Assessing Recharge Sources and Seawater Intrusion in Coastal Groundwater: A Hydrogeological and Multi-Isotopic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrogeological Surveys and Geochemical Campaigns
- A total of 44 groundwater samples were collected from various aquifers: 30 from the alluvial phreatic aquifer, 10 from the alluvial semiconfined aquifer, 1 from the metamorphic basement, and 4 from the Pleistocene alluvial aquifer. The latter were selected to identify potential sources of lateral recharge to the plain.
- A total of 9 surface water samples, including 7 from the Flumendosa River and the Foxi, 1 from the mouth of the S. Giovanni fishpond (where lagoon waters mix with seawater, named SW*), and 1 from the discharge of the urban sewage treatment plant (sample 1). The latter was collected to assess possible recharge to the alluvial aquifer.
- In total, 30 groundwater samples were collected from the Holocene alluvial phreatic and semi-confined aquifers (25 samples), Pleistocene alluvial aquifer (4 samples), and metamorphic basement (1 sample).
- In total, 8 surface water samples were collected from the Flumendosa River (6 samples), the discharge of the sewage treatment plant (1 sample), and the SW* (1 sample).
3. Results and Discussion
3.1. Hydrogeological Survey
3.2. Water Chemistry
- Group 1: Very salty waters: waters with Na-Cl composition and EC values higher than 10 mS/cm, indicating significant salinization processes.
- Group 2: Brackish waters: groundwater samples with a Na-Cl composition and EC ranging from 2 to 10 mS/cm. These samples were collected approximately 2 to 4 km from the coast.
- Group 3: Freshwater: waters with an HCO3-Ca composition and EC values lower than 0.8 mS/cm.
3.3. Isotopic Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, T.; Han, D.; Song, X. Past, Present, and Future of Global Seawater Intrusion Research: A Bibliometric Analysis. J. Hydrol. 2021, 603, 126844. [Google Scholar] [CrossRef]
- Post, V.E.A. Fresh and Saline Groundwater Interaction in Coastal Aquifers: Is Our Technology Ready for the Problems Ahead? Hydrogeol. J. 2005, 13, 120–123. [Google Scholar] [CrossRef]
- Barlow, P.M.; Reichard, E.G. Saltwater Intrusion in Coastal Regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N.; Vigliotti, M.; Ruberti, D. Modelling Actual and Future Seawater Intrusion in the Variconi Coastal Wetland (Italy) Due to Climate and Landscape Changes. Water 2019, 11, 1502. [Google Scholar] [CrossRef]
- INEA. Valutazione del Rischio di Salinizzazione dei Suoli e di Intrusione Marina Nelle Aree Costiere delle Regioni Meridionali in Relazione agli usi Irrigui; Napoli, R., Vanino, S., Eds.; INEA Istituto Nazionale di Economia Agraria: Rome, Italy, 2011. [Google Scholar]
- Perra, E.; Viola, F.; Deidda, R.; Caracciolo, D.; Paniconi, C.; Langousis, A. Hydrologic Impacts of Surface Elevation and Spatial Resolution in Statistical Correction Approaches: Case Study of Flumendosa Basin, Italy. J. Hydrol. Eng. 2020, 25, 05020032. [Google Scholar] [CrossRef]
- Marras, P.A.; Lima, D.C.A.; Soares, P.M.M.; Cardoso, R.M.; Medas, D.; Dore, E.; De Giudici, G. Future Precipitation in a Mediterranean Island and Streamflow Changes for a Small Basin Using EURO-CORDEX Regional Climate Simulations and the SWAT Model. J. Hydrol. 2021, 603, 127025. [Google Scholar] [CrossRef]
- Vengosh, A.; Kloppmann, W.; Marei, A.; Livshitz, Y.; Gutierrez, A.; Banna, M.; Guerrot, C.; Pankratov, I.; Raanan, H. Sources of Salinity and Boron in the Gaza Strip: Natural Contaminant Flow in the Southern Mediterranean Coastal Aquifer. Water Resour. Res. 2005, 41, 2004WR003344. [Google Scholar] [CrossRef]
- Caschetto, M.; Colombani, N.; Mastrocicco, M.; Petitta, M.; Aravena, R. Nitrogen and Sulphur Cycling in the Saline Coastal Aquifer of Ferrara, Italy. A Multi-Isotope Approach. Appl. Geochem. 2017, 76, 88–98. [Google Scholar] [CrossRef]
- Pennisi, M.; Bianchini, G.; Muti, A.; Kloppmann, W.; Gonfiantini, R. Behaviour of Boron and Strontium Isotopes in Groundwater–Aquifer Interactions in the Cornia Plain (Tuscany, Italy). Appl. Geochem. 2006, 21, 1169–1183. [Google Scholar] [CrossRef]
- Yamanaka, M.; Kumagai, Y. Sulfur Isotope Constraint on the Provenance of Salinity in a Confined Aquifer System of the Southwestern Nobi Plain, Central Japan. J. Hydrol. 2006, 325, 35–55. [Google Scholar] [CrossRef]
- Cary, L. Origins and Processes of Groundwater Salinization in the Urban Coastal Aquifers of Recife (Pernambuco, Brazil): A Multi-Isotope Approach. Sci. Total Environ. 2015, 530–531, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M. Application of Multiple Isotopic and Geochemical Tracers for Investigation of Recharge, Salinization, and Residence Time of Water in the Souss–Massa Aquifer, Southwest of Morocco. J. Hydrol. 2008, 352, 267–287. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater Intrusion Processes, Investigation and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Jeen, S.-W.; Kang, J.; Jung, H.; Lee, J. Review of Seawater Intrusion in Western Coastal Regions of South Korea. Water 2021, 13, 761. [Google Scholar] [CrossRef]
- Lim, J.-W.; Lee, E.; Moon, H.S.; Lee, K.-K. Integrated Investigation of Seawater Intrusion around Oil Storage Caverns in a Coastal Fractured Aquifer Using Hydrogeochemical and Isotopic Data. J. Hydrol. 2013, 486, 202–210. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Puddu, R. Multi-Scale Assessment of the Risk of Soil Salinization in an Area of South-Eastern Sardinia (Italy). Precis. Agric. 2008, 9, 17–31. [Google Scholar] [CrossRef]
- Aru, A. Nota illustrativa alla carta pedologica della Bassa Valle del Flumendosa con particolare riferimento ai suoli salsi di Muravera e Villaputzu (Cagliari); Centro Regionale Agrario Sperimentale: Cagliari, Italy, 1970; p. 41. Available online: https://www.igmi.org/carte-antiche/generali_italia/++theme++igm/immagini_antiche/biblioteca/B0004679.jpg (accessed on 13 March 2024).
- Barbieri, G.; Barrocu, G.; Poledrini, C.; Uras, G. Salt Intrusion Phenomena in the South-East Coast of Sardinia. In Geologia Applicata e Idrogeologia. Proceedings of the 8th Salt Water Intrusion Meeting; Cotecchia V.: Bari, Italy, 1983; Volume 18, Parte II; pp. 315–323. [Google Scholar]
- Barbieri, G. Hydrogeological and Geophysical Investigation for the Evalutation of Salt Intrusion Phenomena in Sardinia. 9th Salw Intr Meet Delfi. 1986, pp. 659–670. Available online: http://www.swim-site.nl/pdf/swim09/swim09_Barbieri_etal.pdf (accessed on 13 March 2024).
- Careddu, M.B. Studio Della Contaminazione Di Acquiferi Costieri, Mediante Metodi Geofisici—Applicazione Alla Piana Di Muravera (Sardegna SE). Master’s Thesis, Università degli Studi di Cagliari, Cagliari, Italy, 1985. [Google Scholar]
- Pilia, I. Studio idrogeologico della piana del Flumendosa (Sarrabus orientale). Master’s Thesis, Università degli Studi di Cagliari, Cagliari, Italy, 2002. [Google Scholar]
- Deidda, G.P.; Ranieri, G.; Uras, G.; Cosentino, P.; Martorana, R. Geophysical Investigations in the Flumendosa River Delta, Sardinia (Italy)—Seismic Reflection Imaging. Geophysics 2006, 71, B121–B128. [Google Scholar] [CrossRef]
- Balia, R.; Viezzoli, A. Integrated Interpretation If IP and TEM Data for Salinity Monitoring of Aquifers and Soil in the Coastal Area of Muravera (Sardinia, Italy). Boll. Geofis. Teor. Appl. 2015, 56, 31–42. [Google Scholar] [CrossRef]
- Ardau, F. Studio dei Fenomeni di Salinazione delle Acque Sotterranee Nella Piana di Muravera (Sardegna Sud-Orientale). Doctoral Thesis, Università degli Studi di Cagliari, Cagliari, Italy, 1995. [Google Scholar]
- Ardau, F.; Barbieri, G. Aquifer Configuration and Possible Causes of Salination in the Muravera Plain (SE Sardinia, Italy). Proceedings of 16th Salt Water Intrusion Meeting, Miedzyzdroje-Wo lin Island, Poland, 12–15 June 2000; pp. 11–18. [Google Scholar]
- Ardau, F.; Gavaudò, E. Recent Developments in Hydrogeological and Geophysical Research in the Muravera Coastal Plain (SE Sardinia, Italy). In Proceedings of the 17th 456 Salt Water Intrusion Meeting, Delft, The Netherlands, 6–10 May 2002. [Google Scholar]
- Da Pelo, S.; Ghiglieri, G.; Buttau, C.; Biddau, R.; Cuzzocrea, C.; Funedda, A.; Carletti, A.; Vacca, S.; Cidu, R. Coupling 3D Hydrogeological Modelling and Geochemical Mapping for an Innovative Approach to Support Management of Aquifers. Ital. J. Eng. Geol. Environ. 2017, 1, 39–49. [Google Scholar] [CrossRef]
- Porru, M.C.; Da Pelo, S.; Westenbroek, S.; Vacca, A.; Loi, A.; Melis, M.T.; Pirellas, A.; Buttau, C.; Arras, C.; Vacca, S.; et al. A Methodological Approach for the Effective Infiltration Assessment in a Coastal Groundwater. Ital. J. Eng. Geol. Environ. 2021, 1, 183–193. [Google Scholar] [CrossRef]
- Arras, C.; (Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy); Buttau, C.; (Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy); Loi, A.; (Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy); Funedda, A.; (Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy); Lotti, F.; (Symple S.r.l.—Kataclima Srl Società Benefit, Vetralla (VT), Italy); Lorrai, M.; (Autonomous Region of Sardinia, Water Resources Protection and Management Service, Supervision of Water Services and Drought Management, Cagliari, Italy); Testa, M.; (Regional Environmental Protection Agency of Sardinia, ARPA Sardegna, Cagliari, Italy); Botti, P.; (Autonomous Region of Sardinia, Water Resources Protection and Management Service, Supervision of Water Services and Drought Management, Cagliari, Italy); Ghiglieri, G.; (Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy); Da Pelo, S.; (Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy). CIS 1111 Detritico Alluvionale Plio-Quaternario di Muravera: Approfondimenti Sito-Specifici di Carattere Geologico e Idrogeologico e Modellazione Numerica; Report: Approfondimenti idrogeologici funzionali alla valutazione dello stato quantitativo dei corpi idrici sotterranei del Distretto Idrografico della Sardegna, nell’ambito dell’aggiornamento del Piano di Gestione del Distretto Idrografico della Sardegna; DSCG—ADIS_STGRI. Unpublished work. 2022. (In Italian) [Google Scholar]
- Puls, R.W.; Barcelona, M.J. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. Available online: https://www.epa.gov/remedytech/low-flow-minimal-drawdown-ground-water-sampling-procedures (accessed on 26 March 2024).
- Nordstrom, D.K. Thermochemical Redox Equilibria of ZoBell’s Solution. Geochim. Cosmochim. Acta 1977, 41, 1835–1841. [Google Scholar] [CrossRef]
- Pittalis, D.; Carrey, R.; Da Pelo, S.; Carletti, A.; Biddau, R.; Cidu, R.; Celico, F.; Soler, A.; Ghiglieri, G. Hydrogeological and Multi-Isotopic Approach to Define Nitrate Pollution and Denitrification Processes in a Coastal Aquifer (Sardinia, Italy). Hydrogeol. J. 2018, 26, 2021–2040. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0–509 Ma and Accompanying Look-up Table for Deriving Numerical Age. J. Geol. 2001, 109, 155–170. [Google Scholar] [CrossRef]
- Coplen, T.B. Guidelines and Recommended Terms for Expression of Stable-Isotope-Ratio and Gas-Ratio Measurement Results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: London, UK, 2005. [Google Scholar] [CrossRef]
- Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrot, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N. Coastal Groundwater Salinization: Focus on the Vertical Variability in a Multi-Layered Aquifer through a Multi-Isotope Fingerprinting (Roussillon Basin, France). Sci. Total Environ. 2016, 566–567, 398–415. [Google Scholar] [CrossRef] [PubMed]
- Habtemichael, Y.T.; Fuentes, H.R. Hydrogeochemical Analysis of Processes Through Modeling of Seawater Intrusion Impacts in Biscayne Aquifer Water Quality, USA. Aquat. Geochem. 2016, 22, 197–209. [Google Scholar] [CrossRef]
- Cherchi, A.; Da Pelo, S.; Ibba, A.; Mana, D.; Buosi, C.; Floris, N. Benthic Foraminifera Response and Geochemical Characterization of the Coastal Environment Surrounding the Polluted Industrial Area of Portovesme (South-Western Sardinia, Italy). Mar. Pollut. Bull. 2009, 59, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Cidu, R.; Biagini, C.; Fanfani, L. Mine Closure at Monteponi (Italy): Effect of the Cessation of Dewatering on the Quality of Shallow Groundwater. Appl. Geochem. 2001, 16, 489–502. [Google Scholar] [CrossRef]
- Re, V.; Sacchi, E.; Martin-Bordes, J.L.; Aureli, A.; El Hamouti, N.; Bouchnan, R.; Zuppi, G.M. Processes Affecting Groundwater Quality in Arid Zones: The Case of the Bou-Areg Coastal Aquifer (North Morocco). Appl. Geochem. 2013, 34, 181–198. [Google Scholar] [CrossRef]
- Giustini, F.; Brilli, M.; Patera, A. Mapping Oxygen Stable Isotopes of Precipitation in Italy. J. Hydrol. Reg. Stud. 2016, 8, 162–181. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Dogramaci, S.S.; Herczeg, A.L.; Schi, S.L.; Bone, Y. Controls on d34S and d18O of Dissolved Sulfate in Aquifers of the Murray Basin, Australia and Their Use as Indicators of Flow Processes. Appl. Geochem. 2001, 16, 475–488. [Google Scholar] [CrossRef]
- Cary, L.; Casanova, J.; Gaaloul, N.; Guerrot, C. Combining Boron Isotopes and Carbamazepine to Trace Sewage in Salinized Groundwater: A Case Study in Cap Bon, Tunisia. Appl. Geochem. 2013, 34, 126–139. [Google Scholar] [CrossRef]
- Cidu, R.; Caboi, R.; Biddau, R.; Petrini, R.; Slejko, F.; Flora, O.; Stenni, B.; Aiuppa, A.; Parello, F. Caratterizzazione Idrogeochimica ed Isotopica e Valutazione della Qualità delle Acque Superficiali e Sotterranee Campionate nel Foglio 549 Muravera. In Geochemical Baseline of Italy; Ottonello, G., Ed.; Pacini Editore: Pisa, Italy, 2007. [Google Scholar]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source Partitioning Using Stable Isotopes: Coping with Too Much Variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef] [PubMed]
- Parnell, A.C.; Phillips, D.L.; Bearhop, S.; Semmens, B.X.; Ward, E.J.; Moore, J.W.; Jackson, A.L.; Grey, J.; Kelly, D.J.; Inger, R. Bayesian Stable Isotope Mixing Models. Environmetrics 2013, 24, 387–399. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 13 March 2024).
- Ju, Y.; Mahlknecht, J.; Lee, K.-K.; Kaown, D. Bayesian Approach for Simultaneous Recognition of Contaminant Sources in Groundwater and Surface-Water Resources. Curr. Opin. Environ. Sci. Health 2022, 25, 100321. [Google Scholar] [CrossRef]
- Jung, H.; Kim, Y.S.; Yoo, J.; Park, B.; Lee, J. Seasonal Variations in Stable Nitrate Isotopes Combined with Stable Water Isotopes in a Wastewater Treatment Plant: Implications for Nitrogen Sources and Transformation. J. Hydrol. 2021, 599, 126488. [Google Scholar] [CrossRef]
- Biddau, R.; Dore, E.; Da Pelo, S.; Lorrai, M.; Botti, P.; Testa, M.; Cidu, R. Geochemistry, Stable Isotopes and Statistic Tools to Estimate Threshold and Source of Nitrate in Groundwater (Sardinia, Italy). Water Res. 2023, 232, 119663. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, J.A.; Mora, A.; Mahlknecht, J.; Daesslé, L.W.; Cervantes-Avilés, P.A.; Ledesma-Ruiz, R. Estimation of Nitrate Pollution Sources and Transformations in Groundwater of an Intensive Livestock-Agricultural Area (Comarca Lagunera), Combining Major Ions, Stable Isotopes and MixSIAR Model. Environ. Pollut. 2021, 269, 115445. [Google Scholar] [CrossRef]
Analyte | Analytical Methods | Laboratory |
---|---|---|
Major ions | ICP-OES (Agilent 5110, Santa Clara, CA, USA) IC (Thermo Fisher, Dionex ICS3000) | University of Cagliari, (Italy) |
Trace elements | ICP-OES and ICP-MS (PerkinElmer SCIEX ELAN DRC-e, Milan, Italy), | University of Cagliari, (Italy) |
δ2HH2O δ18OH2O | Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS), LWIA-45-EP, Los Gatos, Mountain View, CA) | University of Cagliari, (Italy) |
87Sr/86Sr | MC-ICP-MS (Thermo Neptune Plus) | CNR-IGG, Pisa, (Italy) |
δ11B | MC-ICP-MS MS (Thermo Neptune Plus) | CNR-IGG, Pisa, (Italy) |
δ34SSO4 δ18OSO4 | EA-IRMS and TC-EA-IRMS (Carlo Erba 1108 coupled with a Thermo Delta C Finnigan Mat) | University of Barcelona, (Spain) |
Groundwater | Surface Water | ||||||||
---|---|---|---|---|---|---|---|---|---|
u.m. | Mean | Dv.St. | Min | Max | Mean | Dv.St. | Min | Max | |
T | °C | 19 | 1.3 | 17 | 24 | 22 | 1.1 | 20 | 24 |
pH | 7.0 | 0.4 | 6.4 | 8.1 | 7.6 | 0.50 | 6.9 | 8.2 | |
EC | mS/cm | 3 | 4.9 | 0.20 | 26 | 22 | 22 | 0.50 | 55 |
Eh | V | 0.28 | 0.14 | −0.14 | 0.58 | 0.28 | 0.10 | 0.25 | 0.32 |
O2 | mg/L | 4 | 1.9 | 0.70 | 9 | 8 | 2.9 | 3 | 13 |
Ca | mg/L | 107 | 118 | 12 | 675 | 189 | 137 | 54 | 415 |
Mg | mg/L | 84 | 173 | 6 | 1090 | 540 | 524 | 18 | 1240 |
Na | mg/L | 471 | 1186 | 22 | 7630 | 4800 | 4854 | 29 | 12,400 |
K | mg/L | 12 | 21 | 1.3 | 103 | 154 | 165 | 3 | 483 |
Cl | mg/L | 962 | 2401 | 37 | 15,200 | 9060 | 9189 | 53 | 23,200 |
HCO3− | mg/L | 205 | 114 | 37 | 688 | 191 | 27 | 163 | 217 |
SO4− | mg/L | 138 | 253 | 3 | 1670 | 899 | 970 | 48 | 2640 |
NO3− | mg/L | 6 | 8.8 | 0.10 | 52 | 7 | 12 | <1 | 32 |
NH4+ | mg/L | 7 | 7.2 | 0.20 | 22 | <0.1 | - | <0.1 | <0.1 |
PO4 | mg/L | 4 | 6.0 | 0.10 | 16 | 0.1 | - | <0.1 | 3 |
SiO2 | mg/L | 15 | 6.0 | 5 | 37 | 6 | 3.6 | <1.4 | 12 |
Br | mg/L | 3 | 7.5 | 0.09 | 47 | 30 | 36 | 0.20 | 91 |
B | µg/L | 173 | 305 | 24 | 1510 | 1980 | 2197 | 32 | 5520 |
Sr | µg/L | 572 | 978 | 77 | 5440 | 1180 | 1196 | 143 | 3120 |
Rb | µg/L | 2.6 | 3.8 | <0.01 | 17 | 55 | 52 | <0.01 | 136 |
ID | Type | Group | Date | δ11B (‰) | 87Sr/86Sr | δ34SSO4 (‰) | δ18OSO4 (‰) | δ2HH2O (‰) | δ18OH2O (‰) |
---|---|---|---|---|---|---|---|---|---|
1 | usd | - | 22 October 2020 | 12.30 | 0.71277 | 5.31 | 3.85 | −30.9 | −5.50 |
2 | gw | 3 | 15 October 2020 | - | - | - | - | −29.0 | −5.60 |
3 | gw | 3 | 16 October 2020 | - | - | - | - | −28.6 | −5.53 |
4 | gw | 3 | 2 October 2020 | 36.29 | 0.71350 | 4.80 | 7.82 | −31.8 | −5.55 |
4 | gw | 3 | 8 June 2022 | - | - | - | - | −33.2 | −5.88 |
6 | gw | 3 | 30 September 2020 | 32.61 | 0.71297 | 9.32 | 7.38 | −30.8 | −5.26 |
7d | gw | 1 | 8 June 2022 | - | - | - | - | −16.7 | −3.08 |
7s | gw | 2 | 29 September 2020 | 38.19 | 0.71129 | 17.58 | 11.20 | −27.0 | −4.74 |
7s | gw | 2 | 8 June 2022 | - | - | - | - | −42.3 | −7.35 |
8d | gw | 2 | 9 June 2022 | - | - | - | - | −33.5 | −5.90 |
8s | gw | 2 | 29 September 2020 | 31.14 | 0.70963 | −35.2 | −5.79 | ||
8s | gw | 2 | 9 June 2022 | - | - | - | - | −35.2 | −6.23 |
9d | gw | 1 | 9 June 2022 | - | - | - | - | −26.4 | −4.90 |
9s | gw | 1 | 29 September 2020 | 36.50 | 0.71017 | 21.36 | 11.12 | −27.6 | −4.79 |
9s | gw | 1 | 9 June 2022 | - | - | - | - | −27.9 | −5.00 |
10 | gw | 3 | 30 September 2020 | 35.34 | 0.71486 | 9.41 | 5.98 | −29.6 | −5.70 |
11 | gw | 3 | 30 September 2020 | 27.05 | 0.71318 | 4.21 | 6.99 | −29.4 | −5.44 |
12 | gw | 3 | 29 September 2020 | 33.83 | 0.71305 | 7.09 | 7.43 | −31.4 | −5.26 |
13 | gw | 3 | 30 September 2020 | 37.54 | 0.71234 | 6.06 | 7.71 | −33.0 | −5.45 |
13 | gw | 3 | 8 June 2022 | - | - | - | - | −32.5 | −5.68 |
15 | gw | 3 | 30 September 2020 | 31.80 | 0.71287 | 4.94 | 7.16 | −31.6 | −5.31 |
16 | gw | 3 | 20 October 2020 | 31.98 | 0.71498 | 10.56 | 6.52 | −28.7 | −5.59 |
16 | gw | 3 | 8 June 2022 | - | - | - | - | −30.2 | −5.83 |
18 | gw | 3 | 2 October 2020 | 30.85 | 0.71329 | 4.52 | 6.98 | −28.8 | −5.53 |
19 | gw | 3 | 9 October 2020 | 26.90 | 0.71190 | 9.48 | 7.10 | −29.5 | −5.38 |
20 | gw | 3 | 9 October 2020 | 36.68 | 0.71105 | 11.76 | 5.27 | −32.2 | −5.79 |
21 | gw | 3 | 13 October 2020 | - | - | - | - | −31.4 | −5.67 |
22 | gw | 3 | 16 October 2020 | - | - | - | - | −33.0 | −6.02 |
23 | gw | 3 | 2 October 2020 | 38.81 | 0.71395 | 0.30 | 3.85 | −28.1 | −5.30 |
24 | gw | 3 | 1 October 2020 | 17.90 | 0.71270 | 6.38 | 8.73 | −29.8 | −5.41 |
24 | gw | 3 | 9 June 2022 | - | - | - | - | −29.4 | −5.43 |
26d | gw | 2 | 9 June 2022 | - | - | - | - | −31.7 | −5.51 |
26s | gw | 2 | 1 October 2020 | 27.84 | 0.71102 | 15.54 | 10.36 | −31.3 | −5.21 |
26s | gw | 2 | 9 June 2022 | - | - | - | - | −30.5 | −5.16 |
27 | gw | 3 | 1 October 2020 | 20.62 | 0.71021 | −36.0 | −6.11 | ||
27 | gw | 3 | 10 June 2022 | - | - | - | - | −35.3 | −6.15 |
29 | gw | 2 | 9 October 2020 | 36.07 | 0.71197 | 14.83 | 11.54 | −32.3 | −5.66 |
30 | gw | 2 | 9 October 2020 | 22.06 | 0.71072 | 18.41 | 10.37 | −30.8 | −5.55 |
30 | gw | 2 | 10 June 2022 | - | - | - | - | −31.0 | −5.60 |
32 | gw | 2 | 13 October 2020 | 37.71 | 0.71172 | 15.03 | 11.40 | −31.0 | −5.48 |
33 | gw | 3 | 13 October 2020 | - | - | - | - | −29.5 | −5.71 |
34 | gw | 3 | 13 October 2020 | - | - | - | - | −29.3 | −5.35 |
35 | gw | 2 | 13 October 2020 | - | - | - | - | −31.5 | −5.42 |
36d | gw | 1 | 10 June 2022 | - | - | - | - | −8.0 | −1.36 |
36s | gw | 2 | 13 October 2020 | 27.96 | 0.71109 | 17.84 | 12.55 | −30.8 | −5.36 |
36s | gw | 2 | 10 June 2022 | - | - | - | - | −30.1 | −5.37 |
37 | gw | 3 | 14 October 2020 | 30.48 | 0.71272 | 6.50 | 9.46 | −30.5 | −5.66 |
38 | gw | 3 | 14 October 2020 | - | - | - | - | −31.35 | −5.36 |
39 | gw | 3 | 14 October 2020 | - | - | - | - | −30.7 | −5.09 |
40 | gw | 3 | 14 October 2020 | 29.62 | 0.71261 | 4.94 | 8.49 | −31.6 | −5.27 |
40 | gw | 3 | 10 June 2022 | - | - | - | - | −31.2 | −5.50 |
42 | gw | 2 | 14 October 2020 | - | - | - | - | −33.1 | −5.56 |
43 | gw | 2 | 15 October 2020 | - | - | - | - | −33.1 | −5.45 |
44 | gw | 3 | 22 October 2020 | 34.90 | 0.71392 | 0.65 | 3.62 | −28.8 | −5.57 |
44 | gw | 3 | 15 October 2020 | - | - | - | - | −28.7 | −5.62 |
44 | gw | 3 | 8 June 2022 | - | - | - | - | −29.7 | −5.68 |
47 | gw | 3 | 15 October 2020 | - | - | - | - | −28.9 | −5.42 |
48 | gw | 3 | 16 October 2020 | 32.19 | 0.71211 | 4.52 | 6.96 | −29.9 | −5.20 |
49 | gw | 2 | 16 October 2020 | 29.02 | 0.71242 | 9.31 | 6.94 | −30.5 | −5.40 |
50 | gw | 3 | 20 October 2020 | 27.73 | 0.71202 | 4.43 | 7.54 | −28.2 | −5.06 |
51 | gw | 3 | 20 October 2020 | 30.19 | 0.71386 | 5.47 | 6.71 | −32.0 | −5.71 |
52 | gw | 3 | 22 October 2020 | 32.54 | 0.71209 | 4.68 | 8.41 | −28.5 | −5.10 |
53 | gw | 2 | 10 June 2022 | - | - | - | - | −30.3 | −5.15 |
54 | gw | 3 | 9 June 2022 | - | - | - | - | −30.9 | −5.51 |
55 | sw | 1 | 7 October 2020 | 38.94 | 0.70966 | 20.51 | 10.08 | −14.3 | −2.20 |
56 | sw | 3 | 7 October 2020 | 30.16 | 0.71278 | 4.88 | 7.52 | −29.9 | −5.16 |
57 | sw | 1 | 7 October 2020 | 39.88 | 0.70928 | 21.07 | 9.80 | −15.1 | −2.74 |
58 | sw | 1 | 7 October 2020 | 40.00 | 0.70920 | 21.53 | 9.57 | 1.0 | 0.15 |
59 | sw | 1 | 2 October 2020 | - | - | - | - | −1.6 | −0.02 |
60 | sw | 3 | 7 October 2020 | 30.88 | 0.71302 | 4.51 | 7.08 | −29.7 | −5.10 |
61 | sw | 2 | 7 October 2020 | 38.63 | 0.70999 | 19.06 | 9.60 | −22.1 | −3.58 |
SW* | sw | Lagoon | 9 October 2020 | 40.65 | 0.70918 | 21.59 | 9.09 | 6.5 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porru, M.C.; Arras, C.; Biddau, R.; Cidu, R.; Lobina, F.; Podda, F.; Wanty, R.; Da Pelo, S. Assessing Recharge Sources and Seawater Intrusion in Coastal Groundwater: A Hydrogeological and Multi-Isotopic Approach. Water 2024, 16, 1106. https://doi.org/10.3390/w16081106
Porru MC, Arras C, Biddau R, Cidu R, Lobina F, Podda F, Wanty R, Da Pelo S. Assessing Recharge Sources and Seawater Intrusion in Coastal Groundwater: A Hydrogeological and Multi-Isotopic Approach. Water. 2024; 16(8):1106. https://doi.org/10.3390/w16081106
Chicago/Turabian StylePorru, Maria Chiara, Claudio Arras, Riccardo Biddau, Rosa Cidu, Francesca Lobina, Francesca Podda, Richard Wanty, and Stefania Da Pelo. 2024. "Assessing Recharge Sources and Seawater Intrusion in Coastal Groundwater: A Hydrogeological and Multi-Isotopic Approach" Water 16, no. 8: 1106. https://doi.org/10.3390/w16081106
APA StylePorru, M. C., Arras, C., Biddau, R., Cidu, R., Lobina, F., Podda, F., Wanty, R., & Da Pelo, S. (2024). Assessing Recharge Sources and Seawater Intrusion in Coastal Groundwater: A Hydrogeological and Multi-Isotopic Approach. Water, 16(8), 1106. https://doi.org/10.3390/w16081106