Scholar] [CrossRef]
- Lewis, L.; Chew, J.; Woodley, I.; Colbourne, J.; Pond, K. Modifications for Water Management Guidance Based on an Assessment of Swimming Pool Water Consumption of an Operational Facility in the UK. Water Sci. Technol. Water Supply 2015, 15, 965–973. [Google Scholar] [CrossRef]
- Osiako, P.O.; Kummitha, H.R. Environmental Management Practices among Coastal Beach Hotels in Kenya. Afr. J. Hosp. Tour. Leis. 2020, 9, 1–18. [Google Scholar]
- Katsaprakakis, D. Al Comparison of Swimming Pools Alternative Passive and Active Heating Systems Based on Renewable Energy Sources in Southern Europe. Energy 2015, 81, 738–753. [Google Scholar] [CrossRef]
- Generalitat de Catalunya El Nou Pla Estratègic de Turisme 2018–2022 Promou Un Model Turístic Català Intel·ligent i Sostenible. Available online: https://govern.cat/salapremsa/notes-premsa/362742/nou-pla-estrategic-turisme-2018-2022-promou-model-turistic-catala-intel-ligent-sostenible (accessed on 9 March 2024).
Name | Definition | Acronym |
---|---|---|
Water filling | Refilling of pool renovation water. This water inlet is used to compensate for water losses in addition to the water loss. | Vfill |
Filter backwash | To carry out maintenance and cleaning operations on filters, water is sent in the opposite direction to the filter operation. This cleaning water is sent to the sewage system. | Vfbw |
Water renew | According to the legislation of some countries, a minimum water renewal with fresh water is required to ensure that the water quality is suitable and does not represent a problem for bathers. | Vrenew |
Water leaks | Water leaks due to lack of watertightness of the pool or the pool’s hydraulic system. | Vwleak |
Overflow | Water leaks from the pool overflow system. | Voverf |
Splash out | Water losses due to splashing, use, and interaction with users. These quantities are generally considered within the evaporation estimate for occupied pools. | Vsplahout |
Evaporation | Water losses due to evaporation from the pool surface. | Vevap |
Rain | Rainwater contribution, in the case of outdoor open-air pools, corresponds to the water collected from the total surface of the pool. In the case of indoor pools, it is necessary for the installation to have a rainwater collection system, but, in some countries, this system is not permitted by law. | Vrain |
Name | Definition | Acronym |
---|---|---|
Water filling | In case the pool has a water heating system, this variable corresponds to the heat demand due to bringing the pool renovation water from the source temperature to the required pool temperature. | Qwf |
Filter backwash | As in the previous case, if the pool has a water heating system, this variable corresponds to the heat loss of the backwash water. | Qfbw |
Heating | Corresponds to the heat value provided by the water heating system to maintain the pool water volume according to the temperature reference. | Qheating |
Heat conduction | Heat losses, due to conduction losses, through the pool surface and through the pool walls and floor. | Qcond |
Convection | Heat losses, due to convective heat transfer, due to heat transfer between the water surface and the outside and inside air. | Qconv |
Radiation | Heat losses due to radiative heat transfer between the water surface and other surrounding surfaces, such as the walls or the sky. | Qrad |
Evaporation | Heat losses due to evaporation (phase change from liquid to gas) of water on the pool surface. | Qevap |
Rain | Heat demand due to making the rainwater entering the pool from the source temperature to the required temperature in the pool. | Qrain |
Sun insolation | Heat from direct solar radiation. | Qsunrad |
Pump electrical power | Energy needs to carry out the filtration and water treatment of the pool. | Pp |
Heating Power | Energy requirements for the thermal treatment of swimming pool water. | Ph |
Air-conditioned power | In the case of indoor pools this variable corresponds to the energy needs for the air treatment (dehumidification and thermal conditioning) of the pool. | Pac |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Guillen, J.-J.; Arimany-Serrat, N.; Tapias Baqué, D.; Giménez, D. Water and Energy Sustainability of Swimming Pools: A Case Model on the Costa Brava, Catalonia. Water 2024, 16, 1158. https://doi.org/10.3390/w16081158
Gomez-Guillen J-J, Arimany-Serrat N, Tapias Baqué D, Giménez D. Water and Energy Sustainability of Swimming Pools: A Case Model on the Costa Brava, Catalonia. Water. 2024; 16(8):1158. https://doi.org/10.3390/w16081158
Chicago/Turabian StyleGomez-Guillen, Juan-Jose, Núria Arimany-Serrat, David Tapias Baqué, and David Giménez. 2024. "Water and Energy Sustainability of Swimming Pools: A Case Model on the Costa Brava, Catalonia" Water 16, no. 8: 1158. https://doi.org/10.3390/w16081158
APA StyleGomez-Guillen, J. -J., Arimany-Serrat, N., Tapias Baqué, D., & Giménez, D. (2024). Water and Energy Sustainability of Swimming Pools: A Case Model on the Costa Brava, Catalonia. Water, 16(8), 1158. https://doi.org/10.3390/w16081158