Irrigation Distribution Network Design Parameters and Their Influence on Sustainability Management
Abstract
:1. Introduction
1.1. Irrigation Water Use
1.2. Environmental Implications
2. Evaluation Methodology and Materials
3. Determination of Flows to Design Irrigation Water Networks
3.1. Parameters of Study
3.2. Proposed Methods: Forecasting Irrigation Demand Flow
3.2.1. Deterministic Models (D)
ID | Reference | Main Results |
---|---|---|
D.1 | [124] |
|
D.2 | [126] |
|
D.3 | [120] |
Human behaviour affects uniform probability prediction. |
D.4 | [125] |
|
3.2.2. Statistical Models (F)
ID | Reference | Type | Main Results |
---|---|---|---|
S.1 | [119] | Statistical |
|
S.2 | [121] | Frequentist |
Moreover, the model with Clément’s first formula seems robust enough in the conditions studied, so using more complicated models is unnecessary |
S.3 | [120] | Deterministic |
|
S.4 | [134] | Statistical |
|
S.5 | [135] | Random Simulation |
The underestimation caused by the Clément methodology is due to using the average opening hydrant probability concept. |
S.6 | [137] | Statistical |
|
3.2.3. Random Simulation Models (R)
ID | Reference | Conclusions |
---|---|---|
R.1 | [141] |
|
R.2 | [142] |
|
R.3 | [143] |
|
R.4 | [135] |
|
R.5 | [144] |
|
R.6 | [136] |
|
R.7 | [145] |
|
3.2.4. Computational Intelligence Models (CI)
ID | Reference | Model Type | Conclusions |
---|---|---|---|
CI.1 | [152] | Computational Neural Networks (CNNs) |
|
CI.2 | [157] | Linear Regressions and Computational Neural Networks (CNNs) |
|
CI.3 | [151] | Hybrid Computational Neural Networks + Fuzzy Logic + Genetic Algorithm (CNNs + FL + GA) |
|
CI.4 | [159] | Artificial Neuro-Genetic Networks (ANGNs) |
|
CI.5 | [158] | Principal Component Analysis (PCA) + Regression Analysis Methods |
|
CI.6 | [160] | Hybrid Computational Neural Networks + Fuzzy Logic + Genetic Algorithm (CNNs + FL + GA) |
|
CI.7 | [161] | Decision Trees + Genetic Algorithm (DTs + GA) |
|
3.3. Flow Pipe Sizing: Indicators
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
CFF | Clément’s first formula |
CNNs | Computer Neuronal Networks |
DESA | Department of Economic and Social Affairs |
DESA | Department of Economic and Social Affairs |
FAO | Food and Agriculture of the United Nations |
EEA | European Environmental Agency |
ICID | International Commission on Irrigation and Drainage |
IPCC | International Panel on Climate Change |
IWMI | International Water Management Institute |
RGM | Random Generated Model |
SFRs | Several Flow Regimes |
UN | United Nations |
UN | United Nations |
WEF | World Economic Forum |
WWAP | United Nations World Water Assessment Programme |
WWDR | World Water Development Report |
Shape parameter of the Weibull distribution | |
Annual average water saving coefficient | |
Soil moisture change | |
Slope vapour pressure | |
Psychrometric constant | |
Outlet flow assignment of group i | |
Water loss out of the root due to deep percolation | |
Fixed flow assignment of outlet group i | |
Crop evapotranspiration | |
Reference evapotranspiration | |
Relative humidity by saturation vapour pressure deficit | |
Irrigation area | |
Cumulative distribution function (cdf) | |
Probability density function | |
Soil heat flux | |
Irrigation | |
Net irrigation water needs | |
Crop coefficient | |
Vector representing the jth event | |
Total number of vectors analysed | |
Number of outlets with the same assigned flow at group i | |
Precipitation; rainfall | |
Effective rainfall | |
Probability of Q being Qi | |
Probability of the operation of hydrant group i | |
Discrete random variable flow vector | |
Estimated water demand in day t | |
Flow to forecast (Clément’s first formula) | |
Observed water demand in day t − 1 | |
Observed water demand in day t − 2 | |
Nominal flow rate of vector i | |
Surface runoff | |
Extraterrestrial radiation | |
Radiation at crop surface | |
Rainfall | |
Air temperature | |
Temperature range | |
Average daily temperature | |
Forecasting year | |
Data series corresponding to the first year | |
Time between two demands in group i | |
Guaranteed service level of group i | |
Wind speed | |
Predicted amount of water demanded | |
Capillary rise |
References
- United Nations. World Population Prospects 2019—Highlights; Department of Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- WWDR; UN. Water and Energy, The United Nations World Water Development Report 2014 (2 Volumes). UN World Water Assessment Programme; UNESCO: Paris, France, 2014; Available online: http://unesdoc.unesco.org/images/0022/002257 (accessed on 25 March 2024).
- World Economic Forum. The Global Risks Report 2018 13th Edition; World Economic Forum: Geneva, Switzerland, 2013; Volume 14. [Google Scholar]
- FAO. Water for Sustainable Food and Agriculture a Report Produced for the G20 Presidency of Germany; FAO: Rome, Italy, 2017. [Google Scholar]
- Zhang, D.D.; Lee, H.F.; Wang, C.; Li, B.; Pei, Q.; Zhang, J.; An, Y. The Causality Analysis of Climate Change and Large-Scale Human Crisis. Proc. Natl. Acad. Sci. USA 2011, 108, 17296–17301. [Google Scholar] [CrossRef] [PubMed]
- UNESCO World Water Assessment Program. The United Nations World Water Development Report 2019: Leaving No One Behind; UNESCO: Paris, France, 2019. [Google Scholar]
- Harper, C.; Snowden, M. Environment and Society: Human Perspectives on Environmental Issues; Routledge: New York, NY, USA, 2017; pp. 1–447. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The Blue, Green and Grey Water Footprint of Rice from Production and Consumption Perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Flammini, A.; Puri, M.; Pluschke, L.; Dubois, O. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for All Initiative; FAO: Rome, Italy, 2014; ISBN 9251084874. [Google Scholar]
- Bauer, D.; Philbrick, M.; Vallario, B.; Battey, H.; Clement, Z.; Fields, F. The Water-Energy Nexus: Challenges and Opportunities; US Department of Energy: Washington, DC, USA, 2014. [Google Scholar]
- EEA. The European Environment: State and Outlook 2020: Knowledge for Transition to a Sustainable Europe; European Environment Agency: Copenhagen, Denmark, 2019; ISBN 978-92-9480-090-9. [Google Scholar]
- EEA. Use of Freshwater Resources in Europe—European Environment Agency. Available online: https://www.eea.europa.eu/ims/use-of-freshwater-resources-in-europe-1?utm_source=EEASubscriptions&utm_medium=RSSFeeds&utm_campaign=Generic (accessed on 4 August 2022).
- Del Borghi, A.; Moreschi, L.; Gallo, M. Circular Economy Approach to Reduce Water–Energy–Food Nexus. Curr. Opin. Environ. Sci. Health 2020, 13, 23–28. [Google Scholar] [CrossRef]
- Kohli, A.; Frenken, K. Cooling Water for Energy Generation and Its Impact on National-Level Water Statistics; Food and Agriculture Organization: Rome, Italy, 2011. [Google Scholar]
- Averyt, K.B.; Fisher, J.B.; Huber-Lee, A.T.; Lewis, A.; Macknick, J.; Madden, N.T.; Rogers, J.; Tellinghuisen, S. Freshwater Use by US Power Plants Electricity’s Thirst for a Precious Resource: A Report of the Energy and Water in a Warming World Initiative; NREL/TP-6A20-53273; Union of Concerned Scientists: Cambridge, MA, USA, 2011; 62p. [Google Scholar]
- Kanakoudis, V.; Tsitsifli, S.; Zouboulis, A.I. WATERLOSS Project: Developing from Theory to Practice an Integrated Approach towards NRW Reduction in Urban Water Systems. Desalination Water Treat. 2015, 54, 2147–2157. [Google Scholar] [CrossRef]
- FAO. Energy-Smart Food for People and Climate; FAO: Rome, Italy, 2011. [Google Scholar]
- FAO. Climate-Smart Agriculture Sourcebook; Palombi, L., Sessa, R., Eds.; FAO: Rome, Italy, 2014; ISBN 978-92-5-107720-7. [Google Scholar]
- Daccache, A.; Ciurana, J.S.; Rodriguez Diaz, J.A.; Knox, J.W. Water and Energy Footprint of Irrigated Agriculture in the Mediterranean Region. Environ. Res. Lett. 2014, 9, 124014. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Food, Agriculture & the Environment: Can We Feed the World & Save the Earth? Daedalus 2015, 144, 8–23. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science (1979) 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development United Nations United Nations Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Adoption of the Paris Agreement. In Proceedings of the Conference of the Parties on Its Twenty-First Session, Paris, France, 30 November–13 December 2015. [Google Scholar]
- Rai, R.K.; Singh, V.P.; Upadhyay, A. Planning and Evaluation of Irrigation Projects: Methods and Implementation; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Wang, Y.; Zhou, Y.; Franz, K.J.; Zhang, X.; Qi, J.; Jia, G.; Yang, Y. Irrigation Plays Significantly Different Roles in Influencing Hydrological Processes in Two Breadbasket Regions. Sci. Total Environ. 2022, 844, 157253. [Google Scholar] [CrossRef] [PubMed]
- Ben-Alon, L.; Loftness, V.; Harries, K.A.; Cochran Hameen, E. Life Cycle Assessment (LCA) of Natural vs Conventional Building Assemblies. Renew. Sustain. Energy Rev. 2021, 144, 110951. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW). Available online: https://www.fao.org/nr/solaw/solaw-home/en/ (accessed on 4 August 2022).
- de Vrese, P.; Hagemann, S.; Claussen, M. Asian Irrigation, African Rain: Remote Impacts of Irrigation. Geophys. Res. Lett. 2016, 43, 3737–3745. [Google Scholar] [CrossRef]
- Olayide, O.E.; Tetteh, I.K.; Popoola, L. Differential Impacts of Rainfall and Irrigation on Agricultural Production in Nigeria: Any Lessons for Climate-Smart Agriculture? Agric. Water Manag. 2016, 178, 30–36. [Google Scholar] [CrossRef]
- Rodríguez Díaz, J.A.; Weatherhead, E.K.; Knox, J.W.; Camacho, E. Climate Change Impacts on Irrigation Water Requirements in the Guadalquivir River Basin in Spain. Reg. Environ. Change 2007, 7, 149–159. [Google Scholar] [CrossRef]
- Moragues-Faus, A. How Is Agriculture Reproduced? Unfolding Farmers’ Interdependencies in Small-Scale Mediterranean Olive Oil Production. J. Rural Stud. 2014, 34, 139–151. [Google Scholar] [CrossRef]
- ICID. World Irrigated Area—2021. Available online: https://icid-ciid.org/Knowledge/world_irrigated_area/ (accessed on 4 August 2022).
- García-Tejero, I.F.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L.; Rodríguez-Pleguezuelo, C.R. Water and Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2011; pp. 1–94. [Google Scholar] [CrossRef]
- Fernández-Cirelli, A.; Arumí, J.L.; Rivera, D.; Boochs, P.W. Environmental Effects of Irrigation in Arid and Semi-Arid Regions. Chil. J. Agric. Res. 2009, 69, 27–40. [Google Scholar] [CrossRef]
- Frenken, K.; Gillet, V. Irrigation Water Requirement and Water Withdrawal by Country; FAO: Rome, Italy, 2012. [Google Scholar]
- Eliasson, Å.; Faurès, J.-M.; Frenken, K.; Hoogeveen, J. AQUASTAT—Getting to Grips with Water Information for Agriculture; FAO: Rome, Italy, 2003; Available online: https://www.fao.org/statistics/methods-and-standards/general/en (accessed on 15 January 2024).
- IPCC. Climate Change and Land; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- FAO. AQUASTAT—FAO’s Global Information System on Water and Agriculture. Available online: https://www.fao.org/aquastat/en/ (accessed on 4 August 2022).
- Kehrein, P.; Van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A Critical Review of Resource Recovery from Municipal Wastewater Treatment Plants—Market Supply Potentials, Technologies and Bottlenecks. Environ. Sci. 2020, 6, 877–910. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Roga, S.; Bardhan, S.; Kumar, Y.; Dubey, S.K. Recent Technology and Challenges of Wind Energy Generation: A Review. Sustain. Energy Technol. Assess. 2022, 52, 102239. [Google Scholar] [CrossRef]
- O’Donnell, C.J. Measuring and Decomposing Agricultural Productivity and Profitability Change. Aust. J. Agric. Resour. Econ. 2010, 54, 527–560. [Google Scholar] [CrossRef]
- Arduini, S.; Manzo, M.; Beck, T. Corporate Reputation and Culture: The Link between Knowledge Management and Sustainability. J. Knowl. Manag. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A Systematic Literature Review on Machine Learning Applications for Sustainable Agriculture Supply Chain Performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Olabi, A.G.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Assessment of the Pre-Combustion Carbon Capture Contribution into Sustainable Development Goals SDGs Using Novel Indicators. Renew. Sustain. Energy Rev. 2022, 153, 111710. [Google Scholar] [CrossRef]
- Alvarez Morales, Y. Evaluación de Indicadores de Sustentabilidad Agroecológica En Sistemas de Producción Agrícola de Baja California Sur, México; CIBNOR: La Paz, Mexico, 2015. [Google Scholar]
- Seager, J. Sex-Disaggregated Indicators for Water Assessment, Monitoring and Reporting; UNESCO Publishing: Paris, France, 2015; ISBN 9231001191. [Google Scholar]
- Islam, M.S.; Rahman, M.N.; Ritu, N.S.; Rahman, M.S.; Sarker, M.N.I. Impact of COVID-19 on Urban Environment in Developing Countries: Case Study and Environmental Sustainability Strategy in Bangladesh. Green Technol. Sustain. 2024, 2, 100074. [Google Scholar] [CrossRef]
- Nogueira Vilanova, M.R.; Filho, P.M.; Perrella Balestieri, J.A. Performance Measurement and Indicators for Water Supply Management: Review and International Cases. Renew. Sustain. Energy Rev. 2015, 43, 1–12. [Google Scholar] [CrossRef]
- UNDP Human Development Index | Human Development Reports. Available online: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI (accessed on 4 August 2022).
- Delang, C.O.; Yu, Y.H. MEASURING WELFARE BEYOND ECONOMICS: The Genuine Progress of Hong Kong and Singapore; Routledge: New York, NY, USA, 2019; ISBN 9780367332853. [Google Scholar]
- Schepelmann, P.; Goossens, Y.; Makipaa, A. Towards Sustainable Development: Alternatives to GDP for Measuring Progress; Wuppertal Spezial: Wuppertal, Germany, 2009; ISBN 3929944812. [Google Scholar]
- Wang, X.C.; Jiang, P.; Yang, L.; Van Fan, Y.; Klemeš, J.J.; Wang, Y. Extended Water-Energy Nexus Contribution to Environmentally-Related Sustainable Development Goals. Renew. Sustain. Energy Rev. 2021, 150, 111485. [Google Scholar] [CrossRef]
- Tucker, K.; Stone, W.; Botes, M.; Feil, E.J.; Wolfaardt, G.M. Wastewater Treatment Works: A Last Line of Defense for Preventing Antibiotic Resistance Entry Into the Environment. Front. Water 2022, 4, 883282. [Google Scholar] [CrossRef]
- Carrillo-Cobo, M.T.; Camacho-Poyato, E.; Montesinos, P.; Rodriguez-Diaz, J.A. Assessing the Potential of Solar Energy in Pressurized Irrigation Networks. The Case of Bembézar MI Irrigation District (Spain). Span. J. Agric. Res. 2014, 12, 838–849. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient Water and Energy Use in Irrigation Modernization: Lessons from Spanish Case Studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Garcia, C.; López-Jiménez, P.A.; Sánchez-Romero, F.J.; Pérez-Sánchez, M. Assessing Water Urban Systems to the Compliance of SDGs through Sustainability Indicators. Implementation in the Valencian Community. Sustain. Cities Soc. 2023, 96, 104704. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Camacho-Poyato, E.; López-Luque, R.; Pérez-Urrestarazu, L. Benchmarking and Multivariate Data Analysis Techniques for Improving the Efficiency of Irrigation Districts: An Application in Spain. Agric. Syst. 2008, 96, 250–259. [Google Scholar] [CrossRef]
- Fernández García, I.; Rodríguez Díaz, J.A.; Camacho Poyato, E.; Montesinos, P. Optimal operation of pressurized irrigation networks with several supply sources. Water Resour. Manag. 2013, 27, 2855–2869. [Google Scholar] [CrossRef]
- Pereira, L.S.; Calejo, M.J.; Lamaddalena, N.; Douieb, A.; Bounoua, R. Design and Performance Analysis of Low Pressure Irrigation Distribution Systems. Irrig. Drain. Syst. 2003, 17, 305–324. [Google Scholar] [CrossRef]
- Calejo, M.J.; Lamaddalena, N.; Teixeira, J.L.; Pereira, L.S. Performance analysis of pressurized irrigation systems operating on-demand using flow-driven simulation models. Agric. Water Manag. 2008, 95, 154–162. [Google Scholar] [CrossRef]
- Rodríguez Díaz, J.A.; Camacho Poyato, E.; Blanco Pérez, M. Evaluation of Water and Energy Use in Pressurized Irrigation Networks in Southern Spain. J. Irrig. Drain. Eng. 2011, 137, 644–650. [Google Scholar] [CrossRef]
- Lorenzini, G.; de Wrachien, D. Performance Assessment of Sprinkler Irrigation Systems: A New Indicator for Spray Evaporation Losses. Irrig. Drain. 2005, 54, 295–305. [Google Scholar] [CrossRef]
- Manoliadis, O.G. Environmental Indices In Irrigation Management. Environ. Manag. 2001, 28, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved Indicators of Water Use Performance and Productivity for Sustainable Water Conservation and Saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Romero, L.; Pérez-Sánchez, M.; López-Jiménez, P.A.; Romero, L.; Pérez-Sánchez, M.; López-Jiménez, P.A. Improvement of Sustainability Indicators When Traditional Water Management Changes: A Case Study in Alicante (Spain). AIMS Environ. Sci. 2017, 4, 502–522. [Google Scholar] [CrossRef]
- Darouich, H.; Gonçalves, J.M.; Muga, A.; Pereira, L.S. Water Saving vs. Farm Economics in Cotton Surface Irrigation: An Application of Multicriteria Analysis. Agric. Water Manag. 2012, 115, 223–231. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Chapter 1: FAO Crop-Water Productivity Model to Simulate Yield Response to Water; AquaCrop; Version 6.0-6.1: Reference Manual; FAO: Rome, Italy, 2018; 19p. [Google Scholar]
- Zoidou, M.; Tsakmakis, I.D.; Gikas, G.D.; Sylaios, G. Water Footprint for Cotton Irrigation Scenarios Utilizing CROPWAT and AquaCrop Models. Eur. Water 2017, 59, 285–290. [Google Scholar]
- van Halsema, G.E.; Vincent, L. Efficiency and Productivity Terms for Water Management: A Matter of Contextual Relativism versus General Absolutism. Agric. Water Manag. 2012, 108, 9–15. [Google Scholar] [CrossRef]
- Molden, D. Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving Agricultural Water Productivity to Ensure Food Security in China under Changing Environment: From Research to Practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Giordano, M.; Rijsberman, F.R.; Saleth, R.M. More Crop Per Drop—Revisiting a Research Paradigm: Results and Synthesis of IWMI’s Research 1996–2005. Water Intell. Online 2015, 6, 9781780402284. [Google Scholar] [CrossRef]
- Bigas, H.; Morris, T.; Sandford, B.; Adeel, Z. The Global Water Crisis: Addressing an Urgent Security Issue; UNU-INWEH: Hamilton, ON, Canada, 2012. [Google Scholar]
- Green, S.R.; Kirkham, M.B.; Clothier, B.E. Root Uptake and Transpiration: From Measurements and Models to Sustainable Irrigation. Agric. Water Manag. 2006, 86, 165–176. [Google Scholar] [CrossRef]
- Pérez Urrestarazu, L.; Smout, I.K.; Rodríguez Díaz, J.A.; Carrillo Cobo, M.T. Irrigation Distribution Networks’ Vulnerability to Climate Change. J. Irrig. Drain. Eng. 2009, 136, 486–493. [Google Scholar] [CrossRef]
- Cao, X.; Xu, Y.; Li, M.; Fu, Q.; Xu, X.; Zhang, F. A Modeling Framework for the Dynamic Correlation between Agricultural Sustainability and the Water-Land Nexus under Uncertainty. J. Clean. Prod. 2022, 349, 131270. [Google Scholar] [CrossRef]
- Foster, T.; Mieno, T.; Brozović, N. Satellite-Based Monitoring of Irrigation Water Use: Assessing Measurement Errors and Their Implications for Agricultural Water Management Policy. Water Resour. Res. 2020, 56, e2020WR028378. [Google Scholar] [CrossRef]
- Uralovich, K.S.; Toshmamatovich, T.U.; Kubayevich, K.F.; Sapaev, I.B.; Saylaubaevna, S.S.; Beknazarova, Z.F.; Khurramov, A. A Primary Factor in Sustainable Development and Environmental Sustainability Is Environmental Education. Casp. J. Environ. Sci. 2023, 21, 965–975. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Gavasso-Rita, Y.L.; Papalexiou, S.M.; Li, Y.; Elshorbagy, A.; Li, Z.; Schuster-Wallace, C. Crop Models and Their Use in Assessing Crop Production and Food Security: A Review. Food Energy Secur. 2024, 13, e503. [Google Scholar] [CrossRef]
- Schauberger, B.; Jägermeyr, J.; Gornott, C. A Systematic Review of Local to Regional Yield Forecasting Approaches and Frequently Used Data Resources. Eur. J. Agron. 2020, 120, 126153. [Google Scholar] [CrossRef]
- di Paola, A.; Valentini, R.; Santini, M. An Overview of Available Crop Growth and Yield Models for Studies and Assessments in Agriculture. J. Sci. Food Agric. 2016, 96, 709–714. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief History of Agricultural Systems Modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef]
- Siad, S.M.; Iacobellis, V.; Zdruli, P.; Gioia, A.; Stavi, I.; Hoogenboom, G. A Review of Coupled Hydrologic and Crop Growth Models. Agric. Water Manag. 2019, 224, 105746. [Google Scholar] [CrossRef]
- Lopez-Jimenez, J.; Vande Wouwer, A.; Quijano, N. Dynamic Modeling of Crop–Soil Systems to Design Monitoring and Automatic Irrigation Processes: A Review with Worked Examples. Water 2022, 14, 889. [Google Scholar] [CrossRef]
- Narmilan, A.; Sugirtharan, M. Application of FAO-CROPWAT Modelling on Estimation of Irrigation Scheduling for Paddy Cultivation in Batticaloa District, Sri Lanka. Agric. Rev. 2020, 42, 73–79. [Google Scholar] [CrossRef]
- Saleem, S.K.; Delgoda, D.K.; Ooi, S.K.; Dassanayake, K.B.; Liu, L.; Halgamuge, M.N.; Malano, H. Model Predictive Control for Real-Time Irrigation Scheduling. IFAC Proc. Vol. 2013, 46, 299–304. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements (No. 56); FAO: Rome, Italy, 1998. [Google Scholar]
- Gong, L.; Xu, C.Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith Reference Evapotranspiration to Key Climatic Variables in the Changjiang (Yangtze River) Basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop Evapotranspiration Estimation with FAO56: Past and Future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Kisekka, I.; DeJonge, K.C.; Ma, L.; Paz, J.; Douglas-Mankin, K. Crop Modeling Applications in Agricultural Water Management. Trans. ASABE 2017, 60, 1959–1964. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliott, R.; Howell, T.A.; Itenfisu, D.; Jensen, M.E. The ASCE Standardized Reference Evapotranspiration Equation; American Society of Civil Engineers: Reston, VA, USA, 2005. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing Reference Evapotranspiration by the Hargreaves Method in North-Eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Asce, F.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Farg, E.; Arafat, S.M.; Abd El-Wahed, M.S.; El-Gindy, A.M. Estimation of Evapotranspiration ETc and Crop Coefficient Kc of Wheat, in South Nile Delta of Egypt Using Integrated FAO-56 Approach and Remote Sensing Data. Egypt. J. Remote Sens. Space Sci. 2012, 15, 83–89. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating Crop Coefficients from Fraction of Ground Cover and Height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Martínez-Cob, A. Necesidades Hídricas En Cultivos Hortícolas. Rev. Hortic. 2004, 177, 34–40. [Google Scholar]
- Mateos, L.; González-Dugo, M.P.; Testi, L.; Villalobos, F.J. Monitoring Evapotranspiration of Irrigated Crops Using Crop Coefficients Derived from Time Series of Satellite Images. I. Method Validation. Agric. Water Manag. 2013, 125, 81–91. [Google Scholar] [CrossRef]
- Brower, C.; Heibloem, M. Irrigation Water Management Training Manual No. 3: Irrigation Water Management: Irrigation Water Needs. FAO, Inter-national Support Program for Irrigation Water Management. In Land and Water Development Division; FAO: Rome, Italy, 1986. [Google Scholar]
- Dastane, N.G. Effective Rainfall in Irrigated Agriculture. In Bulletins FAO d’Irrigation et de Drainage (FAO)-Estudios FAO; FAO: Rome, Italy, 1978. [Google Scholar]
- DeJonge, K.C.; Thorp, K.R. Implementing Standardized Reference Evapotranspiration and Dual Crop Coefficient Approach in the DSSAT Cropping System Model. Trans. ASABE 2017, 60, 1965–1981. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 1–487. [Google Scholar] [CrossRef]
- Dzotsi, K.A.; Basso, B.; Jones, J.W. Development, Uncertainty and Sensitivity Analysis of the Simple SALUS Crop Model in DSSAT. Ecol. Modell. 2013, 260, 62–76. [Google Scholar] [CrossRef]
- FAO CropWat | Land & Water | Food and Agriculture Organization of the United Nations | Land & Water | Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 4 August 2022).
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Kemanian, A.R.; Nelson, R.L.; Adam, J.C.; Sommer, R.; Carlson, B. CropSyst Model Evolution: From Field to Regional to Global Scales and from Research to Decision Support Systems. Environ. Model. Softw. 2014, 62, 361–369. [Google Scholar] [CrossRef]
- Prost, L.; Martin, G.; Ballot, R.; Benoit, M.; Bergez, J.E.; Bockstaller, C.; Cerf, M.; Deytieux, V.; Hossard, L.; Jeuffroy, M.H.; et al. Key Research Challenges to Supporting Farm Transitions to Agroecology in Advanced Economies. A Review. Agron. Sustain. Dev. 2023, 43, 1–19. [Google Scholar] [CrossRef]
- Ara, I.; Turner, L.; Harrison, M.T.; Monjardino, M.; deVoil, P.; Rodriguez, D. Application, Adoption and Opportunities for Improving Decision Support Systems in Irrigated Agriculture: A Review. Agric. Water Manag. 2021, 257, 107161. [Google Scholar] [CrossRef]
- Mouratiadou, I.; Wezel, A.; Kamilia, K.; Marchetti, A.; Paracchini, M.L.; Bàrberi, P. The Socio-Economic Performance of Agroecology. A Review. Agron. Sustain. Dev. 2024, 44, 19. [Google Scholar] [CrossRef]
- Antle, J.M.; Basso, B.; Conant, R.T.; Godfray, H.C.J.; Jones, J.W.; Herrero, M.; Howitt, R.E.; Keating, B.A.; Munoz-Carpena, R.; Rosenzweig, C.; et al. Towards a New Generation of Agricultural System Data, Models and Knowledge Products: Design and Improvement. Agric. Syst. 2017, 155, 255–268. [Google Scholar] [CrossRef]
- Hussain, S.B.; Karagiannis, E.; Manzoor, M.; Ziogas, V. From Stress to Success: Harnessing Technological Advancements to Overcome Climate Change Impacts in Citriculture. Crit. Rev. Plant Sci. 2023, 42, 345–363. [Google Scholar] [CrossRef]
- Dehghan, Z.; Fathian, F.; Eslamian, S. Climate Change Impact on Agriculture and Irrigation Network. In Climate Change Management; Springer: Cham, Switzerland, 2019; pp. 333–354. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Akbari Variani, H.; Afshar, A.; Vahabzadeh, M.; Molajou, A. A Review on Food Subsystem Simulation Models for The Water-Food-Energy: Development Perspective. Environ. Sci. Pollut. Res. 2022, 30, 95197–95214. [Google Scholar] [CrossRef]
- Clément, R. Calcul Des Débits Dans Les Réseaux d’irrigation Fonctionnant à La Demande. La Houille Blanche 1966, 52, 553–576. [Google Scholar] [CrossRef]
- Pulido-Calvo, I.; Roldán, J.; López-Luque, R.; Gutiérrez-Estrada, J.C. Water Delivery System Planning Considering Irrigation Simultaneity. J. Irrig. Drain. Eng. 2003, 129, 247–255. [Google Scholar] [CrossRef]
- Rodríguez Díaz, J.A.; Camacho Poyato, E.; López Luque, R. Model to Forecast Maximum Flows in On-Demand Irrigation Distribution Networks. J. Irrig. Drain. Eng. 2007, 133, 222–231. [Google Scholar] [CrossRef]
- Monserrat, J.; Poch, R.; Colomer, M.A.; Mora, F. Analysis of Clément’s First Formula for Irrigation Distribution Networks. J. Irrig. Drain. Eng. 2004, 130, 99–105. [Google Scholar] [CrossRef]
- Srikrishnan, V.; Lafferty, D.C.; Wong, T.E.; Lamontagne, J.R.; Quinn, J.D.; Sharma, S.; Molla, N.J.; Herman, J.D.; Sriver, R.L.; Morris, J.F.; et al. Uncertainty Analysis in Multi-Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems. Earths Future 2022, 10, e2021EF002644. [Google Scholar] [CrossRef]
- Tangirala, A.K. Principles of System Identification: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1315222507. [Google Scholar]
- D’Urso, G. Simulation and Management of On-Demand Irrigation Systems: A Combined Agrohydrological and Remote Sensing Approach. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2001. [Google Scholar]
- Minacapilli, M.; Iovino, M.; D’Urso, G. A Distributed Agro-Hydrological Model for Irrigation Water Demand Assessment. Agric. Water Manag. 2008, 95, 123–132. [Google Scholar] [CrossRef]
- Minacapilli, M.; Iovino, M.; D’Urso, G. Crop And Irrigation Water Management Using High Resolution Remote Sensing And Agrohydrological Models. AIP Conf. Proc. 2006, 852, 99. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, J.; Wang, X.; Wu, M.; Cao, X. Fuzzy Composite Risk Assessment of Water-Energy-Food-Carbon Nexus in the Dispark Pumped Irrigation System. J. Hydrol. 2023, 624, 129879. [Google Scholar] [CrossRef]
- Valizadeh, N.; Rezaei-Moghaddam, K.; Hayati, D. Analyzing Iranian Farmers’ Behavioral Intention towards Acceptance of Drip Irrigation Using Extended Technology Acceptance Model. J. Agric. Sci. Technol. 2020, 22, 1177–1190. [Google Scholar]
- Naderi, M.M.; Mirchi, A.; Bavani, A.R.M.; Goharian, E.; Madani, K. System Dynamics Simulation of Regional Water Supply and Demand Using a Food-Energy-Water Nexus Approach: Application to Qazvin Plain, Iran. J. Environ. Manag. 2021, 280, 111843. [Google Scholar] [CrossRef]
- Granados García, A. Criterios Para el Dimensionamiento de Redes de Riego Robustas Frente a Cambios en la Alternativa de Cultivos. Ph.D. Thesis, Universidad Politécnica de Madrid (UPM), Madrid, Spain, 2013. [Google Scholar]
- Clément, R. Le Calcul Des Débits Dans Les Canalisations d’irrigation [The Calculation of Flows in Irrigation Pipes]. Association Amicale des Ingenieurs du Genie Rural, journees d’ etudes sur l’irrigation, 1955. (In French) [Google Scholar]
- de Boissezon, J.; Haït, J.-R. Calcul Des Débits Dans Les Réseaux d’irrigation. La Houille Blanche 1965, 51, 159–164. [Google Scholar] [CrossRef]
- Mavropoulos, T.I. Development of a New Demand Formula for Determination of the Peak Discharges in Irrigation Networks Operating On-Demand. Irrig. Dren. 1997, 44, 27–35. [Google Scholar]
- Mavropoulos, T.I.; Lotidi, P.A. Validity of the Theory of Probability in On-Demand Irrigation Networks. J. Irrig. Drain. Eng. 2016, 142, 04016048. [Google Scholar] [CrossRef]
- Moreno, M.A.; Planells, P.; Ortega, J.F.; Tarjuelo, J. New Methodology to Evaluate Flow Rates in On-Demand Irrigation Networks. J. Irrig. Drain. Eng. 2007, 133, 298–306. [Google Scholar] [CrossRef]
- Soler, J.; Latorre, J.; Gamazo, P. Alternative Method to the Clément’s First Demand Formula for Estimating the Design Flow Rate in On-Demand Pressurized Irrigation Systems. J. Irrig. Drain. Eng. 2016, 142, 04016024. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Carrero, L.M.; Sánchez-Romero, F.J.; Amparo López-Jiménez, P. Comparison between Clément’s First Formula and Other Statistical Distributions in A Real Irrigation Network. Irrig. Drain. 2018, 67, 429–440. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; Ramos, H.M.; López-Jiménez, P.A. Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water 2016, 8, 234. [Google Scholar] [CrossRef]
- Khadra, R.; Lamaddalena, N.; Inoubli, N. Optimization of on Demand Pressurized Irrigation Networks and On-Farm Constraints. Procedia Environ. Sci. 2013, 19, 942–954. [Google Scholar] [CrossRef]
- Labye, Y. Design and Optimization of Irrigation Distribution Networks, 44th ed.; FAO: Rome, Italy, 1988; ISBN 9251026661. [Google Scholar]
- Lamaddalena, N.; Sagardoy, J.A. Performance Analysis of On-Demand Pressurized Irrigation Systems; FAO: Rome, Italy; CIHEAM-IAMB: Rome, Italy, 2000; ISBN 92-5-104437-6. [Google Scholar]
- Calejo, M.J.; Teixeira, J.L.; Pereira, L.S.; Lamaddalena, N. Modelling the Irrigation Demand Hydrograph in a Pressurized System. In Proceedings of the EFITA/WCCA 2005, Vila Real, Portugal, 25–28 July 2005. [Google Scholar]
- Khadra, R.; Lamaddalena, N. A Simulation Model to Generate the Demand Hydrographs in Large-Scale Irrigation Systems. Biosyst. Eng. 2006, 93, 335–346. [Google Scholar] [CrossRef]
- Zaccaria, D.; Lamaddalena, N.; Neale, C.M.U.; Merkley, G.P.; Palmisano, N.; Passarella, G. Simulation of Peak-Demand Hydrographs in Pressurized Irrigation Delivery Systems Using a Deterministic-Stochastic Combined Model. Part I: Model Development. Irrig. Sci. 2013, 31, 209–224. [Google Scholar] [CrossRef]
- Fouial, A.; Lamaddalena, N.; Díaz, J.A.R. Generating Hydrants’ Configurations for Efficient Analysis and Management of Pressurized Irrigation Distribution Systems. Water 2020, 12, 204. [Google Scholar] [CrossRef]
- Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-03561-0. [Google Scholar]
- Poole, D.; Mackworth, A.; Goebel, R. Computational Intelligence; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Palit, A.K.; Popović, D. Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Krupakar, H.; Jayakumar, A. A Review of Intelligent Practices for Irrigation Prediction. arXiv 2016, arXiv:1612.02893. [Google Scholar] [CrossRef]
- Ponce Cruz, P. Inteligencia Artificial Con Aplicaciones a La Ingeniería; Marcombo: Barcelona, Spain, 2011. [Google Scholar]
- Pulido-Calvo, I.; Gutiérrez-Estrada, J.C. Improved Irrigation Water Demand Forecasting Using a Soft-Computing Hybrid Model. Biosyst. Eng. 2009, 102, 202–218. [Google Scholar] [CrossRef]
- Pulido-Calvo, I.; Roldán, J.; López-Luque, R.; Gutiérrez-Estrada, J.C. Demand Forecasting for Irrigation Water Distribution Systems. J. Irrig. Drain. Eng. 2003, 129, 422–431. [Google Scholar] [CrossRef]
- Yadav, J. Fuzzy Logic and Fuzzy Set Theory: Overview of Mathematical Preliminaries; Wiley: Hoboken, NJ, USA, 2023; pp. 13–29. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, C.H.; Tilt, K. Application of Fuzzy Logic in an Irrigation Control System. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT’96), Shanghai, China, 2–6 December 1996; pp. 593–597. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Laurent, C.; Oger, B.; Taylor, J.A.; Scholasch, T.; Metay, A.; Tisseyre, B. A Review of the Issues, Methods and Perspectives for Yield Estimation, Prediction and Forecasting in Viticulture. Eur. J. Agron. 2021, 130, 126339. [Google Scholar] [CrossRef]
- Pulido-Calvo, I.; Montesinos, P.; Roldán, J.; Ruiz-Navarro, F. Linear Regressions and Neural Approaches to Water Demand Forecasting in Irrigation Districts with Telemetry Systems. Biosyst. Eng. 2007, 97, 283–293. [Google Scholar] [CrossRef]
- Wang, X.; Lei, X.; Guo, X.; You, J.; Wang, H. Forecast of Irrigation Water Demand Considering Multiple Factors. IAHS-AISH Proc. Rep. 2015, 368, 331–336. [Google Scholar] [CrossRef]
- González Perea, R.; Camacho Poyato, E.; Montesinos, P.; Rodríguez Díaz, J.A. Irrigation Demand Forecasting Using Artificial Neuro-Genetic Networks. Water Resour. Manag. 2015, 29, 5551–5567. [Google Scholar] [CrossRef]
- González Perea, R.; Camacho Poyato, E.; Montesinos, P.; Rodríguez Díaz, J.A. Prediction of Applied Irrigation Depths at Farm Level Using Artificial Intelligence Techniques. Agric. Water Manag. 2018, 206, 229–240. [Google Scholar] [CrossRef]
- González Perea, R.; Camacho Poyato, E.; Montesinos, P.; Rodríguez Díaz, J.A. Prediction of Irrigation Event Occurrence at Farm Level Using Optimal Decision Trees. Comput. Electron. Agric. 2019, 157, 173–180. [Google Scholar] [CrossRef]
- Ramos, J.S.; Ramos, H.M. Sustainable Application of Renewable Sources in Water Pumping Systems: Optimized Energy System Configuration. Energy Policy 2009, 37, 633–643. [Google Scholar] [CrossRef]
- Perez-Sanchez, M.; Lopez-Jimenez, P.A.; Sanchez-Romero, F.J. ¿Cuál es la mejor consigna para operar con bombas trabajando como turbinas? In Proceedings of the EN VI Jornadas de Ingeniería del Agua (JIA 2019), Toledo, Spain, 22–25 October 2019. [Google Scholar]
- Pérez Urrestarazu, L.; Rodríguez Díaz, J.A.; Camacho Poyato, E.; Lopez Luque, R. Quality of Service in Irrigation Distribution Networks: Case of Palos de La Frontera Irrigation District (Spain). J. Irrig. Drain. Eng. 2009, 135, 755–762. [Google Scholar] [CrossRef]
- Daccache, A.; Lamaddalena, N.; Fratino, U. Assessing Pressure Changes in an On-Demand Water Distribution System on Drip Irrigation Performance—Case Study in Italy. J. Irrig. Drain. Eng. 2009, 136, 261–270. [Google Scholar] [CrossRef]
- Pardo, M.A.; Riquelme, A.J.; Jodar-Abellan, A.; Melgarejo, J. Water and Energy Demand Management in Pressurized Irrigation Networks. Water 2020, 12, 1878. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; López-Jiménez, P.A.; Ramos, H.M. PATs Selection towards Sustainability in Irrigation Networks: Simulated Annealing as a Water Management Tool. Renew. Energy 2018, 116, 234–249. [Google Scholar] [CrossRef]
- Díaz, J.R.; Luque, R.L.; Cobo, M.C.; Montesinos, P.; Poyato, E.C. Exploring energy saving scenarios for on-demand pressurised irrigation networks. Biosyst. Eng. 2009, 104, 552–561. [Google Scholar] [CrossRef]
- Cabrera, E.; del Teso, R.; Gómez, E.; Estruch-Juan, E.; Soriano, J. Quick Energy Assessment of Irrigation Water Transport Systems. Biosyst. Eng. 2019, 188, 96–105. [Google Scholar] [CrossRef]
- Cabrera, E.; Cabrera, E.; Cobacho, R.; Soriano, J. Towards an Energy Labelling of Pressurized Water Networks. Procedia Eng. 2014, 70, 209–217. [Google Scholar] [CrossRef]
- Stamouli, P.; Dercas, N.; Baltas, E. Performance Analysis of On-Demand Pressurized Irrigation Networks—Case Study in Greece. Water Util. J. 2017, 16, 39–55. [Google Scholar]
- Karimov, A.; Molden, D.; Khamzina, T.; Platonov, A.; Ivanov, Y. A Water Accounting Procedure to Determine the Water Savings Potential of the Fergana Valley. Agric. Water Manag. 2012, 108, 61–72. [Google Scholar] [CrossRef]
- García Morillo, J.; McNabola, A.; Camacho, E.; Montesinos, P.; Rodríguez Díaz, J.A. Hydro-Power Energy Recovery in Pressurized Irrigation Networks: A Case Study of an Irrigation District in the South of Spain. Agric. Water Manag. 2018, 204, 17–27. [Google Scholar] [CrossRef]
- Adhau, S.P.; Moharil, R.M.; Adhau, P.G. Mini-Hydro Power Generation on Existing Irrigation Projects: Case Study of Indian Sites. Renew. Sustain. Energy Rev. 2012, 16, 4785–4795. [Google Scholar] [CrossRef]
- Moreno, M.A.; Carrión, P.A.; Planells, P.; Ortega, J.F.; Tarjuelo, J.M. Measurement and Improvement of the Energy Efficiency at Pumping Stations. Biosyst. Eng. 2007, 98, 479–486. [Google Scholar] [CrossRef]
- Al-Smairan, M. Application of Photovoltaic Array for Pumping Water as an Alternative to Diesel Engines in Jordan Badia, Tall Hassan Station: Case Study. Renew. Sustain. Energy Rev. 2012, 16, 4500–4507. [Google Scholar] [CrossRef]
- Cabrera, E.; Gómez, E.; Cabrera, E.; Soriano, J.; Espert, V. Energy Assessment of Pressurized Water Systems. J. Water Resour. Plan. Manag. 2015, 141, 04014095. [Google Scholar] [CrossRef]
No. | Reference | Country | Average Flow (L/s) | Average Leakage (L/s) | Annual Energy Consumed (MWh) | Annual Carbon Emission (TnCO2) |
---|---|---|---|---|---|---|
1 | [162] | Portugal | 17.36 | 3.47 | 139.09 | 257 |
2 | [163] | Spain | 31.17 | 6.23 | 2949.01 | 2.98 |
3 | [138] | Spain | 29.34 | 5.87 | 2776.28 | 2.81 |
4 | [164] | Spain | 4012 | 802.40 | 379,567.30 | 383.97 |
5 | [165] | Italy | 1200 | 240.00 | 113,529.60 | 114.85 |
6 | [166] | Spain | 17.81 | 3.56 | 1685.21 | 13 |
7 | [167] | Spain | 10 | 2.00 | 946.08 | 0.96 |
8 | [168] | Spain | 479.8 | 95.96 | 45,392.92 | 1140.2 |
9 | [168] | Spain | 1428 | 285.60 | 135,100.22 | 136.67 |
10 | [169] | Spain | 221.80 | 6.76 | 20,984.58 | 21.23 |
11 | [169] | Spain | 0.036 | 0.01 | 1245.95 | 1.26 |
12 | [169] | Peru | 250 | 50.00 | 23,652.00 | 23.93 |
13 | [170] | Spain | 76.27 | 2.32 | 7215.78 | 7.3 |
14 | [171] | Greece | 774 | 154.80 | 73,226.59 | 74.08 |
15 | [172] | Uzbekistan | 619.61 | 123.92 | 58,620.00 | 59.29 |
16 | [173] | Spain | 4800 | 960.00 | 454,118.40 | 459.39 |
17 | [174] | India | 6.3 | 1.26 | 596.03 | 0.6 |
18 | [175] | Spain | 120 | 24.00 | 11,352.96 | 11.48 |
19 | [176] | Jordan | 520.8 | 104.16 | 49,271.85 | 49.84 |
20 | [177] | Italy | 215.04 | 43.01 | 20,345.10 | 20.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Espinal, M.A.; Pérez-Sánchez, M.; Sánchez-Romero, F.-J.; López-Jiménez, P.A. Irrigation Distribution Network Design Parameters and Their Influence on Sustainability Management. Water 2024, 16, 1131. https://doi.org/10.3390/w16081131
Garcia-Espinal MA, Pérez-Sánchez M, Sánchez-Romero F-J, López-Jiménez PA. Irrigation Distribution Network Design Parameters and Their Influence on Sustainability Management. Water. 2024; 16(8):1131. https://doi.org/10.3390/w16081131
Chicago/Turabian StyleGarcia-Espinal, Melvin Alfonso, Modesto Pérez-Sánchez, Francisco-Javier Sánchez-Romero, and P. Amparo López-Jiménez. 2024. "Irrigation Distribution Network Design Parameters and Their Influence on Sustainability Management" Water 16, no. 8: 1131. https://doi.org/10.3390/w16081131
APA StyleGarcia-Espinal, M. A., Pérez-Sánchez, M., Sánchez-Romero, F. -J., & López-Jiménez, P. A. (2024). Irrigation Distribution Network Design Parameters and Their Influence on Sustainability Management. Water, 16(8), 1131. https://doi.org/10.3390/w16081131