A New Classification Rule-Set for Mapping Surface Water in Complex Topographical Regions Using Sentinel-2 Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Sentinel-2
2.2.2. DEM
2.3. Methods
2.3.1. Image Preprocessing
2.3.2. Construction of Water Rule-Set
- Analysis of the spectral characterization
- 2.
- Construction of water rule-set
- 3.
- A Method of Automatic Threshold Determination
2.3.3. Accuracy Assessment Method
3. Results
3.1. Accuracy Assessment
3.2. Water Extraction Results
3.2.1. Water Extraction Results in Mountainous Area
3.2.2. Water Extraction Results in Urban Area
4. Discussion
4.1. Cross-Comparison with External Surface Water Datasets
4.2. Comparison of Results from Different Types of Water Bodies
4.2.1. Rivers
4.2.2. Lakes
4.2.3. Reservoirs
4.2.4. Ponds
4.2.5. Paddy Fields
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Chen, B.; Wang, J.; Ye, H.; et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Chiew, F.H.S.; Post, D.A.; Zhang, X.; Ma, N.; Tian, J.; Kong, D.; Leung, L.R.; Yu, Q.; et al. Southern Hemisphere dominates recent decline in global water availability. Science 2023, 382, 579–584. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Pang, Z.; Guo, H.; Long, T.; Ni, Y. Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery. Remote Sens. Lett. 2020, 11, 265–273. [Google Scholar] [CrossRef]
- Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An effective water body extraction method with new water index for Sentinel-2 imagery. Water 2021, 13, 1647. [Google Scholar] [CrossRef]
- Zhang, Y.C.S.; Du, J.Q.; Guo, L.; Fang, S.; Zhang, J.; Sun, B.; Mao, J.; Sheng, Z.; Li, L. Long-term detection and spatiotemporal variation analysis of open-surface water bodies in the Yellow River Basin from 1986 to 2020. Sci. Total Environ. 2022, 845, 157152. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y. Surface water extraction in Yangtze River Basin based on sentinel time series image. Natl. Remote Sens. Bull. 2022, 26, 358–372. [Google Scholar] [CrossRef]
- Sun, J.Y.; Wang, G.Z.; He, G.J.; Pu, D.C.; Jiang, W.; Li, T.T.; Niu, X.F. Study on the water body extraction using GF-1 data based on adaboost integrated learning algorithm. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2020, 42, 641–648. [Google Scholar]
- Deng, Y.; Jiang, W.; Tang, Z.; Li, J.; Lv, J.; Chen, Z.; Jia, K. Spatio-temporal change of lake water extent in Wuhan urban agglomeration based on Landsat images from 1987 to 2015. Remote Sens. 2017, 9, 270. [Google Scholar] [CrossRef]
- Sun, X.; Li, L.; Zhang, B.; Chen, D.; Gao, L. Soft urban water cover extraction using mixed training samples and support vector machines. Int. J. Remote Sens. 2015, 36, 3331–3344. [Google Scholar] [CrossRef]
- Luo, X.; Tong, X.; Hu, Z. An applicable and automatic method for earth surface water mapping based on multispectral images. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102472. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Liu, H.; Shi, Y.; Chang, Q.; Guluzade, R.; Pan, X.; Xu, N.; Hu, P.; Kong, X.; Yang, Y. A New Extraction Method of Surface Water Based on Dense Time-Sequence Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3151–3166. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-term changes of open-surface water bodies in the Yangtze River basin based on the Google Earth Engine cloud platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, J.; Peng, J.; Zhang, H.; Ji, Y.; Wang, H. Analysis of Extreme Temperature Variations on the Yunnan-Guizhou Plateau in Southwestern China over the Past 60 Years. Sustainability 2022, 14, 8291. [Google Scholar] [CrossRef]
- Lu, H.; Ding, L.; Ma, Z.; Li, H.; Lu, T.; Su, M.; Xu, J. Spatiotemporal assessments on the satellite-based precipitation products from Fengyun and GPM over the Yunnan-Kweichow Plateau, China. Earth Space Sci. 2020, 7, e2019EA000857. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Aziz, G.; Minallah, N.; Saeed, A.; Frnda, J.; Khan, W. Remote sensing based forest cover classification using machine learning. Sci. Rep. 2024, 14, 69. [Google Scholar] [CrossRef]
- Lekka, C.; Petropoulos, G.P.; Detsikas, S.E. Appraisal of EnMAP hyperspectral imagery use in LULC mapping when combined with machine learning pixel-based classifiers. Environ. Model. Softw. 2024, 173, 105956. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Qin, Y.; Dong, J.; Wu, J.; Li, B. Improved maps of surface water bodies, large dams, reservoirs, and lakes in China. Earth Syst. Sci. Data 2022, 14, 3757–3771. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z. Systematic method for mapping fine-resolution water cover types in China based on time series Sentinel-1 and 2 images. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102656. [Google Scholar] [CrossRef]
Band Number | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|
B1-Coastal aerosol | 442.7 | 60 |
B2-Blue | 492.7 | 10 |
B3-Green | 559.8 | 10 |
B4-Red | 664.6 | 10 |
B5-Vegetation Red Edge | 704.1 | 20 |
B6-Vegetation Red Edge | 740.5 | 20 |
B7-Vegetation Red Edge | 782.8 | 20 |
B8-NIR | 832.8 | 10 |
B8a-NIR narrow | 864.7 | 20 |
B9-Water Vapor | 945.1 | 60 |
B10-SWIR Cirrus | 1373.5 | 60 |
B11-SWIR | 1613.7 | 60 |
B12-SWIR | 2202.4 | 20 |
Indexes and Rules | Equation Adjusted for Sentinel-2 | Source Reference |
---|---|---|
NDWI | McFeeters (1996) [14] | |
MNDWI | Xu (2006) [15] | |
WI2015 | Fisher et al. (2016) [29] | |
WDR | Zou et al. (2018) [20] | |
MIWDR | Deng et al. (2019) [23] |
Index and Rule | Mountainous Area | Urban Area | ||
---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | |
NDWI | 91.26% | 0.8528 | 90.68% | 0.8415 |
MNDWI | 88.75% | 0.8206 | 89.25% | 0.8224 |
WI2015 | 84.59% | 0.7754 | 85.28% | 0.7758 |
WDR | 87.41% | 0.8024 | 86.89% | 0.7966 |
MIWDR | 90.25% | 0.8402 | 92.04% | 0.8611 |
MTWDR | 94.08% | 0.8831 | 95.15% | 0.8945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Hong, L. A New Classification Rule-Set for Mapping Surface Water in Complex Topographical Regions Using Sentinel-2 Imagery. Water 2024, 16, 943. https://doi.org/10.3390/w16070943
Yang X, Hong L. A New Classification Rule-Set for Mapping Surface Water in Complex Topographical Regions Using Sentinel-2 Imagery. Water. 2024; 16(7):943. https://doi.org/10.3390/w16070943
Chicago/Turabian StyleYang, Xiaozhou, and Liang Hong. 2024. "A New Classification Rule-Set for Mapping Surface Water in Complex Topographical Regions Using Sentinel-2 Imagery" Water 16, no. 7: 943. https://doi.org/10.3390/w16070943
APA StyleYang, X., & Hong, L. (2024). A New Classification Rule-Set for Mapping Surface Water in Complex Topographical Regions Using Sentinel-2 Imagery. Water, 16(7), 943. https://doi.org/10.3390/w16070943