Evaluation of the Effects of Pre-Grouting in Combination with Group Holes on the Risk of Water Inrush through Coal Seam Floors
Abstract
:1. Introduction
2. Research Method
2.1. Fractal Dimension Theory
2.2. AHP-CRITIC Combination Weighting Method
2.3. Fuzzy Variable Set Evaluation Model (FVSEM)
2.3.1. Basic Principle
2.3.2. Membership Degree Model
2.3.3. Evaluation Model
2.4. Comprehensive Model Building
3. Case Application
3.1. Engineering Background
3.2. Evaluation Index System
3.2.1. Fault Complexity
3.2.2. Grouting Volume
3.2.3. Amount of Grout per Meter of Borehole Length
3.2.4. Dry Material Value per Ton of Water
3.2.5. Threat Level of Water Inrush
3.3. Weighting Determination
3.3.1. Subjective Weighting Determination
3.3.2. Objective Weight Determination
3.3.3. Combined Weight
3.4. Identification of Grouting Effect
4. Discussion
4.1. Model Reliability Analysis
4.2. Evaluation of Grouting Effect
4.3. Grouting Effect Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, P.; Ye, J.J.; Li, J. Research and application of integrated underground—Surface hydrological monitoring and early warning system for coal mine. Coal Eng. 2021, 53, 21–25. [Google Scholar]
- Wang, S.Y.; Li, W.; Pang, N.Y. Hydrogeological exploration and water hazard assessment of weathered rock water-filled coal mine. Coal Sci. Technol. 2021, 49, 222–229. [Google Scholar]
- Zhang, P.S.; Dong, Y.H.; Zhang, X.L.; Xu, D.Q. Statistical law analysis and forecast of coal mine water disaster accidents in China from 2008 to 2021. Coal Eng. 2022, 54, 131–137. [Google Scholar]
- Wang, T.; Xu, D.Q.; Hu, W.; Zhang, P.S. Grouting effect evaluation of overlying loose aquifer in thin bedrock coal seam. Coal Technol. 2023, 42, 161–166. [Google Scholar]
- Pang, C.M.; Gao, W.F.; Wu, P.Z.; Wang, L.D. Grouting Effect Detection within the Floor of a Coal Seam Using 3D Electric Resistivity Tomography (ERT) with Arbitrary Electrode Positions. Appl. Sci. 2022, 12, 5625. [Google Scholar] [CrossRef]
- Liu, S.D.; Liu, J.; Qi, J.; Cao, Y.; Lv, Q.R. Applied technologies and new advances of parallel electrical method in mining geophysics. J. China Coal Soc. 2019, 44, 2336–2345. [Google Scholar]
- Lang, J.; Liu, Z.W. Evaluation of the grouting reinforcement effect in the bottom plate structure area based on the detection technology. China Meas. Test 2022, 48, 163–168. [Google Scholar]
- Bai, J.W.; Li, S.C.; Jiang, Y.J.; Liu, R.T.; Li, W. An Extension Theoretical Model for Grouting Effect Evaluation in Sand Stratum of Metro Construction. KSCE J. Civ. Eng. 2019, 23, 2349–2358. [Google Scholar] [CrossRef]
- Xu, X.H.; Xiang, Z.C.; Zou, J.F.; Wang, F. An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils. Geomech. Eng. 2020, 20, 313–322. [Google Scholar]
- Han, Z.Q.; Chen, S.Y.; Wang, C.; Wang, C.Y. Grouting effect evaluation of fractured rock mass based on borehole televiewer observation. IOP Conf.Ser. Earth Environ. Sci. 2021, 861, 022034. [Google Scholar] [CrossRef]
- Saeidi, H.; Ghafoori, M.; Lashkaripour, G. Evaluation of Grout Curtain Performance and Seepage Behavior in Doosti Dam. Iran 2015, 6, 8539–8551. [Google Scholar]
- Lee, J.S.; Bang, C.S.; Mok, Y.J.; Joh, S.H. Numerical and experimental analysis of penetration grouting in jointed rock masses. Int. J. Rock Mech. Min. Sci. 2000, 37, 1027–1037. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.C.; Xu, R.C.; Liu, H.X.; Shi, W.H. Study of grouting effectiveness based on shear strength evaluation with experimental and numerical approaches. Acta Geotech. 2021, 16, 3991–4005. [Google Scholar] [CrossRef]
- Wu, Y.P. Numerical Simulation on Grouting in Fault FractureZone Based on COMSOL Multiphysics. Master’s Thesis, Anhui University of Science and Technology, Huainan, China, 2017. [Google Scholar]
- Wang, X.L.; Qin, Q.R.; Xiong, Z.Q.; Su, P.D.; Yuan, Y. Comprehensive evaluation of grouting reinforcement effect on broken surrounding rock of deep Roadway. Chin. J. Undergr. Space Eng. 2019, 15, 576–582. [Google Scholar] [CrossRef]
- Li, W.H.; Zhang, J.K.; Wang, N.; Shi, Z.S.; An, C.; Yan, F.F. Application of non-destructive testing in evaluation of grouting reinforcement effect of soil site cracks. J. Lanzhou Univ. 2023, 59, 80–89. [Google Scholar]
- Yang, Z.B.; Dong, S.N. Study on quantitative evaluation of grouting effect by water pressure test. J. China Coal Soc. 2018, 43, 2021–2028. [Google Scholar]
- Tang, Z.; Jiang, X.Z.; Chen, L.G.; Lei, M.T.; Ma, X.; Wu, S.T. Evaluation of curtain water stop engineering and grouting effect of a limestone quarry in Longmen County. Carsologica Sin. 2022, 41, 47–58. [Google Scholar]
- Xu, Y.C.; Huang, L.; Yu, H.Q.; Luo, Y.L.; Li, P.F.; Geng, H.B.; Fei, Y.; Zhao, C.; Zhang, L.X. Evaluation system for floor water inrush risk in grout-reinforced working faces based on grouting boreholes dataset. J. China Coal Soc. 2020, 45, 1150–1159. [Google Scholar]
- Wang, E.B. Study on grouting reinforcement method of coal seam roadway in contiguous seams. Coal 2022, 31, 26–30. [Google Scholar]
- Liao, Z.H.; Yan, S.Q.; Zeng, Z.Q.; Han, H.C.; Qiu, S.L.; Li, P. Research on grouting parameters of fractured rock mass based on UDEC. Jiangsu Sci. Technol. Inf. 2020, 37, 44–49. [Google Scholar]
- Jin, Q.; Bu, Z.H.; Pan, D.D.; Li, H.Y.; Li, Z.F.; Zhang, Y.C. An Integrated Evaluation Method for the Grouting Effect in Karst Areas. KSCE J. Civ. Eng. 2021, 25, 3186–3197. [Google Scholar] [CrossRef]
- Liu, Z.X.; Song, W.S.; Cui, B.; Wang, X.L.; Yu, H.L. A Comprehensive Evaluation Model for Curtain Grouting Efficiency Assessment Based on Prospect Theory and Interval-Valued Intuitionistic Fuzzy Sets Extended by Improved D Numbers. Energies 2019, 12, 3674–3703. [Google Scholar] [CrossRef]
- Zhu, C.A.; Sun, R.F.; Xu, H.; Liu, Y.W.; Chen, Z. Evaluation of Ground Surface Pregrouting in a Mountain Tunnel Based on FAHP. Math. Probl. Eng. 2019, 2019, 2543584. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yao, M.J.; Zhang, J.G.; Zhao, W.; Huang, P.H.; Guo, J.W.; Chen, G.S.; Zhang, B. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory. J. Min. Saf. Eng. 2019, 36, 558–565. [Google Scholar]
- Xiao, L.L.; Li, F.; Niu, C.; Dai, G.L.; Qiao, Q.; Lin, C.S. Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method. Energies 2022, 16, 114–133. [Google Scholar] [CrossRef]
- Wang, W.; Qi, Y.; Jia, B.S.; Yao, Y.L. Dynamic prediction model of spontaneous combustion risk in goaf based on improved CRITIC-G2-TOPSIS method and its application. PLoS ONE 2021, 16, e0257499. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Feng, J.G.; Gao, Y.Q.; Guo, Z.C.; Zheng, H. Comprehensive evaluation model for happy rivers and lakes based on BWM-CRITIC-TOPSIS. Adv. Sci. Technol. Water Resour. 2022, 42, 8–14+20. [Google Scholar]
- Wang, L.; Ke, Q.; Li, Y.L.; Wu, Y.S. Risk evaluation of check dam system in a small watershed of loess plateau using combined weight-TOPSIS method. Chin. J. Appl. Mech. 2019, 39, 698–706. [Google Scholar]
- Bajić, S.; Bajić, D.; Gluščević, B.; Vakanjac, V.R. Application of Fuzzy Analytic Hierarchy Process to Underground Mining Method Selection. Symmetry 2020, 12, 192–211. [Google Scholar] [CrossRef]
- Muduli, L.; Mishre, D.P.; Jane, P.K. Optimized Fuzzy Logic-Based Fire Monitoring in Underground Coal Mines: Binary Particle Swarm Optimization Approach. IEEE Syst. J. 2019, 14, 3039–3046. [Google Scholar] [CrossRef]
- Wang, Y.S.; Jin, Z.X.; Deng, C.B.; Wang, X.Y. Comprehensive decision-making with fuzzy combined weighting and its application on the order of gob management. J. Intell. FuzzySyst. Appl. Eng. Technol. 2018, 34, 2641–2649. [Google Scholar] [CrossRef]
- Han, J.F.; Liu, Z.X.; Wang, H. Analysis on floor grouting effect and water inrush risk in coalface of deep well with high confined aquifer. Coal Technol. 2023, 42, 122–126. [Google Scholar]
- Tang, D.Z.; Wang, Y.B.; Chen, J.G.; Lu, J.T.; Yun, M.; Liu, L.; Guo, H.Y.; Fu, Z.Q. Full cycle evaluation method of directional borehole grouting effect in Huangbei coalfield. Coal Technol. 2023, 42, 151–156. [Google Scholar]
- Xu, H.; Mou, Y.; Niu, C. Fractal optimization of permeability coefficient of mine water inflow. Coal Sci. Technol. 2019, 49, 228–232. [Google Scholar]
ID | Fractal Dimension | ID | Fractal Dimension | ID | Fractal Dimension | ID | Fractal Dimension |
---|---|---|---|---|---|---|---|
1 | 0.8340 | 22 | 1.1909 | 43 | 1.0832 | 64 | 0.9007 |
2 | 0.5755 | 23 | 1.1963 | 44 | 0.7966 | 65 | 0.7000 |
3 | 1.3914 | 24 | 0.9737 | 45 | 0.8340 | 66 | 1.0832 |
4 | 1.0000 | 25 | 0.8551 | 46 | 0.9007 | 67 | 0.5755 |
5 | 1.0510 | 26 | 0.7966 | 47 | 0.6000 | 68 | 0.7000 |
6 | 0.6585 | 27 | 0.3000 | 48 | 0.7000 | 69 | 1.1288 |
7 | 1.0000 | 28 | 1.2340 | 49 | 1.2077 | 70 | 1.0966 |
8 | 0.3000 | 29 | 0.7551 | 50 | 1.2943 | 71 | 1.1378 |
9 | 1.0000 | 30 | 1.1288 | 51 | 1.0322 | 72 | 0.7000 |
10 | 0.8551 | 31 | 1.0247 | 52 | 1.1115 | 73 | 1.0095 |
11 | 0.8837 | 32 | 1.0095 | 53 | 0.9744 | 74 | 1.2170 |
12 | 1.3170 | 33 | 0.7000 | 54 | 0.7000 | 75 | 1.0247 |
13 | 1.2101 | 34 | 1.0510 | 55 | 1.0288 | 76 | 0.9422 |
14 | 1.3432 | 35 | 1.1288 | 56 | 1.0322 | 77 | 1.1115 |
15 | 0.8966 | 36 | 1.2340 | 57 | 0.9422 | 78 | 0.9737 |
16 | 0.3000 | 37 | 0.3000 | 58 | 0.8551 | 79 | 1.0703 |
17 | 0.9734 | 38 | 0.8340 | 59 | 1.4381 | 80 | 1.1601 |
18 | 1.2290 | 39 | 0.9340 | 60 | 0.6000 | 81 | 0.5755 |
19 | 1.3000 | 40 | 1.1186 | 61 | 1.1288 | 82 | 1.1115 |
20 | 0.9000 | 41 | 0.9422 | 62 | 1.0966 | ||
21 | 0.9585 | 42 | 1.0247 | 63 | 1.0422 |
Rank | Simple | Relatively Simple | Relatively Complex | Complex |
---|---|---|---|---|
D | D < 1 | 1 ≤ D < 1.1 | 1.1 ≤ D < 1.2 | D ≥ 1.2 |
Rank | Safe Zone | Low-Threat Zone | High-Threat Zone | Exclusion Zone |
---|---|---|---|---|
T | T < 0.03 | 0.03 ≤ T < 0.06 | 0.06 ≤ T < 0.1 | T ≥ 0.1 |
Primary Index | Weight | Secondary Index | Weight |
---|---|---|---|
Geological structure characteristics | 0.1226 | Fault complexity | 0.1226 |
Grouting quantity characteristics | 0.5571 | Grouting quantity | 0.0683 |
Length of meter grouting quantity | 0.1784 | ||
Dry material value per ton of water | 0.3104 | ||
Risk of water inrush at working face | 0.3203 | Danger of water inrush | 0.3203 |
Index | Variability | Conflict | Amount of Information | Weight |
---|---|---|---|---|
Fault complexity | 0.1967 | 3.4409 | 0.6768 | 0.3031 |
Grouting volume | 0.1373 | 2.2449 | 0.3083 | 0.1381 |
Length of meter grouting quantity | 0.1247 | 2.1589 | 0.2691 | 0.1206 |
Dry material value per ton of water | 0.171 | 2.3842 | 0.4074 | 0.1825 |
Threat level of water inrush | 0.1547 | 3.6903 | 0.5709 | 0.2557 |
Evaluation Index | Fault Complexity | Grouting Volume | Length of Meter Grouting Quantity | Dry Material Value Per Ton of Water | Threat Level of Water Inrush |
---|---|---|---|---|---|
Combined weight | 0.2006 | 0.1011 | 0.1527 | 0.2477 | 0.2979 |
Rank | Poor | Qualified | Good | Optimal |
---|---|---|---|---|
H | H < 1.5 | 1.5 ≤ H < 2.5 | 2.5 ≤ H < 3.5 | 3.5 ≤ H < 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Gao, C.; Yue, J.; Heng, P.; Guo, S.; Wang, X. Evaluation of the Effects of Pre-Grouting in Combination with Group Holes on the Risk of Water Inrush through Coal Seam Floors. Water 2024, 16, 1160. https://doi.org/10.3390/w16081160
Tian S, Gao C, Yue J, Heng P, Guo S, Wang X. Evaluation of the Effects of Pre-Grouting in Combination with Group Holes on the Risk of Water Inrush through Coal Seam Floors. Water. 2024; 16(8):1160. https://doi.org/10.3390/w16081160
Chicago/Turabian StyleTian, Shiyuan, Chunfang Gao, Junchao Yue, Peiguo Heng, Shuitao Guo, and Xinyi Wang. 2024. "Evaluation of the Effects of Pre-Grouting in Combination with Group Holes on the Risk of Water Inrush through Coal Seam Floors" Water 16, no. 8: 1160. https://doi.org/10.3390/w16081160
APA StyleTian, S., Gao, C., Yue, J., Heng, P., Guo, S., & Wang, X. (2024). Evaluation of the Effects of Pre-Grouting in Combination with Group Holes on the Risk of Water Inrush through Coal Seam Floors. Water, 16(8), 1160. https://doi.org/10.3390/w16081160