The Construction of Urban Rainstorm Disaster Event Knowledge Graph Considering Evolutionary Processes
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Analysis of Urban Rainstorm Disaster Events
3.2. Knowledge Representation Model for Urban Rainstorm Events
- Event Layer
- 2.
- Object–State Layer
- 3.
- Feature Layer
- 4.
- Relationship Layer
3.3. Knowledge Extraction Model
4. Results
4.1. Knowledge Extraction and Fusion for Urban Rainstorm Disasters
4.2. Experimental Evaluation and Analysis
- (1)
- Representation of the Evolution Process of an Urban Rainstorm Disaster Event
- (2)
- Retrieval of Disaster Condition
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziegler, A.D. Water management: Reduce urban flood vulnerability. Nature 2012, 481, 145. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.J. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Loukas, A.; Vasiliades, L.; Dalezios, N.R. Flood producing mechanisms identification in southern British Columbia. J. Hydrol. 2000, 227, 218–235. [Google Scholar] [CrossRef]
- Liu, J.; Liu, F.; Tuoliewubieke, D.; Yang, L. Analysis of the water vapour transport and accumulation mechanism during the “7.31” extreme rainstorm event in the southeastern Hami area, China. Meteorl. Appl. 2020, 27, e1933. [Google Scholar] [CrossRef]
- Wang, K. Dynamic assessment of the impact of flood disaster on economy and population under extreme rainstorm events. Remote Sens. 2021, 13, 3924. [Google Scholar]
- Filho, W.L.; Balogun, A.L.; Olayide, O.E.; Azeiteiro, U.M.; Ayal, D.Y.; Munoz, P.D.C.; Nagy, G.J.; Bynoe, P.; Oguge, O.; Toamukum, N.Y.; et al. Assessing the impacts of climate change in cities and their adaptive capacity: Towards transformative approaches to climate change adaptation and poverty reduction in urban areas in a set of developing countries. Sci. Total Environ. 2019, 692, 1175–1190. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, T.; Hong, S.; Wang, L. Review on applications of remote sensing in urban flood modeling. Chin. Sci. Bull. 2018, 63, 2156–2166. [Google Scholar] [CrossRef]
- Qie, Z.J.; Rong, L.L. A scenario modelling method for regional cascading disaster risk to support emergency decision making. Int. J. Disaster Risk Reduct. 2022, 77, 103102. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.C.; Bai, R.Z.; Chen, A. Regional disaster risk evaluation of China based on the universal risk model. Nat. Hazards 2017, 89, 647–660. [Google Scholar] [CrossRef]
- Shi, P.J. Theory and practice on disaster system research in a fourth time. J. Nat. Disasters 2005, 14, 1–7. [Google Scholar]
- Willner, S.N.; Otto, C.; Levermann, A. Global economic response to river floods. Nat. Clim. Chang. 2018, 8, 594–598. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Cheng, J.; Wu, Z.F.; Wu, Y.Y. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability. Prog. Geogr. 2019, 38, 175–190. [Google Scholar]
- Best, J.; Ashmore, P.; Darby, S.E. Beyond just floodwater. Nat. Sustain. 2022, 5, 811–813. [Google Scholar] [CrossRef]
- Guo, X.A.; Cheng, J.; Yin, C.L.; Li, Q.; Chen, R.S.; Fang, J.Y. The extraordinary Zhengzhou flood of 7/20, 2021: How extreme weather and human response compounding to the disaster. Cities 2023, 134, 104168. [Google Scholar] [CrossRef]
- Raaijmakers, R.; Krywkow, J.; van der Veen, A. Flood risk perceptions and spatial multi-criteria analysis: An exploratory research for hazard mitigation. Nat. Hazards 2008, 46, 307–322. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Duan, C.F.; Chen, Y.; Li, R.; Wu, Z.X. Disaster loss calculation method of urban flood bimodal data fusion based on remote sensing and text. J. Hydrol. Reg. Stud. 2023, 47, 101410. [Google Scholar] [CrossRef]
- Mu, F.; Li, N. Urban rainstorm waterlogging disaster simulation of Guiyang based on 3S technology. In Proceedings of the International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011. [Google Scholar]
- Wang, M.H.; Wang, T.Y.; Li, Y.P.; Cui, L. Research on knowledge graph model about rainstorm disaster based on simple event model. J. Catastrophol. 2021, 36, 74–78. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Kreibich, H.; Loon, A.F.; Kai, S.; Ward, P.J.; Mazzoleni, M.; Sairam, N.; Abeshu, G.W.; Agafonova, S.; Aghakouchak, A.; Aksoy, H. The challenge of unprecedented floods and droughts in risk management. Nature 2022, 608, 80–86. [Google Scholar] [CrossRef]
- Songchon, C.; Wright, G.; Beevers, L. Quality assessment of crowdsourced social media data for urban flood management. Comput. Environ. Urban Syst. 2021, 90, 101690. [Google Scholar] [CrossRef]
- Smith, L.; Liang, Q.; James, P.; Lin, W. Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework. J. Flood Risk Manag. 2015, 10, 370–380. [Google Scholar] [CrossRef]
- Lin, L.; Tang, C.Q.; Liang, Q.H.; Wang, Z.N.; Wu, X.L.; Zhao, S. Rapid urban flood risk mapping for data-scarce environments using social sensing and region-stable deep neural network. J. Hydrol. 2023, 617, 128758. [Google Scholar] [CrossRef]
- Lin, A.; Wu, H.; Liang, G.; Cardenas-Tristan, A.; Li, D. A big data-driven dynamic estimation model of relief supplies demand in urban flood disaster. Int. J. Disaster Risk Reduct. 2020, 49, 101682. [Google Scholar] [CrossRef]
- Yang, T.; Chen, G.; Sun, X. A Big-Data-Based Urban Flood Defense Decision Support System. Int. J. Smart Home 2015, 9, 81–90. [Google Scholar] [CrossRef]
- Cimiano, P.; Bielefeld, U. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web 2017, 8, 489–508. [Google Scholar]
- Gutierrez, C.; Sequeda, J.F. Knowledge Graphs. Commun. ACM 2021, 64, 96–104. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Zhang, C.; Ye, P. Geoscience Knowledge Graph (GeoKG): Development, construction and challenges. Trans. GIS 2022, 26, 2480–2494. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Ye, P.; Du, M.; Lu, Y.; Xue, H. Geographic Knowledge Graph (GeoKG): A Formalized Geographic Knowledge Representation. ISPRS Int. J. Geoinf. 2019, 8, 184. [Google Scholar] [CrossRef]
- Zhou, C.H.; Wang, H.; Wang, C.S.; Hou, Z.Q.; Zheng, Z.M.; Shen, S.Z.; Cheng, Q.M.; Feng, Z.Q.; Wang, X.B.; Lv, H.R.; et al. Geoscience knowledge graph in the big data era. Sci. China Earth Sci. 2021, 64, 1105–1114. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, C.J.; Wu, M.G.; Lv, G.N. Spatio-temporal features based geographical knowledge graph construction (in Chinese). Sci. Sin. Inform. 2020, 50, 1019–1032. [Google Scholar]
- Hoffart, J.; Suchanek, F.M.; Berberich, K.; Weikum, G. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 2013, 194, 28–61. [Google Scholar] [CrossRef]
- Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A nucleus for a web of open data. In Proceedings of the The Semantic Web ISWC 2007, ASWC 2007, Busan, Republic of Korea, 11–15 November 2007; Lecture Notes in Computer Science. Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4825, pp. 722–735. [Google Scholar]
- Ansari, G.A.; Saha, A.; Kumar, V.; Bhambhani, M.; Sankaranarayanan, K.; Chakrabarti, S. Neural program induction for KBQA without gold programs or query annotations. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; AAAI Press: Macao, China, 2019; pp. 4890–4896. [Google Scholar]
- Nakashole, N.; Theobald, M.; Weikum, G. Scalable knowledge harvesting with high precision and high recall. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; pp. 227–236. [Google Scholar]
- Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hruschka, E.R., Jr.; Mitchell, T.M. Toward an architecture for never-ending language learning. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, GA, USA, 11–15 July 2010; pp. 1306–1313. [Google Scholar]
- Guo, H.D.; Wang, L.; Chen, F.; Liang, D. Scientific big data and Digital Earth. Chin. Sci. Bull. 2014, 59, 5066–5073. [Google Scholar] [CrossRef]
- Ma, X.G.; Ma, C.; Wang, C.B. A new structure for representing and tracking version information in a deep time knowledge graph. Comput. Geosci. 2020, 145, 104620. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, M.; Sheng, Y.H.; Min, X.Q.; Cao, Y.W. Using Geographic Ontologies and Geo-characterization to Represent Geographic Scenarios. ISPRS Int. J. Geoinf. 2019, 8, 566. [Google Scholar] [CrossRef]
- Zheng, K.; Xie, M.H.; Zhang, J.B.; Xie, J.; Xia, S.H. A knowledge representation model based on the geographic spatiotemporal process. Int. J. Geogr. Inf. Sci. 2021, 36, 1–18. [Google Scholar] [CrossRef]
- Jiang, B.C.; You, X.; Li, K.; Zhou, X.; Wen, H. Interactive Visual Analysis of COVID-19 Epidemic Situation Using Geographic Knowledge Graph. Geomat. Inform. Sci. Wuhan Univ. 2020, 45, 836–845. [Google Scholar]
- Wang, B.; Wu, L.; Xie, Z.; Qiu, Q.J.; Zhou, Y.; Ma, K.; Tao, L. Understanding geological reports based on knowledge graphs using a deep learning approach. Comput. Geosci. 2022, 168, 105229. [Google Scholar] [CrossRef]
- Joshi, H.; Seker, R.; Bayrak, C.; Ramaswamy, S.; Connelly, J.B. Ontology for disaster mitigation and planning. In Proceedings of the 2007 Summer Computer Simulation Conference, San Diego, CA, USA, 16–19 July 2007; Volume 26, pp. 1–8. [Google Scholar]
- Wang, X.L.; Wu, X.L. A novel knowledge representation method based on ontology for natural disaster decision-making. In Proceedings of the 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhangjiajie, China, 25–27 May 2012; pp. 241–245. [Google Scholar]
- Ye, P.; Zhang, X.Y.; Shi, G.; Chen, S.H.; Huang, Z.W.; Tang, W. TKRM: A Formal Knowledge Representation Method for Typhoon Events. Sustainability 2020, 12, 2030. [Google Scholar] [CrossRef]
- Zhang, F.S.; Zhong, S.B.; Yao, S.M.; Wang, C.L.; Huang, Q.Y. Ontology-based representation of meteorological disaster system and its application in emergency management Illustration with a simulation case study of comprehensive risk assessment. Kybern. Int. J. Syst. Cyber 2016, 45, 798–814. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Yang, D. Research on Decision Support System based on Agricultural Risk Management Ontology. Int. J. Digit. Content Tech. App. 2011, 5, 290–297. [Google Scholar]
- Zhong, S.B.; Wang, C.L.; Yao, G.N.; Huang, Q.Y. Emergency Decision of Meteorological Disasters: A Geo-Ontology Based Perspective. In Proceedings of the CMSAM 2016: 2016 International Conference on Computational Modeling, Simulation and Applied Mathematics, Bangkok, Thailand, 24–25 July 2016. [Google Scholar]
- Xu, J.; Nyerges, T.L.; Nie, G. Modeling and representation for earthquake emergency response knowledge: Perspective for working with geo-ontology. Int. J. Geogr. Inf. Sci. 2014, 28, 185–205. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Zhu, Q.; Xie, Y.; Li, W.; Fu, L.; Zhang, J.; Tan, J. The construction of personalized virtual landslide disaster environments based on knowledge graphs and deep neural networks. Int. J. Digit. Earth 2020, 13, 1637–1655. [Google Scholar] [CrossRef]
- Bucher, B.; Tiainen, E.; Von Brasch, T.E.; Janssen, P.; Kotzinos, D.; Čeh, M.; Rijsdijk, M.; Folmer, E.; Van Damme, M.D.; Zhral, M. Conciliating perspectives from mapping agencies and web of data on successful European SDIs: Toward a European geographic knowledge graph. ISPRS Int. J. Geoinf. 2020, 9, 62. [Google Scholar] [CrossRef]
- Qiu, Q.J.; Xie, Z.; Zhang, D.; Ma, K.; Tao, L.F.; Tan, Y.J.; Zhang, Z.P.; Jiang, B.D. Knowledge graph for identifying geological disasters by integrating computer vision with ontology. J. Earth Sci. 2023, 34, 1418–1432. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, G.; Su, L.; Cao, Y.; Mi, L. Construction of power projects knowledge graph based on graph database Neo4j. In Proceedings of the 2020 International Conference on Computer, Information and Telecommunication Systems (CITS), Hangzhou, China, 5–7 October 2020; pp. 3612–3616. [Google Scholar]
- Chen, G.; Cheng, Z.; Lu, Q.; Weng, W.; Yang, W. Named Entity Recognition of Hazardous Chemical Risk Information Based on Multihead Self-Attention Mechanism and BERT. Rev. Wirel. Commun. Mob. Comput. 2022, 2022, 8300672. [Google Scholar] [CrossRef]
- Aerts, J.C.; Botzen, W.J.; Clarke, K.C.; Cutter, S.L.; Hall, J.W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Chang. 2018, 8, 193–199. [Google Scholar] [CrossRef]
- Smith, K. Environmental Hazards: Assessing Risk and Reducing Disaster; Routledge: London, UK, 2013. [Google Scholar]
- Alamdar, F.; Kalantari, M.; Rajabifard, A. An evaluation of integrating multisourced sensors for disaster management. Int. J. Digit. Earth. 2015, 8, 727–749. [Google Scholar] [CrossRef]
- Han, W.; Zhang, X.; Wang, Y.; Wang, L.; Huang, X.; Li, J.; Wang, S.; Chen, W.; Li, X.; Feng, R.; et al. A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities. ISPRS J. Photogramm. Remote Sens. 2023, 202, 87–113. [Google Scholar] [CrossRef]
Type | Sub-Type | Third Level |
---|---|---|
Disaster-pregnant environment | Landform | Mountain |
Flatland | ||
Hill | ||
… | ||
Atmosphere | Troposphere | |
Hydrosphere | River | |
Reservoir | ||
Lake | ||
… | ||
Disaster-inducing factor | Primary factor | Rainstorm |
Secondary factor | Gale | |
Landslide | ||
Debris flow | ||
Flooding | ||
Collapse | ||
… | ||
Disaster-bearing body | Human being | Individual |
Crowd | ||
Property | Building | |
Infrastructure (electricity, communication, transportation, etc.) | ||
Public service facility | ||
Industrial facility | ||
… | ||
Resources and environment | Land resource | |
Mineral resource | ||
Water resource | ||
Living resource | ||
… |
Model | Entity | Attribute | ||||
---|---|---|---|---|---|---|
P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | |
CRF | 80.12 | 71.56 | 76.88 | 79.01 | 72.22 | 74.23 |
BiLSTM | 81.17 | 75.81 | 78.03 | 80.52 | 75.08 | 77.11 |
BiLSTM–CRF | 83.04 | 78.02 | 79.31 | 82.66 | 77.83 | 79.19 |
BiLSTM–Attention–CRF | 85.24 | 80.37 | 83.17 | 84.28 | 80.01 | 82.33 |
Model | P (%) | R (%) | F1 (%) |
---|---|---|---|
BiLSTM | 76.65 | 70.38 | 73.53 |
Attention–BiLSTM | 81.47 | 75.62 | 79.62 |
BERT–BiLSTM–Attention–CRF | 85.73 | 80.29 | 83.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Huang, Y.; Wang, Y.; Zhou, F.; Xia, Y.; Shen, Z. The Construction of Urban Rainstorm Disaster Event Knowledge Graph Considering Evolutionary Processes. Water 2024, 16, 942. https://doi.org/10.3390/w16070942
Zou Y, Huang Y, Wang Y, Zhou F, Xia Y, Shen Z. The Construction of Urban Rainstorm Disaster Event Knowledge Graph Considering Evolutionary Processes. Water. 2024; 16(7):942. https://doi.org/10.3390/w16070942
Chicago/Turabian StyleZou, Yalin, Yi Huang, Yifan Wang, Fangrong Zhou, Yongqi Xia, and Zhenhong Shen. 2024. "The Construction of Urban Rainstorm Disaster Event Knowledge Graph Considering Evolutionary Processes" Water 16, no. 7: 942. https://doi.org/10.3390/w16070942
APA StyleZou, Y., Huang, Y., Wang, Y., Zhou, F., Xia, Y., & Shen, Z. (2024). The Construction of Urban Rainstorm Disaster Event Knowledge Graph Considering Evolutionary Processes. Water, 16(7), 942. https://doi.org/10.3390/w16070942