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Abstract: Surface water is a critical natural resource, but its mapping accuracy is vulnerable to cloud
cover, snow, shadows, and diverse roofing materials. Recognizing the limitations of a single threshold
segmentation method that fails to achieve high-precision extraction of surface water in complex
terrain areas, this study introduces a multiple threshold water detection rule (MTWDR) method
to improve water extraction results. This method uses the multi-band reflectance characteristics
of ground features to construct a water index and combines brightness features with the Otsu
algorithm to eliminate interference from highly reflective ground features like ice, snow, bright
material buildings, and clouds. The Yunan–Guizhou Plateau was selected as the study area due
to its complex terrain and multiple types of surface water, and experiments were conducted using
Sentinel-2 data on the Google Earth Engine (GEE). The results demonstrate that: (1) The proposed
method achieves an overall accuracy of 94.08% and a kappa coefficient of 0.8831 in mountainous
areas. In urban areas, the overall accuracy reaches 95.15%, accompanied by a kappa coefficient of
0.8945. (2) Compared to five widely used water indexes and rules, the MTWDR method improves
accuracy by more than 3%. (3) It effectively overcomes interference from highly reflective ground
features while maintaining the integrity and accuracy of water boundary extraction. In conclusion,
the proposed method enhances extraction accuracy across different types of surface water within
complex terrain areas, and can provide significant theoretical implications and practical value for
researching and applying surface water resources.

Keywords: Yunnan-Guizhou Plateau; surface water areas; Sentinel-2 image; Otsu algorithm; Google
Earth Engine

1. Introduction

Water resources are a fundamental pillar for human survival and socio-economic de-
velopment [1,2], and also play an indispensable role in climate change, ecological research,
and natural disaster monitoring [3,4]. As an important part of water resources [5], the
precise extraction of surface water coverage is of great significance to the protection and
management of water resources, encompassing rivers, lakes, and reservoirs that exhibit
distinct seasonal variations [6,7]. The precise extraction of surface water on a large-scale
can significantly contribute to the protection and management of water resources [8,9].
In recent years, remote sensing technology has emerged as a pivotal tool for extensive
surface water mapping owing to its instantaneous imaging capabilities, wide coverage area,
and provision of rich spectral information about ground objects. It enables the acquisition
of comprehensive surface water data for in-depth analysis and has emerged as a pivotal
approach for large-area surface water mapping. Consequently, high-precision automatic
extraction of surface water utilizing remote sensing data has become an important research
topic in water resource studies.

Currently, there are two categories of methods for surface water extraction using
remote sensing data. The first is machine learning approaches that utilize spectral, texture,
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shape, and other features to accurately classify objects and water bodies using mathematical
models [10]. For example, Sun et al. [11] effectively extracted urban water coverage at
the pixel level by employing a mixed training dataset and the support vector machine
(SVM). Deng et al. [12] utilized the random forest model to extract lakes in Wuhan urban
agglomeration with an average accuracy of 93.11%. Luo et al. [13] proposed an enhanced
deep learning model by integrating an image classification model and a semantic segmen-
tation model, enabling accurate recognition of small water bodies on a fine scale. Notably,
the algorithm demonstrated superior accuracy compared to SVM and U-Net. Although
machine learning-based approaches can enhance the precision of surface water extraction,
they are complex algorithms that require a large number of training samples unsuitable for
large-scale applications due to the complexity and diversity of surface water information
comprising various types of aquatic bodies posing challenges for these methods.

The second category is the water index method, which constructs a spectral index that
maximizes the distinction between water and non-water, and then uses optimal segmenta-
tion threshold to extract surface water. For example, McFeeters [14] utilized Landsat TM’s
near-infrared and green bands to develop the normalized difference water index (NDWI)
for water body extraction. Xu [15] replaced the near-infrared band with the mid-infrared
band to construct the modified normalized difference water index (MNDWI), which further
mitigates interference from buildings, vegetation, and soil. Feyisa et al. [16] introduced the
automated water extraction index (AWEI), considering both spectral reflectance differences
between water and shadow areas. Li [17] weighted the water index based on local spatial
information of images to create a background difference water index (BDWI). Compared to
machine learning methods, the water index method offers high efficiency in calculations
and enables rapid extraction of surface water over large areas. However, due to varying
interfering ground objects in different backgrounds during water body extraction, a single
approach using only a specific set of indices may not achieve high-precision results in
complex terrain areas.

The aforementioned studies demonstrate that the machine learning-based water ex-
traction method is susceptible to variations in training sample quality and background
conditions (e.g., shadows, vegetation, clouds). Extracting large-scale surface water using
this algorithm entails complexity and high computational costs. On the other hand, the
water index method offers a relatively simple calculation process and enables rapid ex-
traction of large-scale surface water. Nevertheless, different ground objects interfere with
water body extraction under diverse backgrounds. For instance, mountainous areas are
affected by mountain shadows, clouds, snow, and vegetation, among others; while urban
areas face challenges from roofs and roads made of various materials. When employing a
single threshold for extracting water bodies in complex terrain areas, using a sole water
index approach becomes challenging due to difficulties in determining an ideal threshold
to distinguish between water and non-water regions. Consequently, the applicability and
accuracy of this method are constrained by intricate backgrounds [18,19].

Due to the susceptibility of a single water index to complex background ground
objects during water bodies extraction, several scholars have developed mixed index rules
for extracting water bodies with a large area. For instance, Zou et al. [20] employed the
MNDWI, normalized difference vegetation index (NDVI) [21], and enhanced vegetation
index (EVI) [22] to construct mixed index rules (MNDWI > NDVI or MNDWI > EVI)
and (EVI < 0.1) for surface water body extraction in the United States. Building upon
Zou et al.’s study [20], Deng et al. [23] proposed a multiple index water detection rule
(MIWDR) suitable for surface water extraction in the Yangtze River Basin. Liu et al. [9]
utilized the AWEI, MNDWI, NDVI, and EVI to establish logical combinations of multiple
indices for rapid extraction of water bodies in the Yellow River Basin. The mixed index
rule method offers fast computation and high efficiency in complex terrain areas. However,
there remains a scarcity of comprehensive water detection rules applicable at such a scale
presently, necessitating further research.
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To address the aforementioned issues, this paper proposes a novel method called the
multiple threshold water detection rule (MTWDR) for surface water extraction in complex
terrain areas. The sub-objects of this study are as follows: (1) water index and brightness
index in the cap transform were calculated using Sentinel-2 data; (2) the Otsu algorithm
was utilized to determine optimal segmentation thresholds for distinguishing water/non-
water within each index; (3) development of a robust water bodies extraction rule using
the calculated indices and their respective optimal thresholds to facilitate efficient surface
water extraction.

The remaining sections of the paper are structured as follows: Section 2 provides
an introduction to the materials and methods used in the research, including a detailed
description of the research area, data sources, and methodologies. Section 3 presents the
results of the surface water bodies extraction within the research area. Sections 4 and 5
respectively offer in-depth discussions and conclusive remarks.

2. Materials and Methods
2.1. Study Area

The Yunnan–Guizhou Plateau, located in southwest China, is one of the four major
plateaus in the country. With an average altitude exceeding 1000 m, this region exhibits
diverse geomorphic features including mountains, plateaus, hills, basins, and canyons.
The complex background landforms are accompanied by snow cover in the high-altitude
northwest area. Due to variations in topography and atmospheric circulation conditions,
the climate displays significant spatial variability within this region. Abundant water
resources are found here as numerous rivers traverse through it. Notably, its water energy
resource reserves rank among the highest in China. Additionally, there are 60 lakes covering
an area of over 1 km2 with a total area of 1199.4 km2; these lakes account for approximately
1.3% of China’s total lake area. Characterized by karst terrain shaped by rivers such as
the Jinsha River and Yuanjiang River cutting through it, the landscape appears relatively
fragmented overall—a typical feature of this plateau region. Accurately assessing surface
water extraction holds profound significance for both expediting development on the
Yunnan–Guizhou Plateau and maintaining regional ecosystem stability [24,25]. The extent
of the study area is presented in Figure 1.

Water 2024, 16, x FOR PEER REVIEW 3 of 22 
 

 

remains a scarcity of comprehensive water detection rules applicable at such a scale pres-
ently, necessitating further research. 

To address the aforementioned issues, this paper proposes a novel method called the 
multiple threshold water detection rule (MTWDR) for surface water extraction in complex 
terrain areas. The sub-objects of this study are as follows: (1) water index and brightness 
index in the cap transform were calculated using Sentinel-2 data; (2) the Otsu algorithm 
was utilized to determine optimal segmentation thresholds for distinguishing water/non-
water within each index; (3) development of a robust water bodies extraction rule using 
the calculated indices and their respective optimal thresholds to facilitate efficient surface 
water extraction. 

The remaining sections of the paper are structured as follows: Section 2 provides an 
introduction to the materials and methods used in the research, including a detailed de-
scription of the research area, data sources, and methodologies. Section 3 presents the re-
sults of the surface water bodies extraction within the research area. Sections 4 and 5 re-
spectively offer in-depth discussions and conclusive remarks. 

2. Materials and Methods 
2.1. Study Area 

The Yunnan–Guizhou Plateau, located in southwest China, is one of the four major 
plateaus in the country. With an average altitude exceeding 1000 m, this region exhibits 
diverse geomorphic features including mountains, plateaus, hills, basins, and canyons. 
The complex background landforms are accompanied by snow cover in the high-altitude 
northwest area. Due to variations in topography and atmospheric circulation conditions, 
the climate displays significant spatial variability within this region. Abundant water re-
sources are found here as numerous rivers traverse through it. Notably, its water energy 
resource reserves rank among the highest in China. Additionally, there are 60 lakes cov-
ering an area of over 1 km2 with a total area of 1199.4 km2; these lakes account for approx-
imately 1.3% of China’s total lake area. Characterized by karst terrain shaped by rivers 
such as the Jinsha River and Yuanjiang River cutting through it, the landscape appears 
relatively fragmented overall—a typical feature of this plateau region. Accurately as-
sessing surface water extraction holds profound significance for both expediting develop-
ment on the Yunnan–Guizhou Plateau and maintaining regional ecosystem stability 
[24,25]. The extent of the study area is presented in Figure 1. 

  
Figure 1. Study area schematic. 

  

Figure 1. Study area schematic.

2.2. Data
2.2.1. Sentinel-2

The Sentinel-2 satellite constellation, jointly developed by the European Space Agency
(ESA) and the European Commission, consists of two satellites, namely 2A and 2B. These
satellites provide high-resolution multi-spectral remote sensing data for comprehensive
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global coverage. With a re-visit cycle of five days, this satellite constellation is extensively
utilized in surface change monitoring, environmental assessment, and natural resource
management domains. Equipped with the multispectral imaging instrument MSI, Sentinel-
2 captures imagery across 13 spectral bands encompassing visible light, near-infrared, and
short-wave infrared regions. These images possess an image bandwidth of 290 km and
exhibit spatial resolutions ranging from 10 m to 60 m. Table 1 presents the band parameters
for Sentinel-2 data.

Table 1. Main band parameters of Sentinel-2 data.

Band Number Central Wavelength (nm) Spatial Resolution (m)

B1-Coastal aerosol 442.7 60
B2-Blue 492.7 10

B3-Green 559.8 10
B4-Red 664.6 10

B5-Vegetation Red Edge 704.1 20
B6-Vegetation Red Edge 740.5 20
B7-Vegetation Red Edge 782.8 20

B8-NIR 832.8 10
B8a-NIR narrow 864.7 20
B9-Water Vapor 945.1 60

B10-SWIR Cirrus 1373.5 60
B11-SWIR 1613.7 60
B12-SWIR 2202.4 20

2.2.2. DEM

The elevation data set utilized in this study was SRTM-DEM, which has a spatial resolu-
tion of 30 m and can be accessed through the Earth Explorer user interface provided by the
USGS open access hub at https://search.asf.alaska.edu (accessed on 7 February 2024).

2.3. Methods

Considerable spectral similarities exist between surface water and non-water objects,
making it challenging to distinguish high-reflectance non-water objects such as snow-
covered areas in mountain regions and brightly colored buildings in urban areas from
water bodies. This study conducted experiments to enhance the identification of water
information and make non-water information more discernible. Figure 2 illustrates the
proposed process for extracting surface water in complex terrain areas, which involves data
preprocessing, rule construction, threshold segmentation, water extraction, and evaluation
of mapping accuracy. The Sentinel-2 data went through some necessary preprocessing steps
such as atmospheric correction, radiation calibration, and geometric correction, all of which
were carried out using the GEE platform. After that, we chose nine representative ground
objects based on their regional characteristics to establish some prior knowledge. Then, we
used the multi-band reflectance characteristics of these ground objects tofeatures construct
water index. To eliminate interference from highly reflective ground objects like snow,
bright material buildings, and clouds, we integrated brightness features. We used the Otsu
algorithm to determine the optimal segmentation threshold for distinguishing water bodies
from non-water bodies, which helped us obtain accurate classification results for the entire
region’s water bodies. Finally, quantitative accuracy evaluation indices (overall accuracy
and Kappa coefficient) were used to assess the performance of surface water classification.

https://search.asf.alaska.edu
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2.3.1. Image Preprocessing

This study utilized remote sensing data from Sentinel-2 L2A products acquired be-
tween March and April 2022, which underwent atmospheric correction using the Sen2Cor
processor of the Sen2Cor processor. This processor is designed specifically for the Sentinel-2
environment and effectively deals with the atmospheric effects present in the Sentinel-
2 1C top-of-atmosphere (TOA) product. Ultimately, it generates a Class 2A bottom-of-
atmosphere (BOA) reflectance product. This paper presents various preprocessing tech-
niques for remote sensing images including resampling and cloud removal.

2.3.2. Construction of Water Rule-Set

1. Analysis of the spectral characterization

The extraction of water bodies in different scenes is influenced by various interference
factors. In urban areas, the accuracy of water body extraction is affected by building
shadows and asphalt roads, while in mountainous areas, it is influenced by mountain
shadows, vegetation, clouds, and snow. Leveraging the disparity in reflectance values
across different bands of the target ground object can enhance its brightness value while
suppressing that of the background object. It is imperative to assess the characteristics of
each scene based on prior knowledge and subsequently select appropriate rules for water
body extraction.

According to regional characteristics, representative water bodies including clear water
(CW), sediment water (SW), and polluted water (PW) were selected, along with typical
background ground objects such as road, building, bare soil (BS), vegetation, mountain
shadow (MS), and cropland. Spectral curves were obtained from 150 sample points for
each water body and background ground object. The selected typical ground objects
are illustrated in Figure 3. As depicted in Figure 4, within the visible light band, the
reflectivity of all three types of water bodies is higher in the green band compared to
the blue and red bands. However, this reflectivity pattern is also observed in vegetation
within the visible light band; thus, distinguishing water bodies solely based on visible light
becomes impractical. In terms of discrimination degree from other ground objects, water
bodies do not exhibit significant differences in the red band. Moving from near-infrared
to short-wavelength infrared bands reveals a gradual decrease in reflectivity for water
bodies relative to other ground objects. Ultimately, the minimum reflectivity value for
water bodies is reached within the short-wavelength infrared band.
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2. Construction of water rule-set

The study area exhibits a complex and diverse background, making it challenging to
effectively suppress non-water body information and achieve high-precision water body
extraction using a single water index. As depicted in Figure 4, the B3 band demonstrates
the highest reflectivity for water bodies while the B12 band exhibits the lowest reflectivity,
resulting in B3–B12 > 0. Conversely, other ground objects such as mountain shadows, bare
soil, and buildings exhibit lower reflectivity compared to the B12 band (i.e., B3–B12 < 0).
Consequently, utilizing B3–B12 can significantly enhance differentiation between water
bodies and other ground objects during water body identification. Given the complexity
of terrain within this large mountainous region, the NDWI is employed to extract water
bodies by accentuating their dissimilarity from vegetation. Thus, an initial water index
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(IWI) is constructed based on the NDWI to substantially increase differentiation between
water and non-water information while ensuring comprehensive extraction of all relevant
areas. However, similar challenges persist with the IWI as with other indices since they
are prone to misclassifying snow-covered areas or bright building materials as part of the
water body due to interference factors. To address these issues effectively by mitigating
interference from highly reflective ground objects like snow or bright material buildings
along with clouds, brightness characteristics are derived from bands B5 and B8 leading to
the Brightness Characteristic Index (BCI).

Therefore, the process of rule construction is illustrated in Figure 5. Firstly, water
bodies are primarily identified using the IWI to mitigate the influence of mountain and
building shadows. Subsequently, the BCI is employed to eliminate the impact of highly
reflective ground objects such as snow and ice, bright material buildings, and clouds.

IWI =
2 × (ρGreen − ρSWIR2)

ρGreen + ρSWIR2
+

ρGreen − ρNIR

ρGreen + ρNIR
(1)

BCI = ρNIR + ρRed (2)

EVI = 2.5 × ρNIR − ρRed
ρNIR + 6ρRed − 7.5ρBlue + L

(3)

In the above Equations (1)–(3), ρ is the reflectance, ρGreen, ρNIR, ρSWIR2, ρRed, ρBlue is
the corresponding band of Sentinel-2, and L is the soil conditioning parameter.
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3. A Method of Automatic Threshold Determination

The Otsu method, proposed by Japanese scholar Nobuyuki Otsu, is an adaptive
threshold segmentation technique based on probability statistics. It utilizes the image
histogram to determine the threshold criterion by maximizing inter-class variance and
effectively distinguishes objects from backgrounds. This algorithm has gained significant
popularity as an efficient and widely used image binarization approach [26]. Assuming the
current gray level is T, the inter-class variance can be calculated using the following formula.

ω0 =
k

∑
i=0

Pi = ω(k) (4)
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ω1 =
T

∑
i=k+1

Pi = 1 − ω(k) (5)

µ0 = ∑
i · Pi
ω0

=
µ(k)
ω(k)

(6)

µ1 = ∑
i · Pi
ω1

=
µ − µ(k)
1 − ω(k)

(7)

σ2 = ω0ω1(µ0 − µ1)
2 (8)

In the above equations, i is the number of gray levels, Pi is the probability of occurrence
of gray level i, ω0 and ω1 are the ratio of the number of pixels of the background and the
foreground portions to the total number of pixels, and µ0 and µ1 are the average gray
values of the background and the foreground portions.

The Otsu algorithm is employed in this study to calculate the thresholds of IWI, BCI,
and EVI individually. Subsequently, the water body is segmented based on the optimal
threshold value, followed by superimposing the segmented water body images to obtain
the final classification results.

2.3.3. Accuracy Assessment Method

The confusion matrix is a comparative matrix that quantifies the number of pixels
belonging to each category and the number of pixels accurately classified in the ground
truth test [27,28]. The accuracy of surface water extraction results was assessed in this
study through the establishment of a confusion matrix, calculation of overall accuracy (OA),
and determination of the Kappa coefficient. Additionally, widely used water index and
extraction rules (Table 2) that have demonstrated superior water identification capabilities
in recent years were selected for comparison with the method proposed in this paper.

OA =
TP + TN

TP + TN + FP + FN
(9)

Kappa =
(TP + FN)× (TP + FP) + (FN + TN)× (TN + FP)

N2 (10)

In the above equations, TP is the number of correct positive samples, TN is the number
of correct negative samples, FN is the number of missed detections for positive samples, FP
is the number of false detections for negative samples, and N is the total number of samples.

Table 2. Commonly used water indexes and rules.

Indexes and Rules Equation Adjusted for Sentinel-2 Source Reference

NDWI (ρ3 − ρ8)/(ρ3 + ρ8) McFeeters (1996) [14]
MNDWI (ρ3 − ρ11)/(ρ3 + ρ11) Xu (2006) [15]
WI2015 1.7204 + 171ρ3 + 3ρ4 − 70ρ8 − 45ρ11 − 71ρ12 Fisher et al. (2016) [29]
WDR (mNDWI > NDVI or mNDWI > EVI) and (EVI < 0 .1) Zou et al. (2018) [20]

MIWDR (AWEInsh − AWEIsh >− 0 .1) and (mNDWI > NDVI or mNDWI > EVI) Deng et al. (2019) [23]

3. Results
3.1. Accuracy Assessment

In order to facilitate a more comprehensive comparison of the extraction effects
achieved by different methods, accuracy calculations were conducted in this study, and
the results are presented in Table 3 and Figure 6. Amongst the various methods evaluated,
the MTWDR exhibited the highest classification accuracy in mountainous areas, achieving
an overall accuracy of 94.08% and a Kappa coefficient of 0.8831. The NDWI demonstrated
an overall classification accuracy of 91.26% with a Kappa coefficient of 0.8528, while the
MIWDR yielded an overall classification accuracy of 90.25% with a Kappa coefficient of
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0.8402. The MNDWI and WDR followed closely behind with respective overall classi-
fication accuracies of 88.75% (Kappa coefficient: 0.8206) and 87.41% (Kappa coefficient:
0.8024). Conversely, WI2015 displayed the lowest classification accuracy among all indices
assessed, recording an overall classification accuracy of only 84.59%, accompanied by a
Kappa coefficient value of merely 0.7754.

Table 3. Accuracy calculations for indexes and rules.

Index and Rule
Mountainous Area Urban Area

OA (%) Kappa OA (%) Kappa

NDWI 91.26% 0.8528 90.68% 0.8415
MNDWI 88.75% 0.8206 89.25% 0.8224
WI2015 84.59% 0.7754 85.28% 0.7758
WDR 87.41% 0.8024 86.89% 0.7966

MIWDR 90.25% 0.8402 92.04% 0.8611
MTWDR 94.08% 0.8831 95.15% 0.8945
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The proposed MTWDR method achieves the highest classification accuracy in urban
areas, demonstrating an overall accuracy of 95.15% and a Kappa coefficient of 0.8945. The
MIWDR approach demonstrates an overall classification accuracy of 92.04%, accompanied
by a Kappa coefficient of 0.8611. Similarly, the NDWI attains an overall classification accu-
racy of 90.68% with a corresponding Kappa coefficient of 0.8415. Subsequently, consider
the MNDWI and WDR methods; the MNDWI yields an overall classification accuracy of
89.25% along with a Kappa coefficient value of 0.8224, while the WDR achieves slightly
lower results with an overall classification accuracy rate of 86.89% and a Kappa coefficient
value of 0.7966, respectively. The index WI2015 exhibits the lowest performance in terms
of classification accuracy among all methods evaluated in this study, recording an overall
classification accuracy rate as low as 85.28%. Furthermore, its associated Kappa coefficient
is calculated to be merely at the level of approximately 0.7758.

3.2. Water Extraction Results

In this chapter, the proposed method is compared with the extraction results of five
commonly used water indexes and rules, and the extraction results are presented in Figure 7.
Overall, the MNDWI, NDWI, WI2015, WDR, and MIWDR demonstrate higher completeness
in extraction. However, due to the similarity between snow and water reflectivity, they are
all influenced by the presence of snow-covered areas in the northwest region of the study
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area to some extent, resulting in the misclassification of snow as water bodies. Among
them, the MNDWI, WI2015, and WDR exhibit more errors followed by the NDWI and
MIWDR. The MTWDR overcomes the influence of highly reflective ground objects covered
by snow while ensuring integrity in extraction results. In terms of details, the NDWI
provides more complete extraction results but tends to mistake shadows and buildings as
water bodies. The MNDWI effectively suppresses interference from building noise but may
overlook small water bodies. WI2015 shows better recognition for small water bodies but is
affected by building shadow interference leading to increased false classifications in urban
areas with inaccurate identification of water body boundaries. The WDR is not affected by
shadows or dark material ground objects but can be influenced by highly reflective urban
buildings. The MIWDR effectively mitigates interference from mountain and building
shadows. However, it faces challenges in accurately identifying water bodies in complex
terrain areas, which makes it difficult to delineate their boundaries. In comparison, the
proposed MTWDR effectively addresses issues related to building shadows and mountain
shadows during water body extraction. It accurately captures slender water bodies along
their boundaries and overcomes interferences caused by snow coverings and high-reflective
materials present on urban structures. This enhances overall performance for large-scale
complex terrain areas.
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In the same methodology, variations in water body extraction accuracy across different
regions are observed, with distinct influencing factors. To validate the universality and
stability of our proposed method, we selected mountainous and urban regions for local
comparison. Figure 8 illustrates the spatial distribution of the chosen comparison regions
(a–f) within the research area.
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Figure 8. The spatial locations of each selected region, which were utilized for comparing the surface
water extraction results among different regions in the Yunnan-Guizhou Plateau, are also depicted in
the inset of the entire study area, corresponding to Figures 9 and 10 below. (a–c) Mountainous area;
(d–f) Urban area.

3.2.1. Water Extraction Results in Mountainous Area

The mountainous region is complex and has various areas of shade. When extracting
water in this area, many factors like mountain shadows, vegetation, clouds, and snow can
affect the accuracy of the results. Figures 7 and 8 illustrates that many high-reflectivity
objects like clouds and snow are mistakenly classified as water bodies. Therefore, in the
figure, (a–c) mainly focus on the snow-covered area in the northwest region of the study
area. Figure 9 shows the results of water extraction using six different methods in the
mountainous region. It is observed from this figure that NDWI extraction gives more
comprehensive results and can identify small-scale water bodies. However, it can still be
affected by shadows, clouds, snow, and other ground objects. The MNDWI can effectively
reduce the interference caused by shadows, but it may wrongly classify high-reflectivity
objects like clouds and snow during extraction [14,15]. WI2015 can successfully extract
slender rivers while preserving their integrity, but it has limitations in water extraction
outcomes due to cloud cover and shadowing from snow. The WDR can efficiently extract
rivers, but it may struggle with misclassification due to bridges and cloud cover and
shadowing from snow. The MIWDR method can partially mitigate the interference caused
by mountain shadows, resulting in a more comprehensive water extraction. However,
it still encounters challenges with cloud and snow shadows, leading to misclassification
issues [20,23]. In comparison, the proposed MTWDR method exhibits superior performance
in extracting water bodies accurately while effectively overcoming interferences from
highly reflective surfaces like clouds and snow. It eliminates misclassification problems
and significantly enhances the extraction efficiency of mountain water bodies.
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3.2.2. Water Extraction Results in Urban Area

The extraction of water in urban areas is a challenging task as the ground objects in
these areas are complex and often interfere with the extraction process. In Figure 10, you
can see the results of six different methods for water extraction in urban areas, with (d–f)
showing selected portions of the urban area. As seen in the figure, the effectiveness of
water extraction in urban areas is mainly affected by buildings made of different materials.
Among the six methods, WI2015 is good at recognizing small water bodies but is impeded
by building shadow information, resulting in more false classifications and inaccurate
delineation of water body boundaries within urban areas. The MNDWI can effectively
suppress interference from building noise, but it may overlook small water bodies due
to slight shadow information interference. The NDWI yields relatively comprehensive
extraction results, but it can mistakenly identify shadows, bright material buildings, and
other objects as water bodies. The MIWDR can successfully mitigate the influence of
shadows and dark buildings within cities, but it fails to accurately extract small water
bodies. The WDR remains unaffected by shadows and dark ground objects, but it is prone
to be influenced by high-reflectance material buildings found in urban environments, while
easily disregarding slender water bodies during extraction. The proposed MTWDR method
demonstrates superior performance for extracting water bodies as it effectively inhibits
interference from bright material buildings while reducing false identifications within
urban areas and enhancing the overall accuracy of urban water extraction.
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4. Discussion
4.1. Cross-Comparison with External Surface Water Datasets

In order to enhance the analysis of the MTWDR method’s effectiveness in extracting
water bodies, this study selected four remote sensing data products related to surface
water types for comparison of extraction results, as illustrated in Figure 11. These include:
(1) the JRC global surface water dataset, which utilizes Landsat5, Landsat7, and Landsat8
satellite images from 1984 to 2022 to generate a comprehensive set of 30 m resolution global
surface water coverage maps that depict the spatial and temporal distribution of surface
water over the past three decades. (2) The China lake dataset (CLD), derived from Landsat
images and topographic maps, employs semi-automatic extraction methods along with
manual visual inspection and editing techniques to identify lakes larger than 1 km2 within
China between 1960 and 2020. This dataset provides detailed analysis on changes in the
number and area of Chinese lakes over the past six decades [30]. (3) China’s surface water,
large dams, reservoirs, and lakes dataset (China-LDRL), released in 2022, encompasses
geographic information on 2194 reservoirs and dams with a minimum area exceeding
1 km2 across China [31]. (4) The China water cover map (CWaC), published in 2020 through
an automatic classification approach based on shape index and submerged frequency using
time series Sentinel-1/2 imagery; it presents a nationwide depiction of water cover for the
year 2020 [32].
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Due to the variations in water bodies among different datasets, CLD represents a lake
dataset, China-LDRL includes both lakes and reservoirs, while JRC and CWaC are multi-
type water datasets. Moreover, each dataset has different time ranges, and large water
bodies generally exhibit better extraction results as they intersect with multiple datasets.
To validate the effectiveness of the proposed method for large-scale water bodies, the lake
extraction results from each product and method in 2020 (Figure 12) should be compared.
Overall, all datasets demonstrate satisfactory extraction results for large lakes by preserving
the flexibility and continuity of their boundaries. However, there are some differences
in extracting Xingyun Lake and Yilong Lake. Specifically, small gaps occur in the lake
area of CLD and China-LDRL when extracting Xingyun Lake due to potential deviations
caused by suspended solids within the lake. In contrast, JRC, CWaC, and our proposed
method do not encounter such issues. Additionally, although minor discrepancies exist
when extracting Yilong Lake at a detailed level, they do not significantly affect the overall
performance of lake extraction.
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(d) Xingyunhu. (e) Erhai. (f) Chenghai. (g) Qiluhu. (h) Yilonghu. Where the red boxes indicate areas
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4.2. Comparison of Results from Different Types of Water Bodies

Different types of water bodies exhibit varying extraction accuracy and are influenced
by distinct factors using the same method. To ensure the universality and stability of the
method proposed in this paper, diverse water body types were selected for local comparison.
Consequently, different data products corresponding to the same year and region were
chosen based on control variables to compare extraction results, ensuring the scientific
validity of the comparative experiment. Due to limited coverage of artificial water body
ditches in our study area and a lack of research on their extraction, detailed comparative
analysis was conducted with existing datasets focusing on rivers, lakes, reservoirs, ponds,
and paddy fields. Figure 13 illustrates the spatial distribution of selected comparison areas
(a–j) within our study area.
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Figure 13. The spatial locations of each selected area for comparing different types of surface water
bodies in the Yunnan-Guizhou Plateau are also indicated on the inset map illustrating the entire
study area, corresponding to Figures 14–18 below. (a,b) Rivers; (c,d) Lakes; (e,f) Reservoirs; (g,h)
Ponds; (i,j) Paddy Fields.

4.2.1. Rivers

The latest version (V1.4) of the JRC Monthly Water Recurrence global surface water
dataset was selected for comparative analysis with the method proposed in this paper,
regarding river extraction. As depicted in Figure 14, both JRC and MTWDR algorithms
demonstrated a more comprehensive approach to extract rivers; however, within the red
dotted box area, JRC maintained consistency in river extraction but failed to overcome
interferences such as bridges and some sand and soil areas that were misclassified as
water bodies. In contrast, the method presented in this paper accurately eliminates bridge
interferences as well as sand and soil areas, resulting in a more precise depiction of river
extraction details.
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4.2.2. Lakes

For the lake component, CLD [30] was chosen as a point of comparison with the
method presented in this paper. As depicted by the red dotted boxes in Figure 15, both CLD
and our proposed method exhibited varying degrees of incompleteness and inaccuracy
when it came to delineating lake boundaries; however, comparatively speaking, CLD
missed more boundary details than our approach did. From a macro perspective, while
CLD failed to extract smaller lakes altogether, our method succeeded in doing so and
produced more comprehensive extraction results.
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4.2.3. Reservoirs

The China-LDRL [31] method was chosen for comparative analysis of the reservoir
section. As depicted in Figure 16, the China-LDRL approach exhibited numerous omissions
and failed to extract the reservoir within the red dotted box. In contrast, our proposed
method yielded extraction results that closely resembled those obtained through manual
vectorization, enabling a more comprehensive identification of reservoirs in the study area
with enhanced accuracy.
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4.2.4. Ponds

For the pond analysis, CWaC [32] was chosen as a comparative method to the approach
presented in this paper. As depicted by the red dotted box in Figure 17, CWaC failed
to detect smaller ponds resulting in mixed water and land at pond edges with unclear
boundaries between ponds. While our proposed method may not be comprehensive
enough for all ponds, it successfully identifies small-area ponds with clear boundaries
between water and land without any misclassification.
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4.2.5. Paddy Fields

The comparative analysis of the paddy field was conducted with CWaC [32] for
reference. As depicted in the red dotted box in Figure 18, the rice extraction results
obtained by CWaC exhibited fragmentation, blurred boundaries of the paddy field, and
misclassification of certain dry land areas as water bodies. In contrast, our proposed
method displayed omission by failing to identify small-scale paddy fields; however, it
yielded extraction results with clearer boundaries and zero instances of misclassification.
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4.3. Limitations and Future Work

In this study, we focus on the surface water bodies of the Yunnan–Guizhou Plateau
as our research subject. As mentioned earlier, the MTWDR has demonstrated superior
performance in extracting water bodies. There are three reasons why the MTWDR is more
effective in extracting water bodies of different regions and types: Firstly, by considering the
unique spectral characteristics of Sentinel-2 and analyzing the spectral response mechanism,
incorporating prior knowledge based on the specific features of our research area to enhance
discrimination between water bodies and background ground objects. Secondly, we employ
an Otsu algorithm for automatic recognition of segmentation thresholds and calculate
optimal thresholds to accurately separate water bodies from non-water areas. Lastly, by
integrating brightness features into our extraction rules, we mitigate interference from
large-area high-reflectivity ground objects and achieve more precise results in identifying
water bodies. However, it is important to acknowledge that this method still possesses
certain limitations which warrant further discussion.

Firstly, the suppression of shadows and bright reflectivity from ground objects in-
evitably leads to the neglect of extraction for certain small water bodies that exhibit similar
spectra to interfering ground objects, resulting in the loss of fine details pertaining to
water body information. This subsequently affects both the accuracy and integrity of the
extraction process. Secondly, due to Sentinel-2’s spatial resolution being limited to 10 m,
it becomes challenging to identify small water bodies situated along narrow river coasts,
particularly those encompassing small paddy fields and pond areas where pixel loss is
more likely. Consequently, accurately distinguishing between ground objects and water
bodies exhibiting comparable spectral characteristics while retaining comprehensive data
on water bodies information emerges as a crucial research focus.
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5. Conclusions

A new method for extracting water from large complex terrain areas has been proposed
in this study. The method called the MTWDR aims to achieve high-precision extraction
of surface water in complex terrain areas. The methodological strength of the study is its
ability to eliminate interference from highly reflective ground objects (such as snow, bright
material buildings, and clouds) by integrating brightness features and the Otsu algorithm.
To achieve this, the method leverages prior knowledge to assess regional characteristics and
utilizes the multi-band reflectance properties of ground objects. As a result, it significantly
improves the mapping accuracy of surface water in complex terrain areas. The study
used Sentinel-2 data and the GEE platform for extracting surface water on the Yunnan–
Guizhou. The conclusions are as follows: (1) The proposed method demonstrates high
accuracy in mountainous areas and urban regions, with an overall accuracy of 94.08%
and 95.15%, respectively, along with Kappa coefficients of 0.8831 and 0.8945. Compared
to five widely used water indexes and rules currently employed, our approach achieves
an improvement in accuracy exceeding 3%. (2) The fusion of the MTWDR and the Otsu
algorithm is an effective approach for extracting various water types, which effectively
mitigates the interference caused by high-reflectivity surface features such as cloud and
snow shadows in mountainous areas, as well as bright material buildings in urban regions.
Moreover, this method preserves the integrity of regular water boundaries and enables
slender water body extraction.

The results demonstrate the efficacy of the proposed method in extracting surface
water bodies within complex terrain areas of the Yunnan–Guizhou Plateau, exhibiting
strong robustness and suitability for large-scale remote sensing mapping of surface water.
In the future, the MTWDR method can be applied for large-scale, high-precision, and
long-term water dynamic monitoring.
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