The Rhine Catchment: A Review of Sediment-Related Knowledge, Monitoring, and a Future Research Perspective
Abstract
:1. Introduction
2. Methods
- What projects/studies/research programmes are performed in the past/currently/planned in the future regarding sediment management?
- What are the problems/threats/issues in that river section causing negative impacts on the river system (in terms of morphodynamics, flood protection, navigation, ecology, etc.)?
- What knowledge gaps do exist in this context?
- Do you have any proposals/recommendations for future research activities concerning improvements for the riverine system (in terms of sediment management and morphodynamics)?
- Can you provide literature (reports, scientific publications, website links, etc.)?
3. General Setting of the Rhine River System
4. The Alpine Section
4.1. Setting the Scene
4.2. Sediment-Related Issues and Corresponding Research and Management Activities
4.3. Inventory of Monitoring Activities
5. The Impounded Section
5.1. Setting the Scene
5.2. Sediment-Related Issues and the Corresponding Research and Management Activities
5.3. Inventory of Monitoring Activities
6. The Free-Flowing Section
6.1. Setting the Scene
6.2. Sediment-Related Issues and Corresponding Research and Management Activities
6.3. Inventory of Monitoring Activities
7. The Upper Delta Section
7.1. Setting the Scene
7.2. Sediment-Related Issues and Corresponding Research and Management Activities
7.3. Inventory of Monitoring Activities
8. The Lower Delta Section
8.1. Setting the Scene
8.2. Sediment-Related Issues and Corresponding Research and Management Activities
8.3. Inventory of Monitoring Activities
9. Future Research Perspective
9.1. Research Topics
9.1.1. Influence of Climate Change and Land Use Change on the Sediment Regime
- How does climate change affect sediment production in the catchment due to glaciers retreating and permafrost thawing?
- How does a changed hydrology (discharge regime) due to glaciers melting affect sediment transport, sediment balance, and river functions?
- In general, which land use changes may be expected due to human interventions, and how will land use adjust to climate change?
- How does land use change affect sediment production and, consequently, sediment input?
- How does sea level rise affect bed levels in the lower delta section, and how will this affect upstream reaches?
9.1.2. Impacts of River Engineering (Including Channelization and Continuity Disruptions) on the Entire Rhine’s Morphology and Sediment Budget
- (i)
- Channelization effects: This includes a detailed analysis and comparison of the historic conditions of morphology and sediment transport with the present conditions after channelization.
- (ii)
- Effects from sediment barriers: The permeability of dams depends on various factors such as grain size distribution of sediments supplied from upstream, hydropower plant operation, the characteristics of the reservoir and the weirs. An investigation into the sediment balance prior and after the period of hydropower plant construction would help to identify the impacts of dams on sediment transport.
- How is sediment transport affected by channelization measures?
- How is the continuity of sediment transport affected by transversal structures?
- What are the consequences of channelization and damming on the riverbed (erosion/deposition)?
- How have sediment barriers (e.g., hydropower plants) and channelization affected the sediment yield into downstream reaches and into the sea?
- What is the transport through Lake Constance?
- What are the changes in grain size, and how do these changes affect sediment transport?
- Which sections of the catchment-scale river network show erosion or deposition?
- Which river sections are currently developing problems/challenges?
- What did sediment transport and morphology look like before human impacts, and how could this state serve as a target state for re-establishing more natural states in river restoration?
- How did channelization and damming affect the migration of the gravel–sand transition?
- How can the catchment-scale evolution of the bed levels be reconstructed in a numerical model?
9.1.3. Impact of Sediment Management Activities on the Overall Sediment Budget of the Rhine River, and Identification of Possibilities for Improvement
- What is the interaction between river sections as a result of management practices?
- Which equilibrium would the current Rhine evolve to, starting from the present state, if maintenance measures were absent?
- Which equilibrium would the current Rhine evolve to, starting from the present state, if maintenance measures are continued?
- What is the role of abrasion and sorting in relation to the effect of sediment nourishment?
- What are the travel paths of nourished sediment?
- How can sediment nourishments be optimized as a transboundary and essential strategy for future river management?
- What is the effect of the grain size distribution of the artificially supplied sediments on downstream morphology and sediment transport?
- How can the permeability of barriers be increased for sediment transport?
- How can sediment depositions in reservoirs be best remobilised?
- How can the remobilisation of sediment in reservoirs be concentrated on unpolluted sediment?
- Which concerted, catchment-scale management concept improves the situation and is most effective by using synergies between individual management actions?
9.1.4. Harmonization of Monitoring Strategies and Consideration of New Monitoring Techniques
- What is the state of the art of the various monitoring techniques that are and can be applied in the Rhine catchment?
- Which monitoring techniques can be agreed on for application across the whole catchment?
- What are the best practices in applying monitoring methods?
- Which new methods are best capable of measuring sediment properties?
- How can we reliably measure sediment transport on and with bedforms?
- What are the possibilities of exploiting remote sensing techniques for monitoring purposes?
- How could a real-time monitoring of morphology be set up, similar to the Rhine alarm monitoring network, to observe water quality?
9.1.5. Optimisation of Sediment Budgeting
- What is the exchange of sediments between the fairway channel and the groyne fields, how do groyne fields adjust to maintenance measures in the channel, and how does the lateral interaction affect the sediment balance?
- How is sediment exchanged with harbours?
- How is sediment exchanged with the North Sea?
- What is the balance of sediment transport in tidal flow?
- How is sediment distributed at bifurcations?
- How can we improve the quantification of diffuse suspended sediment supply?
- How can we improve the quantification of the supplies from tributaries?
- How do restoration measures affect the sediment balance?
- What is the effect of porosity on sediment transport and on the sediment balance?
- What is the effect of abrasion on sediment transport and on the sediment balance?
- What is the travel path of individual particles?
- How can the fractioning of bed level changes (determination of the involved grain sizes) be intensified?
- How can models be applied to support data-based analyses?
9.1.6. Assessment of the Transfer of Coarse Sediment through the Rhenish Massif
- How much gravel is transported through the Rhenish Massif?
- How does bedload transport occur on bedrock and in rock fissures of the Rhenish Massif?
- How does the sediment transfer occur through the Rhenish Massif?
- How is the sediment exchanged with sediment stored in the crevices of the bedrock channel?
- What is the time lag of the transfer resulting from the exchange with stored sediment?
9.1.7. Determination of the Demands of Different Sectors (Hydropower, Navigation, Flood Risk Management, Ecology) on a Sustainable Management of Sediment and Morphodynamics
- What are the demands of the hydropower sector regarding sediment management?
- What are the demands of the inland shipping sector regarding sediment management?
- What are the demands of the flood risk management sector regarding sediment management?
- What are the demands of ecology regarding sediment management?
- Which solutions are positive for all sectors and yield the largest overlap of interests?
- In respect to the question above, how can the demands and deficits of the individual sectors and stakeholders be compared and harmonized?
9.1.8. Vegetation and Sedimentation
- Which parameters control the sediment dynamics on vegetated bars and floodplains at the transition from suspension to deposition (and back to remobilisation)?
- How can numerical and laboratory models reconstruct these processes?
- What is the monitoring setup needed to measure the sediment dynamics in the floodplain, to establish a data set for model calibration and validation?
- What are the recommendations regarding maintenance of vegetated channels, based on actual knowledge, to avoid flood risk problems (development of a guideline based on the present state of knowledge for the management of vegetation along the Rhine)?
9.1.9. River Restoration: Bank Erosion and Channel Widening, and Interactions with the Sediment Regime and Sediment Budget
- What is the appropriate sediment supply to reach restoration goals?
- How does riverbank erosion affect the sediment dynamics at the riverbed and the sediment regime?
- How does riverbank erosion occur at specific sites of the Rhine River, what are the processes involved, how can they be modelled, and what are the interactions between riverbank erosion, bed topography, and sediment transport?
- What is the effect of riverbank erosion on the sediment budget?
- What are the initial measures needed to trigger the desired dynamics?
- What are the measures/boundary conditions needed to ensure sediment conveyance, to avoid flood risk problems?
- What are the expected bed levels after restoration within the restored section, and up- and downstream?
- Which indicators may be used to evaluate the effects of measures in land use practices (agricultural use) on the ecological state?
- How can riverbanks be prepared in a physical laboratory model, so that bank retreat rates and bank geometries are similar to the prototype scale of the Rhine River?
9.2. Ideas for Future Research Projects
9.2.1. Influence of Climate Change and Land Use Change on the Sediment Regime
9.2.2. Alteration and Improvement of Sediment Balance and Continuity, Sediment Transport, and Morphology (in the Context of the Spatial and Temporal Development of River Engineering and Management in the Rhine River and Major Tributaries)
9.2.3. Sediment Transport Processes and Management—National and Bilateral Projects
- (i)
- Individual studies on sediment processes:
- (ii)
- Bilateral projects addressing sediment management
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habersack, H.; Hauer, C. Reservoir sedimentation—Need for action at global, regional, catchment and local scales. Hydrolink 2019, 4, 114–116. [Google Scholar]
- Hauer, C.; Wagner, B.; Aigner, J.; Holzapfel, P.; Flödl, P.; Liedermann, M.; Tritthart, M.; Sindelar, C.; Klösch, M.; Haimann, M.; et al. Das “Christian Doppler Labor für Sedimentforschung und -management”: Anwendungsorientierte Grundlagenforschung und Herausforderungen für eine nachhaltige Wasserkraft und Schifffahrt. Osterr. Wasser Abfallwirtsch. 2019, 71, 137–147. [Google Scholar] [CrossRef]
- Klösch, M.; Ten Brinke, W.; Krapesch, M.; Habersack, H. Sediment Management in the Rhine Catchment: Inventory of Knowledge, Research and Monitoring, and an Advice on Future Sediment Research; Report No I-27 of the CHR; International Commission for the Hydrology of the Rhine Basin: Utrecht, The Netherlands, 2021; ISBN 789070980429. [Google Scholar]
- Liu, C.; Walling, D.E.; He, Y. Review: The International Sediment Initiative case studies of sediment problems in river basins and their management. Int. J. Sediment Res. 2018, 33, 216–219. [Google Scholar] [CrossRef]
- Walling, D.E. The Impact of global change on erosion and sediment transport by rivers: Current progress and future challenges. In UNESCO World Water Assessment Programme; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2009. [Google Scholar]
- Habersack, H.; Hein, T.; Stanica, A.; Liska, I.; Mair, R.; Jäger, E.; Hauer, C.; Bradley, C. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Sci. Total Environ. 2016, 543, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Ten Brinke, W. The Dutch Rhine, a Restrained River; Veen Magazines: Diemen, The Netherlands, 2005. [Google Scholar]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Quick, I.; König, F.; Baulig, Y.; Schriever, S.; Vollmer, S. Evaluation of depth erosion as a major issue along regulated rivers using the classification tool Valmorph for the case study of the Lower Rhine. Int. J. River Basin Manag. 2019, 18, 191–206. [Google Scholar] [CrossRef]
- Mahmood, A.; Han, J.-C.; Ijaz, M.W.; Siyal, A.A.; Ahmad, M.; Yousaf, M. Impact of Sediment Deposition on Flood Carrying Capacity of an Alluvial Channel: A Case Study of the Lower Indus Basin. Water 2022, 14, 3321. [Google Scholar] [CrossRef]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Scholten, A.; Rothstein, B. Navigation on the Danube—Limitations by Low Water Levels and Their Impacts; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Fedorenkova, A.; Vonk, J.A.; Breure, A.M.; Hendriks, A.J.; Leuven, R.S.E.W. Tolerance of native and non-native fish species to chemical stress: A case study for the River Rhine. Aquat. Invasions 2013, 8, 231–241. [Google Scholar] [CrossRef]
- CHR. Strategy 2020–2030; CHR: Utrecht, The Netherlands, 2021. [Google Scholar]
- ICPR. Convention on the Protection of the Rhine; ICPR: Bern, Switzerland, 1999. [Google Scholar]
- CCNR. Mannheim Declaration “150 Years of the Mannheim Act—The Driving Force Behind Dynamic Rhine and Inland Navigation; CCNR: Strasbourg, France, 2023. [Google Scholar]
- Syvitski, J.P.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X.; Wang, Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Glob. Planet. Chang. 2007, 57, 331–354. [Google Scholar] [CrossRef]
- Habersack, H.; Baranya, S.; Holubova, K.; Vartolomei, F.; Skiba, H.; Schwarz, U.; Krapesch, M.; Gmeiner, P.; Haimann, M. Sediment Manual for Stakeholders, Output 6.2 of the Interreg Danube Transnational Project DanubeSediment; European Commission: Vienna, Austria, 2019. [Google Scholar]
- Hohensinner, S.; Hauer, C.; Muhar, S. River morphology, channelization, and habitat restoration. In Riverine Ecosystem Management: Science for Governing towards a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2018; pp. 41–65. [Google Scholar]
- Alexander, J.; Wilson, R.; Green, R. A Brief History and Summary of the Effects of River Engineering and Dams on the Mississippi River System and Delta; US Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Gore, J.A.; Petts, G.E. Alternatives in Regulated River Management; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Hohensinner, S.; Jungwirth, M.; Muhar, S.; Schmutz, S. Spatio-temporal habitat dynamics in a changing Danube River landscape. River Res. Appl. 2011, 27, 939–955. [Google Scholar] [CrossRef]
- Habersack, H.; Piégay, H. 27 River restoration in the Alps and their surroundings: Past experience and future challenges. Dev. Earth Surf. Process. 2007, 11, 703–735. [Google Scholar]
- Lau, J.K.; Lauer, T.E.; Weinmann, M.L. Impacts of channelization on stream habitats and associated fish assemblages in east central Indiana. Am. Midl. Nat. 2006, 156, 319–330. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Q.; Zhang, E. In-channel sand extraction from the mid-lower Yangtze channels and its management: Problems and challenges. J. Environ. Plan. Manag. 2006, 49, 309–320. [Google Scholar]
- Wang, Z.; Li, Y.; He, Y. Sediment budget of the Yangtze River. Water Resour. Res. 2007, 43, W04401. [Google Scholar] [CrossRef]
- Ashmore, P.; Church, M. The Impact of Climate Change on Rivers and River Processes in Canada; Bulletin of the Geological Survey of Canada: Ottawa, ON, Canada, 2001; pp. 1–48. [Google Scholar]
- Ylla Arbós, C.; Blom, A.; Sloff, C.J.; Schielen, R.M.J. Centennial channel response to climate change in an engineered river. Geophys. Res. Lett. 2023, 50, e2023GL103000. [Google Scholar] [CrossRef]
- Dunn, F.E.; Darby, S.E.; Nicholls, R.J.; Cohen, S.; Zarfl, C.; Fekete, B.M. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 2019, 84, 084034. [Google Scholar] [CrossRef]
- Habersack, H.; Hauer, C. Sedimentforschung und -management. Osterr. Wasser Abfallwirtsch. 2019, 71, 108–110. [Google Scholar] [CrossRef]
- Frings, R.M.; Hillebrand, G.; Gehres, N.; Banhold, K.; Schriever, S.; Hoffmann, T. From source to mouth: Basin-scale morphodynamics of the Rhine River. Earth-Sci. Rev. 2019, 196, 102830. [Google Scholar] [CrossRef]
- Frings, R.M.; Döring, R.; Beckhausen, C.; Schüttrumpf, H.; Vollmer, S. Fluvial sediment budget of a modern, restrained river: The lower reach of the Rhine in Germany. Catena 2014, 122, 91–102. [Google Scholar] [CrossRef]
- Frings, R.M.; Gehres, N.; Promny, M.; Middelkoop, H.; Schüttrumpf, H.; Vollmer, S. Today’s sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif. Geomorphology 2014, 204, 573–587. [Google Scholar] [CrossRef]
- Van der Perk, M.; Vilches, A.E. Compositional dynamics of suspended sediment in the Rhine River: Sources and controls. J. Soils Sediments 2020, 20, 1754–1770. [Google Scholar] [CrossRef]
- Cox, J.R.; Dunn, F.E.; Nienhuis, J.H.; Van der Perk, M.; Kleinhans, M.G. Climate change and human influences on sediment fluxes and the sediment budget of an urban delta: The example of the lower Rhine–Meuse delta distributary network. Anthr. Coasts 2021, 4, 251–280. [Google Scholar] [CrossRef]
- International Commission for the Protection of the Rhine. Rhine 2040 and working plan 2022–2027. In Proceedings of the Presentation at the 87th CHR Meeting, Online, 26 October 2021. [Google Scholar]
- Uehlinger, U.; Arndt, H.; Wantzen, K.M.; Leuven, R.S.E.W. The Rhine River Basin. In Rivers of Europe; Elsevier: Amsterdam, The Netherlands, 2009; pp. 199–245. [Google Scholar]
- Hillebrand, G.; Frings, R. Von der Quelle zur Mündung: Die Sedimentbilanz des Rheins im Zeitraum 1991–2010; Report No II-22 of the CHR; CHR: Utrecht, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Rösch, N. Die Rheinbegradigung durch Johann Gottfried Tulla; ZfV-Zeitschrift für Geodäsie, Geoinformation und Landmanagement: Zürich, Switzerland, 2009. [Google Scholar]
- Arnaud, F.; Schmitt, L.; Johnstone, K.; Rollet, A.-J.; Piégay, H. Engineering impacts on the Upper Rhine channel and floodplain over two centuries. Geomorphology 2019, 330, 13–27. [Google Scholar] [CrossRef]
- Van de Ven, G.P. Verdeel en Beheers! 300 Jaar Pannerdensch Kanaal; Veen Magazines: Diemen, The Netherlands, 2007. [Google Scholar]
- Ten Brinke, W. Land in Sea. The Water History of the Netherlands; Veen Magazines: Diemen, The Netherlands, 2007. [Google Scholar]
- Diaz-Redondo, M.; Egger, G.; Marchamalo, M.; Damm, C.; de Oliveira, R.P.; Schmitt, L. Targeting lateral connectivity and morphodynamics in a large river-floodplain system: The upper Rhine River. River Res. Appl. 2018, 34, 734–744. [Google Scholar] [CrossRef]
- Middelkoop, H.; Erkens, G.; Van der Perk, M. The Rhine delta—A record of sediment trapping over time scales from millennia to decades. J. Soils Sediments 2010, 10, 628–639. [Google Scholar] [CrossRef]
- Middelkoop, H. Embanked Floodplains in the Netherlands. Geomorphological Evolution over Various Time Scales. Ph.D. Thesis, Universiteit Utrecht, Utrecht, The Netherlands, 1997. [Google Scholar]
- Van der Perk, M.; Sutari, C.A.T.; Middelkoop, H. Examination of the declining trend in suspended sediment loads in the Rhine River in the period 1952–2016. In Book of Abstracts NCR Days 2019; Utrecht University: Utrecht, The Netherlands, 2019. [Google Scholar]
- Görgen, K.; Beersma, J.; Buiteveld, H.; Brahmer, G.; Carambia, M.; Keizer, O.D.; Krahe, P.; Nilson, E.; Lammersen, R.; Perrin, C.; et al. Assessment of Climate Change Impacts on Discharge in the River Rhine Basin. Results of the RheinBlick2050 Project; Rapport I-23 2010; The International Commission for the Hydrology of the Rhine basin (CHR): Utrecht, The Netherlands, 2010. [Google Scholar]
- Bergmeister, U.; Kalt, L. Der Alpenrhein und Seine Regulierung, Rheinregulierung, I., Ed.; BuchsDruck und Verlag: Buchs, Switzerland, 1992.
- Zarn, B.; Oplatka, M.; Pellandini, S.; Mikos, M.; Hunziker, R.; Jäggi, M. Geschiebehaushalt Alpenrhein; Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie: Zürich, Switzerland, 1995. [Google Scholar]
- Zarn, B. Entwicklungskonzept Alpenrhein. Osterr. Wasser Abfallwirtsch. 2008, 60, 81–87. [Google Scholar] [CrossRef]
- Dietsche, D.; Internationale Rheinregulierung (IRR), Rheinbauleiter Schweiz, St. Margrethen, Switzerland. Personal communication, 2021.
- Gökler, G.; Illwerke VKW AG, Vorarlberg, Austria. Personal communication, 2021.
- Zarn, B. Morphology and Floods in the Alpine Region. In Proceedings of the KHR/CHR Meeting “From the Source to Mouth, a sediment budget of the Rhine River”, Lyon, France, 25–26 March 2015. [Google Scholar]
- Zarn, B.; Hunziker, Zarn & Partner AG, Aarau, Switzerland. Personal communication, 2021.
- Schmid, D.; Canton Graubünden, Ministry of Nature and Environment, Department Surface Waters, Chur, Switzerland. Personal communication, 2021.
- Speckle, M.; Internationale Rheinregulierung (IRR), Rheinbauleiter Österreich, St. Margrethen, Switzerland. Personal communication, 2021.
- Internarionale Rheinregulierung. Wir Sind Hochwasserschutz. 2022. Available online: https://rhesi.org/media/pages/service/publikationen/a2f81fc56d-1687790462/irr_imagebroschuere_2022_web.pdf (accessed on 12 February 2024).
- Internationale Regierungskommission Alpenrhein; Internarionale Rheinregulierung. Entwicklungskonzept Alpenrhein; Kurzbericht: Sils im Domleschg, Switzerland, 2005. [Google Scholar]
- Kolb, R.; Herzog, B. Aufweitung Alpenrhein Maienfeld/Bad Ragaz; Technischer Bericht zum Bau- und Auflageprojekt: Widnau, Switzerland, 2023. [Google Scholar]
- Weitbrecht, V.; ETH Zürich, Laboratory of Hydraulics, Hydrology and Glaciology, Zürich, Switzerland. Personal communication, 2021.
- Nitsche, M.; Federal Office for the Environment (BAFU), Water Division, Hydropower Rehabilitation Section, Bern, Switzerland. Personal communication, 2021.
- Reiterer, A.; Federal Institution of the Republic of Austria, Austrian Service for Torrent and Avalanche Control (die.wildbach), Provincial Headquarters Vorarlberg, Vorarlberg, Austria. Personal communication, 2021.
- Hunziker, R. Fraktionsweiser Geschiebetransport. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie; ETH Zürich: Zürich, Switzerland, 1995. [Google Scholar]
- Schilling, M.; Hunziker, R. Programm MORMO (MORphologisches MO-dell). Mathematische Modelle offener Gerinne. In Proceedings of the ÖWAV-Seminar, Wien, Austria, 27–28 February 1995. [Google Scholar]
- Hunziker, Z.P.A. Morphologie und Geschiebehaushalt Alpenrhein; Zusammenfassender Bericht über die Untersuchungen zwischen 1985 und 2000; Hunziker, Zarn & Partner AG: Domat/Ems, Switzerland, 2001. [Google Scholar]
- Hunziker, Z.P.A. Einfluss von Vegetation auf Kiesbänken auf den Hochwasserspiegel im Alpenrhein; Technischer Bericht; Tiefbauamt St. Gallen: St. Gallen, Switzerland, 2018. [Google Scholar]
- Federal Office for the Environment. Monitoring Networks for Sediment Transport in Bodies of Water. 2019. Available online: https://www.bafu.admin.ch/bafu/en/home/topics/water/state/water--monitoring-networks/monitoring-networks-for-sediment-transport-in-bodies-of-water.html (accessed on 9 November 2023).
- Buck, W.; Felkel, K.; Gerhard, H.; Kalweit, H.; Malde, J.v.; Nippes, K.-R.; Ploeger, B.; Schmitz, W. Der Rhein unter der Einwirkung des Menschen. Ausbau, Schiffahrt, Wasserwirttschaft; Bericht I-11. Lelystad; International Commission for the Hydrology of the Rhine Basin: Utrecht, The Netherlands, 1993. [Google Scholar]
- CCNR. Inland Navigation in Europe, Market Observation; Central Commission for the Navigation of the Rhine: Strasbourg, France, 2023. [Google Scholar]
- Arnaud, F.; Piégay, H.; Schmitt, L.; Rollet, A.; Béal, D. Using historical and experimental geomorphology for restoring rivers: Insights from the Old Rhine. In Proceedings of the SHF Conference “Small Scale Morphological Evolution of Coastal, Estuarine and River Systems”, Nantes, France, 6–7 October 2014. [Google Scholar]
- Gölz, E. Die Herkunft des Rheingeschiebes—Ein Geologisch-Petrografischer Beitrag zum Geschiebeproblem; Bundesanstalt für Gewässerkunde: Koblenz, Germany, 1980. [Google Scholar]
- Gölz, E. Der Einfluss des Geschiebeabriebs auf die Sohlenerosion des Oberrheins; Bundesanstalt für Gewässerkunde: Koblenz, Germany, 1984. [Google Scholar]
- Schmitt, L.; Morris, D.; Kondolf, G.M. Managing Floods in Large River Basins in Europe: The Rhine River. In Managing Flood Risk; Springer International Publishing: Cham, Switzerland, 2018; p. 759. [Google Scholar]
- Commission Permanente. Démonstration de L’efficacité des Mesures de Rétention des Crues du Rhin Supérieur entre Bâle et Worms; Rapport intermédiaire; Commission Permanente: Koblenz, Germany, 2016. [Google Scholar]
- Abegg, J.; Kirchhofer, A.; Rutschmann, P. Masterplan Maßnahmen zur Geschiebereaktivierung im Hochrhein. Bundesamt für Energie BFE, Bern/Regierungspräsidium Freiburg. 2013. Available online: www.news.admin.ch/NSBSubscriber/message/attachments/29940.pdf (accessed on 15 February 2024).
- Bernet, D.; Burger, S.; Dürrenmatt, R.; Harder, U.; Vollenweider, S. Interkantonale Planung Aare. In Koordinationsbericht zur strategischen Planung nach Gewässerschutzgesetz der Kantone Aargau; Kanton Aargau, Abteilung Landschaft und Gewässer/Abteilung Wald; Kanton Bern, Amt für Landwirtschaft und Natur/Amt für Wasser und Abfall; Kanton Solothurn, Amt für Umwelt/Amt für Wald, Jagd und Fischerei: Bern, Switzerland, 2014. [Google Scholar]
- Hillebrand, G.; The German Federal Institute of Hydrology (BfG), Department M3—Fluvial Morphology, Sediment Dynamics and Management, Koblenz, Germany. Personal communication, 2021.
- Huber, N.; Federal Waterways Engineering and Research Institute (BAW), Department of River Engineering, Hydraulic Engineering in Inland Areas, Karlsruhe, Germany. Personal communication, 2021.
- Chardon, V.; Schmitt, L.; Piégay, H.; Beisel, J.-N.; Staentzel, C.; Barillier, A.; Clutier, A. Effects of Transverse Groynes on Meso-Habitat Suitability for Native Fish Species on a Regulated By-Passed Large River: A Case Study along the Rhine River. Water 2020, 12, 987. [Google Scholar] [CrossRef]
- Arnaud, F.; Piégay, H.; Béal, D.; Collery, P.; Vaudor, L.; Rollet, A.-J. Monitoring gravel augmentation in a large regulated river and implications for process-based restoration. Earth Surf. Process. Landf. 2017, 42, 2147–2166. [Google Scholar] [CrossRef]
- Schmitt, L.; Beisel, J.-N.; Preusser, F.; de Jong, C.; Wantzen, K.; Chardon, V.; Staentzel, C.; Eschbach, D.; Damm, C.; Rixhon, G.; et al. Sustainable Management of the Upper Rhine River and Its Alluvial Plain: Lessons from Interdisciplinary Research in France and Germany; KIT: Karlsruhe, Germany, 2019; p. 345. [Google Scholar]
- Agence de l’eau Rhin Meuse. Plan Rhin Vivant. 2019. Available online: https://www.eau-rhin-meuse.fr/actualites/plan-rhin-vivant (accessed on 20 February 2024).
- Eschbach, D.; Piasny, G.; Schmitt, L.; Pfister, L.; Grussenmeyer, P.; Koehl, M.; Skupinski, G.; Serradj, A. Thermal-infrared remote sensing of surface water–groundwater exchanges in a restored anastomosing channel (Upper Rhine River, France). Hydrol. Process. 2017, 31, 1113–1124. [Google Scholar] [CrossRef]
- Eschbach, D.; Schmitt, L.; Imfeld, G.; May, J.-H.; Payraudeau, S.; Preusser, F.; Trauerstein, M.; Skupinski, G. Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: An interdisciplinary study. Hydrol. Earth Syst. Sci. 2018, 22, 2717–2737. [Google Scholar] [CrossRef]
- Jeannot, B.; Weill, S.; Eschbach, D.; Schmitt, L.; Delay, F. A low-dimensional integrated subsurface hydrological model coupled with 2-D overland flow: Application to a restored fluvial hydrosystem (Upper Rhine River—France). J. Hydrol. 2018, 563, 495–509. [Google Scholar] [CrossRef]
- Jeannot, B.; Weill, S.; Eschbach, D.; Schmitt, L.; Delay, F. Assessing the effect of flood restoration on surface–subsurface interactions in Rohrschollen Island (Upper Rhine river—France) using integrated hydrological modeling and thermal infrared imaging. Hydrol. Earth Syst. Sci. 2019, 23, 239–254. [Google Scholar] [CrossRef]
- Schmitt, L.; University of Strasbourg, Vice President of Sustainable Development and Corporate Responsibility, Strasbourg, France. Personal communication, 2021.
- Chardon, V.; Schmitt, L.; Piégay, H.; Lague, D. Use of terrestrial photosieving and airborne topographic LiDAR to assess bed grain size in large rivers: A study on the Rhine River. Earth Surf. Process. Landf. 2020, 45, 2314–2330. [Google Scholar] [CrossRef]
- Chardon, V.; Schmitt, L.; Arnaud, F.; Piégay, H.; Clutier, A. Efficiency and sustainability of gravel augmentation to restore large regulated rivers: Insights from three experiments on the Rhine River (France/Germany). Geomorphology 2021, 380, 107639. [Google Scholar] [CrossRef]
- Garnier, A.; Barillier, A. The Kembs project: Environmental integration of a large existing hydropower scheme. Houille Blanche 2015, 21–28. [Google Scholar] [CrossRef]
- Staentzel, C.; Arnaud, F.; Combroux, I.; Schmitt, L.; Trémolières, M.; Grac, C.; Piégay, H.; Barillier, A.; Chardon, V.; Beisel, J.N. How do instream flow increase and gravel augmentation impact biological communities in large rivers: A case study on the Upper Rhine River. River Res. Appl. 2018, 34, 153–164. [Google Scholar] [CrossRef]
- Staentzel, C.; Combroux, I.; Barillier, A.; Grac, C.; Chanez, E.; Beisel, J.-N. Effects of a river restoration project along the Old Rhine River (France-Germany): Response of macroinvertebrate communities. Ecol. Eng. 2019, 127C, 114–124. [Google Scholar] [CrossRef]
- Staentzel, C.; Combroux, I.; Barillier, A.; Beisel, J.-N. L’étude temporelle des transitions paysagères et de l’hétérogénéité dans la mosaïque d’habitats comme outil d’évaluation des opérations de restauration écologique? Retours d’expériences et analyse comparative. Tech. Sci. Méthodes 2020, 15–29. [Google Scholar] [CrossRef]
- Koll, K.; Dittrich, A.; Koll, K. Interreg IVa—Investigation of External Bed-Load Transport over Static Armour Layers in Laboratory Experiments; Report-No 1013; Leichtweiß-Institut für Wasserbau, Technische Universität Braunschweig: Braunschweig, Germany, 2011. [Google Scholar]
- Nardi, L.; Koll, K.; Dittrich, A. Interreg IVa—Assessment of Morphodynamic Changes at Kapellengrien and Pilot Site O3 by 3D Numerical Modelling; Report-No 1018; Leichtweiß-Institut für Wasserbau, Technische Universität Braunschweig: Braunschweig, Germany, 2012. [Google Scholar]
- Piégay, H.; Béal, D.; Blum, C.; Maier, M.; Aelbrecht, D.; Arnaud, F.; Barillier, A.; Durand, P.; Abderrazzak, K.; Dittrich, A.; et al. Redynamisierung des Restrheins. Tome 1. Machbachkeitsuntersuchung. In Programm Interreg IV Oberrhein Redynamisierung des Restrheins; Abschlussbericht 2009–2012; Strasbourg, France, 2012. [Google Scholar]
- Chardon, V.; Schmitt, L.; Piégay, H.; Arnaud, F.; Serouilou, J.; Houssier, J.; Clutier, A.; Rivière, N. Geomorphic effects of gravel augmentation on the Old Rhine River downstream from the Kembs dam (France, Germany). In Proceedings of the E3S Web of Conferences, Lyon-Villeurbanne, France, 5–8 September 2018; Volume 40. [Google Scholar] [CrossRef]
- Arnaud, F.; Staentzel, C.; Beisel, J.-N.; Piégay, H.; Grac, C.; Trémolieres, M.; Combroux, I.; Schmitt, L.; Barillier, A.; Garnier, A. Geomorphic and ecological monitoring of an experimental sediment reintroduction into the Rhine River downstream of the Kembs dam Bilan éco-morphologique de la recharge sédimentaire expérimentale sur le Vieux Rhin. In Proceedings of the 2nd International Conference IS Rivers, Lyon, France, 22–26 June 2015. [Google Scholar]
- International Commission for the Protection of the Rhine. Internationale Flussgebietseinheit Rhein: Merkmale, Überprüfung der Umweltauswirkungen menschlicher Tätigkeiten und wirtschaftliche Analyse der Wassernutzung; Internationale Kommission zum Schutz des Rheins: Koblenz, Germany, 2005. [Google Scholar]
- International Commission for the Protection of the Rhine. Der Rhein unter der Einwirkung des Menschen—Ausbau, Schifffahrt; Internationale Kommission zum Schutz des Rheins: Koblenz, Germany, 1993. [Google Scholar]
- Vollmer, S.; The German Federal Institute of Hydrology (BfG), Head of Department M3—Fluvial Morphology, Sediment Dynamics and Management, Koblenz, Germany. Personal communication, 2021.
- Kempmann, K.; Central Commission for the Navigation of the Rhine (CCNR), Administrator, Strasbourg, France. Personal communication, 2021.
- Federal Ministry for Digital and Transport. KLIWAS Auswirkungen des Klimawandels auf Wasserstraßen und Schifffahrt in Deutschland. Abschlussbericht des BMVI. Fachliche Schlussfolgerungen aus den Ergebnissen des Forschungsprogramms KLIWAS; Bundesministerium für Verkehr und Digitale Infrastruktu: Berlin, Germany, 2015. [Google Scholar]
- Federal Ministry for Digital and Transport. Das BMVI-Expertennetzwerk “Wissen—Können—Handeln”. Synthesebericht zur Forschungsphase 2016–2019; Federal Ministry for Digital and Transport: Berlin, Germany, 2020. [Google Scholar]
- Federal Ministry for Digital and Transport. DAS-Basisdienst “Klima und Wasser” Anpassung an den Klimawandel: Robuste Entscheidungen durch Qualitätsgesicherte Daten; Federal Ministry for Digital and Transport: Berlin, Germany, 2019. [Google Scholar]
- Bastian, C.; Ministry of Environment, Climate and Sustainable Development Luxembourg, Water Management and Administration, Department of Hydrology, Luxembourg. Personal communication, 2021.
- Meisch, C.; Ministry of Environment, Climate and Sustainable Development Luxembourg, Water Management and Administration, Department of Hydrology, Luxembourg. Personal communication, 2021.
- Ylla Arbós, C.; Blom, A.; Viparelli, E.; Reneerkens, M.; Frings, R.M.; Schielen, R.M.J. River Response to Anthropogenic Modification: Channel Steepening and Gravel Front Fading in an Incising River. Geophys. Res. Lett. 2021, 48, e2020GL091338. [Google Scholar] [CrossRef]
- Bundesanstalt für Gewässerkunde (Hg.). Kompendium Forschung und Entwicklung 2020/2021; Bundesanstalt für Gewässerkunde: Koblenz, Germany, 2020. [Google Scholar] [CrossRef]
- Blueland Consultancy. Sediment Management in the Rhine Catchment: Research Inventory for the Dutch Rhine and an Advice at the Catchment Scale; Report B19.02; Blueland Consultancy: Utrecht, The Netherlands, 2019. [Google Scholar]
- Van Eijsbergen, E.; Schielen, R.M.J. Long-term development of lowland rivers, Rivers2Morrow—A research program. In Proceedings of the NCR DAYS 2023 Proceedings, Nijmegen, The Netherlands, 12–13 April 2023. [Google Scholar]
- Bundesanstalt für Gewässerkunde. BfG Sediment Datenbank. 2023. Available online: https://geoportal.bafg.de/d-seddbp/SeddbServlet (accessed on 12 February 2024).
- Asselman, N.E.M.; Buiteveld, H.; Haasnoot, M.; Kwaad, F.J.P.M.; Kwadijk, J.C.J.; Middelkoop, H.; van Deursen, W.P.A.; van Dijk, P.M.; Vermuist, J.A.P.H.; Wesselin, C. The Impact of Climate Change on the River Rhine and the Implications for Water Management in the Netherlands; Summary Report of the NRP Project 952210; RIZA Report 2000.010/ICG-Report 00/04; Rijkswaterstaat: Utrecht, The Netherlands, 2000. [Google Scholar]
- Netherlands Centre for River Studies. Rivers2Morrow. 2023. Available online: www.rivers2morrow.nl (accessed on 18 February 2024).
- Blom, A.; Technical University of Delft, Delft, The Netherlands. Personal communication, 2021.
- Van Denderen, R.P.; Paarlberg, A.; Augustijn, D.C.M.; Schielen, R.M.J. Insight into the local bed-level dynamics to assist management of multi-functional rivers. In NCR Days 2021; The University of Twente: Twente, The Netherlands, 2021. [Google Scholar]
- Van Vuren, S.; Paarlberg, A.; Havinga, H. The aftermath of “Room for the River” and restoration works: Coping with excessive maintenance dredging. J. Hydro-Environ. Res. 2015, 9, 172–186. [Google Scholar] [CrossRef]
- Royal HaskoningDHV. Grip on Side Channels (Text in Dutch); Royal HaskoningDHV: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Deltares. Information Requirements and Recommendations for Monitoring in the UPPER Delta of the Dutch Rhine (Text in Dutch); NKWK-Pilot 2016—A2. Rapport Deltares 11200356-000; Deltares: Delft, The Netherlands, 2017. [Google Scholar]
- Blueland Consultancy. Effects Morphological Developments on Functions Rhine and Meuse (Effecten Morfologische Ontwikkelingen op Functions Rijn en Maas) (Text in Dutch); Report B19.01; Blueland Consultancy: Utrecht, The Netherlands, 2019. [Google Scholar]
- Erkens, G. Sediment dynamics in the Rhine catchment. In Quantification of Fluvial Response to Climate Change and Human Impact; Utrecht University: Utrecht, The Netherlands, 2009. [Google Scholar]
- Schielen, R.M.J.; Rijkswaterstaat—Ministry of Infrastructure and Water Management, Lelystad, The Netherlands. Personal communication, 2021.
- Lokin, L.R.; Warmink, J.J.; Bomers, A.; Hulscher, S.J.M.H. River dune dynamics during low flows. Geophys. Res. Lett. 2022, 49, e2021GL097127. [Google Scholar] [CrossRef]
- Van denderen, R.P.; University of Twente, Faculty of Engineering Technology, Twente, The Netherlands. Personal communication, 2021.
- Britannica. Delta Works. 2022. Available online: https://www.britannica.com/event/Delta-Works (accessed on 13 October 2023).
- Verdict Media Limited. Delta Works Flood Protection, Rhine-Meuse-Scheldt Delta. 2023. Available online: https://www.water-technology.net/projects/delta-works-flood-netherlands/ (accessed on 13 October 2023).
- Rijkswaterstaat. The Story of the Outlet of Rhine-Meuse (Het Verhaal van de Rijn-Maasmonding); Rijkswaterstaat: Utrecht, The Netherlands, 2019. [Google Scholar]
- Sennema, H.; Van de Laar, P. Rotterdam’s New Waterway: The Iconification of an Infrastructure (1860–1947). Eur. J. Creat. Pract. Cities Landsc. 2021, 4, 77–94. [Google Scholar]
- Blom, A. Bed Degradation in the Rhine River. Delta Links. 2016. Available online: http://flowsplatform.nl/#/bed-degradation-in-the-rhine-river-1479821439344 (accessed on 15 February 2024).
- Huismans, Y.; Koopmans, H.; Wiersma, A.; de Haas, T.; Berends, K.; Sloff, K.; Stouthamer, E. Lithological control on scour hole formation in the Rhine-Meuse Estuary. Geomorphology 2021, 385, 107720. [Google Scholar] [CrossRef]
- Ylla Arbós, C.; Blom, A.; Van Vuren, S.; Schielen, R.M.J. Bed Level Change in the Upper Rhine Delta Since 1926 and Rough Extrapolation to 2050; Delft University of Technology: Delft, The Netherlands, 2019. [Google Scholar]
- Cox, J.R.; Huismans, Y.; Knaake, S.M.; Leuven, J.R.F.W.; Vellinga, N.E.; van der Vegt, M.; Hoitink, A.J.F.; Kleinhans, M.G. Anthropogenic Effects on the Contemporary Sediment Budget of the Lower Rhine-Meuse Delta Channel Network. Earth’s Future 2021, 9, e2020EF001869. [Google Scholar] [CrossRef]
- Pierik, H.J.; Stouthamer, E.; Cohen, K.M. Natural levee evolution in the Rhine-Meuse delta, the Netherlands, during the first millennium CE. Geomorphology 2017, 295, 215–234. [Google Scholar] [CrossRef]
- Niesten, I. Morphodynamics of Estuarine Channels with Mixtures of Sand, Silt and Clay. 2022. Available online: https://kbase.ncr-web.org/rivers2morrow/projects/morphodynamics-of-estuarine-channels-with-mixtures-of-sand-silt-and-clay (accessed on 9 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krapesch, M.; Klösch, M.; ten Brinke, W.; Habersack, H. The Rhine Catchment: A Review of Sediment-Related Knowledge, Monitoring, and a Future Research Perspective. Water 2024, 16, 1121. https://doi.org/10.3390/w16081121
Krapesch M, Klösch M, ten Brinke W, Habersack H. The Rhine Catchment: A Review of Sediment-Related Knowledge, Monitoring, and a Future Research Perspective. Water. 2024; 16(8):1121. https://doi.org/10.3390/w16081121
Chicago/Turabian StyleKrapesch, Michael, Mario Klösch, Wilfried ten Brinke, and Helmut Habersack. 2024. "The Rhine Catchment: A Review of Sediment-Related Knowledge, Monitoring, and a Future Research Perspective" Water 16, no. 8: 1121. https://doi.org/10.3390/w16081121
APA StyleKrapesch, M., Klösch, M., ten Brinke, W., & Habersack, H. (2024). The Rhine Catchment: A Review of Sediment-Related Knowledge, Monitoring, and a Future Research Perspective. Water, 16(8), 1121. https://doi.org/10.3390/w16081121