Detection of Autumnal Concentration of Coscinodiscus granii in the Southern Baltic—A Method for In Situ Measurement of Marine Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levassseur, M.; Therriault, J.C.; Legendre, L. Hierarchical control of phytoplankton succession by physical factors. Mar. Ecol. Prog. Ser. 1984, 19, 211–222. [Google Scholar] [CrossRef]
- Sommer, U. Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnol. Oceanogr. 1989, 34, 1162–1173. [Google Scholar] [CrossRef]
- Gilabert, J. Seasonal plankton dynamics in a Mediterianian hypersaline coastal lagoon: The Mar Menor. J. Plankton Res. 2001, 23, 207–217. [Google Scholar] [CrossRef]
- Lau, S.S.S.; Lane, S.N. Biological and chemical factors influencing shallow lake eutrophication: A long term study. Sci. Total Environ. 2002, 288, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Kownacka, J.; Całkiewicz, J.; Kornijów, R. A turning point in the development of phytoplankton in the Vistula Lagoon (southern Baltic Sea) at the beginning of the 21st century. Oceanologia 2020, 62, 538–555. [Google Scholar] [CrossRef]
- Wielgat-Rychert, M.; Jarosiewicz, A.; Ficek, D.; Pawlik, M.; Rychert, K. Nutrient Fluxes and Their Impact on the Phytoplankton in a Shallow Coastal Lake. Pol. J. Environ. Stud. 2015, 24, 751–759. [Google Scholar] [CrossRef]
- Witek, B. Short-Term Fluctuations of Phytoplankton in the Coastal Zone of the Gulf of Gdansk; University of Gdańsk Publishing House: Gdańsk, Poland, 2010. (In Polish) [Google Scholar]
- Wasmund, N.; Pollehne, F.; Postel, L.; Siegel, H.; Zettler, M.L. Biologische Zustandseinschätzung der Ostsee im Jahre 2010; Meereswissenschaftliche Berichte No. 85; Institut für Ostseeforschung: Roctock, Germany, 2011; pp. 3–87. [Google Scholar]
- Konik, M.; Bradtke, K.; Stoń-Egiert, J.; Soja-Woźniak, M.; Sliwińska-Wilczewska, S.; Darecki, M. Cyanobacteria Index as a Tool for the Satellite Detection of Cyanobacteria Blooms in the Baltic Sea. Remote Sens. 2023, 15, 1601. [Google Scholar] [CrossRef]
- Witek, B.; Pliński, M. The first recorded bloom of Prorocentrum minimum (Pavillard) Schiller in the coastal zone of the Gulf of Gdańsk. Oceanologia 2000, 42, 433–446. [Google Scholar]
- Lund-Hansen, L.C. Development and dynamics of a coastal sub-surface phytoplankton bloom in the southwest Kattegat, Baltic Sea. Oceanologia 2006, 48, 29–36. [Google Scholar]
- Pliński, M.; Simm, A. Seasonal fluctuations in the composition, distribution and quantity of phytoplankton in the Vistula Lagoon in 1974 and 1975. Stud. Mater. Oceanol. Biol. 1978, 4, 53–80. (In Polish) [Google Scholar]
- Wasmund, N.; Dutz, J.; Pollehne, F.; Siegel, H.; Zettler, M.L. Biological Assessment of the Baltic Sea 2015; Meereswissenschaftliche Berichte No. 102; Leibniz-Institut für Ostseeforschung Warnemünde: Roctock, Germany, 2016. [Google Scholar] [CrossRef]
- Wasmund, N.; Dutz, J.; Pollehne, F.; Siegel, H.; Zettler, M.L. Biological Assessment of the Baltic Sea 2016; Meereswissenschaftliche Berichte No. 105; Leibniz-Institut für Ostseeforschung Warnemünde: Roctock, Germany, 2017. [Google Scholar] [CrossRef]
- Wasmund, N.; Dutz, J.; Pollehne, F.; Siegel, H.; Zettler, M.L. Biological Assessment of the Baltic Sea 2017; Meereswissenschaftliche Berichte No. 108; Leibniz-Institut für Ostseeforschung Warnemünde: Roctock, Germany, 2018. [Google Scholar] [CrossRef]
- Wasmund, N.; Dutz, J.; Kremp, A.; Zettler, M.L. Biological Assessment of the Baltic Sea 2018; Meereswissenschaftliche Berichte No. 112; Leibniz-Institut für Ostseeforschung Warnemünde: Roctock, Germany, 2019. [Google Scholar] [CrossRef]
- Kaczmarek, S.; Woźniak, B. The application of the optical classification of waters in the Baltic Sea (Case 2 Waters). Oceanologia 1995, 37, 285–297. [Google Scholar]
- Kowalczuk, P. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. 1999, 104, 30047–30058. [Google Scholar] [CrossRef]
- Woźniak, S.B.; Meler, J.; Lednicka, B.; Zdun, A.; Stoń-Egiert, J. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 2011, 53, 691–729. [Google Scholar]
- Jonasz, M. Nonsphericity of suspended marine particles and its influence on light scattering. Limnol. Oceanogr. 1987, 32, 1059–1065. [Google Scholar] [CrossRef]
- Jennings, B.R.; Parslow, K. Particle size measurement: The equivalent spherical diameter. Proc. R. Soc. Lond. 1988, 419, 137–149. [Google Scholar]
- Lee Karp-Boss, L.; Azevedo, L.; Boss, E. LISST-100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape. Limnol. Oceanogr. Methods 2007, 5, 396–406. [Google Scholar] [CrossRef]
- Anglès, A.; Jordi, A.; Garcés, E.; Masó, M.; Basterretxea, G. High-resolution spatio-temporal distribution of a coastal phytoplankton bloom using laser in situ scattering and transmissometry (LISST). Harmful Algae 2008, 7, 808–816. [Google Scholar] [CrossRef]
- Serra, T.; Colomer, J.; Cristina, X.P.; Vila, X.; Arellano, J.B.; Casamitjana, X. Evaluation of laser in-situ scattering instrument for measuring the concentration of phytoplankton, purpule sulfur bacteria, and suspended inorganic sediments in lakes. J. Environ. Eng. 2001, 127, 1023–1030. [Google Scholar] [CrossRef]
- Serra, T.; Casamitjana, X.; Colomer, J.; Granata, T.C. Observations of the particle size distribution and concentration in a coastal system using an in situ laser analyzer. Mar. Technol. Soc. J. 2002, 36, 59–69. [Google Scholar] [CrossRef]
- Pawlik, M.; Ficek, D. Pine pollen grains in coastal waters of the Baltic Sea. Int. J. Oceanol. Hydrobiol. Stud. 2016, 45, 35–41. [Google Scholar] [CrossRef]
- Pawlik, M.M.; Ficek, D. Spatial Distribution of Pine Pollen Grains Concentrations as a Source of Biologically Active Substances in Surface Waters of the Southern Baltic Sea. Water 2023, 15, 978. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Pottsmith, H.C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 2000, 168, 89–114. [Google Scholar] [CrossRef]
- Edler, L. Phytoplankton and Chlorophyll: Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Balt. Mar. Biol. Publ. 1979, 5, 38. [Google Scholar]
- Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int. Verein. Theor. Angew. Limnol. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- HELCOM. Manual for Marine Monitoring in the COMBINE Programme of HELCOM, Part C. Programme for Monitoring of Eutrophication and Its Effects, Annex C-6: Phytoplankton Species Composition, Abundance and Biomass; Baltic Marine Environment Protection Commission: Helsinki, Finland, 2001. [Google Scholar]
- Hällfors, G. Checklist of Baltic Sea Phytoplankton Species (Including Some Heterotrophic Protistan Groups)—Balt; Baltic Sea Environment Proceedings No. 95; Baltic Marine Environment Protection Commission: Helsinki, Finland, 2004; p. 208. [Google Scholar]
- Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Göbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al. Biovolumes and size-classes of phytoplankton in the Baltic Sea. In HELCOM Baltic Sea Environment Proceedings; Baltic Marine Environment Protection Commission: Helsinki, Finland, 2006; No. 106; p. 144. [Google Scholar]
- Dutz, J.; Kremp, A.; Zettler, M.L. Biological assessment of the Baltic Sea 2020. In Meereswissenschaftliche Berichte; Leibniz-Institut für Ostseeforschung Warnemünde: Roctock, Germany, 2022; Volume 120. [Google Scholar] [CrossRef]
- Gromisz, S.; Witek, Z. Main phytoplankton assemblages in the Gulf of Gdańsk and the Pomeranian Bay from 1994 to 1997. Bull. Sea Fish. Inst. 2011, 2, 31–51. [Google Scholar]
- Sournia, A. Phytoplankton Manual. Monographs on Oceanographic Methodology 6; UNESCO: Paris, France, 1978. [Google Scholar]
- Chisholm, S.W. Phytoplankton size. In Primary Productivity and Biogeochemical Cycles in the Sea; Falkowski, P.G., Woodhead, A.D., Vivirito, K., Eds.; Springer Science & Business Media: Boston, MA, USA, 1992; pp. 213–237. [Google Scholar]
- Menden-Deuer, S.; Lessard, E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 2000, 45, 569–579. [Google Scholar] [CrossRef]
- Sieburth, J.M.; Smetacek, V.; Lenz, J. Pelagic ecosystem structure: Heterotrophic copartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Löptien, U.; Dietze, H. Retracing cyanobacteria blooms in the Baltic Sea. Sci. Rep. 2022, 12, 10873. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.J.; Schoeman, D.S. Climate impact on plankton ecosystems in the northeast Atlantic. Science 2004, 305, 1609–1612. [Google Scholar] [CrossRef]
- Rousseaux, C.S.; Gregg, W.W. Recent decadal trends in global phytoplankton composition. Glob. Biogeochem. Cycles 2015, 29, 1674–1688. [Google Scholar] [CrossRef]
- Martin-Garcia, G.M. Oceanic impact on European climate changes during the quaternary. Geosciences 2019, 9, 119. [Google Scholar] [CrossRef]
- Kahru, M.; Elmgren, R.; Savchuk, O.P. Changing seasonality of the Baltic Sea. Biogeosciences 2016, 13, 1009–1018. [Google Scholar] [CrossRef]
Ship | Sampling Month | Number of Samples Collected for Species Indentification | Total | |
---|---|---|---|---|
s/y Oceania | October | 2011 | 9 | 49 |
October | 2012 | 25 | ||
Fishing boat “Sea Angel” | August | 2014 | 3 | |
September | 2014 | 4 | ||
October | 2014 | 4 | ||
November | 2014 | 4 |
Month | Year | Central Arkona Basin | Eastern Arkona Basin | Bornholm Basin | Southern Gotland Basin | Eastern Gotland Basin | References |
---|---|---|---|---|---|---|---|
XI | 2010 | 78.4 | 84.9 | 96.5 | 93.5 | 91.7 | [8] |
XI | 2015 | 93.5 | 95.5 | 67.9 | no date | 50.6 | [13] |
XI | 2016 | 8.4 | 7.4 | 55.8 | 79.8 | 81.2 | [14] |
XI | 2017 | 5.7 | 9.7 | 50.5 | 12.3 | no date | [15] |
XI | 2018 | No date | 64.0 | 77.1 | 94.8 | 79.7 | [16] |
XI | 2020 | No date | No date | 19.5 | The Gotland basin > 70.0 | [34] | |
Gulf of Gdańsk and Pomeranian Bay | |||||||
X/XI | 1994 1997 | 73.2 | [35] | ||||
Southern Baltic Sea | |||||||
X | 2011 | 58.0 | Own research | ||||
X | 2012 | 48.0 | Own research | ||||
VIII/IX | 2014 | 49.0 | Own research | ||||
X/XI | 2014 | 86.5 | Own research |
Diametr [µm] | Equivalent Spherical Diameter [µm] | |
---|---|---|
Minimum value | 48.0 | 47.4 |
Maximum value | 188.0 | 188.0 |
Average value | 97.3 | 89.7 |
Median | 94.4 | 89.4 |
Standard deviation | 17.2 | 14.9 |
Station Symbol | Latitiude | Longitude | Date of Sampling | Absolute Concentration of Coscinodiscus spp. [µL L−1] | Relative Concentration of Coscinodiscus spp. [%] |
---|---|---|---|---|---|
AKU27 | 54°99.995 N | 15°99.975 E | 21 October 2012 | 0.01 | 0.85 |
P5 | 55°14.395 N | 15°59.107 E | 21 October 2012 | 0.05 | 3.49 |
K3 | 54°12.466 N | 15°31.972 E | 21 October 2012 | 0.25 | 14.76 |
K6 | 54°15.380 N | 15°31.910 E | 22 October 2012 | 0.18 | 12.28 |
K10 | 54°34.028 N | 15°17.027 E | 22 October 2012 | 0.31 | 19.43 |
K11 | 54°26.499 N | 15°22.969 E | 22 October 2012 | 0.29 | 24.77 |
K12 | 54°34.026 N | 15°17.019 E | 22 October 2012 | 0.06 | 8.73 |
P39 | 54°74.255 N | 15°13.175 E | 22 October 2012 | 0.03 | 2.71 |
P39a | 54°29.485 N | 14°50.460 E | 22 October 2012 | 0.43 | 14.01 |
B13 | 54°03.985 N | 14°14.983 E | 24 October 2012 | 0.18 | 5.01 |
B18 | 54°11.976 N | 14°33.277 E | 24 October 2012 | 0.06 | 2.30 |
DZ6 | 54°02.512 N | 14°43.050 E | 24 October 2012 | 0.03 | 0.89 |
SW3 | 53°57.073 N | 14°15.770 E | 24 October 2012 | 0.40 | 3.90 |
ZS3 | 53°46.822 N | 14°21.685 E | 25 October 2012 | 0.15 | 1.66 |
ZS5 | 53°46.798 N | 14°24.538 E | 25 October 2012 | 0.005 | 0.07 |
IO5 | 54°59.470 N | 16°58.588 E | 27 October 2012 | 0.06 | 8.80 |
L4 | 54°48.150 N | 17°32.489 E | 27 October 2012 | 0.28 | 17.38 |
L9 | 55°00.343 N | 17°29.085 E | 27 October 2012 | 0.02 | 3.68 |
L8 | 54°55.209 N | 17°30.620 E | 27 October 2012 | 0.10 | 15.11 |
P101 | 54°32.543 N | 18°36.553 E | 28 October 2012 | 0.02 | 2.30 |
92a | 54°35.057 N | 18°40.001 E | 28 October 2012 | 0.002 | 0.35 |
P104 | 54°34.895 N | 18°47.440 E | 28 October 2012 | 0.0002 | 0.03 |
P2 | 55°17.501 N | 18°00.200 E | 29 October 2012 | 0.13 | 21.51 |
ZN2a | 54°23.029 N | 19°15.036 E | 30 October 2012 | 0.01 | 0.54 |
K | 54°24.522 N | 19°26.573 E | 30 October 2012 | 0.25 | 17.68 |
UST4 | 54°40.422 N | 16°49.433 E | 31 October 2014 | 0.95 | 51.32 |
UST3 | 54°38.085 N | 16°50.014 E | 31 October 2014 | 0.44 | 36.93 |
UST2 | 54°36.701 N | 16°51.430 E | 31 October 2014 | 0.37 | 30.50 |
UST1 | 54°35.453 N | 16°50.685 E | 31 October 2014 | 0.32 | 26.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, M.M.; Ficek, D. Detection of Autumnal Concentration of Coscinodiscus granii in the Southern Baltic—A Method for In Situ Measurement of Marine Particles. Water 2024, 16, 1091. https://doi.org/10.3390/w16081091
Pawlik MM, Ficek D. Detection of Autumnal Concentration of Coscinodiscus granii in the Southern Baltic—A Method for In Situ Measurement of Marine Particles. Water. 2024; 16(8):1091. https://doi.org/10.3390/w16081091
Chicago/Turabian StylePawlik, Magdalena M., and Dariusz Ficek. 2024. "Detection of Autumnal Concentration of Coscinodiscus granii in the Southern Baltic—A Method for In Situ Measurement of Marine Particles" Water 16, no. 8: 1091. https://doi.org/10.3390/w16081091
APA StylePawlik, M. M., & Ficek, D. (2024). Detection of Autumnal Concentration of Coscinodiscus granii in the Southern Baltic—A Method for In Situ Measurement of Marine Particles. Water, 16(8), 1091. https://doi.org/10.3390/w16081091