Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of Study Area
2.2. Data and Methodology
2.2.1. Land Use/Land Cover Data
2.2.2. Climate Change Scenarios
2.2.3. Streamflow Data
2.2.4. Spatial Data
2.2.5. Trend and Change Point Detection of Climatic Variables
2.2.6. Hydrological Model Setup
2.2.7. Hydrological Model Calibration and Validation
2.2.8. Evaluation of LULC and Climate Change Impacts on Surface Runoff
3. Results
3.1. Climate Projection and Trend Analysis
3.2. SWAT Model’s Sensitivity Analysis, Calibration, and Validation
3.3. Combined Effect of LULC and Climate Change on Surface Runoff and Evapotranspiration
3.4. Isolated Impacts of LULC and Climate Change on SR and ET
4. Discussion
4.1. SR and ET Responses to the Combined Impact of LULC and Climate Change
4.2. SR and ET Responses to the Impact of LULC Changes
4.3. SR and ET Responses to the Impact of Climate Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chanapathi, T.; Thatikonda, S. Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna River basin under present and future scenarios. Sci. Total Environ. 2020, 721, 137736. [Google Scholar] [CrossRef] [PubMed]
- Chawanda, C.J.; Nkwasa, A.; Thiery, W.; van Griensven, A. Combined impacts of climate and land-use change on future water resources in Africa. Hydrol. Earth Syst. Sci. 2024, 28, 117–138. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Meshesha, D.T.; Adgo, E.; Tsubo, M.; Masunaga, T.; Ayele Almaw Fenta, A.A.F.; Dagnenet Sultan, D.S.; Mesenbet Yibeltal, M.Y.; et al. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 689, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Getachew, B.; Manjunatha, B.R.; Bhat, H.G. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, upper Blue Nile River Basin, Ethiopia. J. Hydrol. 2021, 595, 125974. [Google Scholar] [CrossRef]
- Tsegaye, L.; Bharti, R. The impacts of LULC and climate change scenarios on the hydrology and sediment yield of Rib watershed, Ethiopia. Environ. Monit. Assess. 2022, 194, 717. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Ma, N.; Li, C.; Luan, J. Contrasting effects of climate and LULC change on blue water resources at varying temporal and spatial scales. Sci. Total Environ. 2021, 786, 147488. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A.; Ebabu, K.; Sultan, D.; Dile, Y.T. Reduced runoff and sediment loss under alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. J. Hydrol. Reg. Stud. 2022, 40, 100998. [Google Scholar] [CrossRef]
- Das, P.; Behera, M.D.; Patidar, N.; Sahoo, B.; Tripathi, P.; Behera, P.R.; Srivastava, S.K.; Roy, P.S.; Thakur, P.; Agrawal, S.P.; et al. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity approach. J. Earth Syst. Sci. 2018, 127, 19. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Haregeweyn, N. Response of streamflow to climate variability and changes in human activities in the semiarid highlands of northern Ethiopia. Reg. Environ. Change 2017, 17, 1229–1240. [Google Scholar] [CrossRef]
- Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of combined and isolated effects of land-use and land-cover changes and climate changes on the upper Blue Nile River basin’s streamflow. Hydrol. Earth Syst. Sci. 2018, 22, 6187–6207. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Sulaiman, W.N.A.; Pradhan, B.; Jamil, N.R. Relationship between design floods and land use land cover (LULC) changes in a tropical complex catchment. Arab. J. Geosci. 2018, 11, 376. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Alteration of groundwater recharge areas due to land use/cover change in Kathmandu Valley, Nepal. J. Hydrol. Reg. Stud. 2019, 26, 100635. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, X.; Fu, C. Impacts of land use/land cover and climate change on hydrological cycle in the Xiaoxingkai Lake Basin. J. Hydrol. Reg. Stud. 2023, 47, 101422. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. New York Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef] [PubMed]
- Koutsoyiannis, D. Revisiting the global hydrological cycle: Is it intensifying? Hydrol. Earth Syst. Sci. 2020, 24, 3899–3932. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- WMO. State of the Global Climate 2021; WMO: Geneva, Switzerland, 2022. [Google Scholar]
- Conway, D.; Vincent, K. Climate Risk in Africa: Adaptation and Resilience; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Tebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B.; et al. Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. Discuss. 2020, 12, 253–293. [Google Scholar] [CrossRef]
- Kotamarthi, R.; Hayhoe, K.; Wuebbles, D.; Mearns, L.O.; Jacobs, J.; Jurado, J. Downscaling Techniques for High-Resolution Climate Projections: From Global Change to Local Impacts; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Musau, J.; Gathenya, J.; Sang, J. General circulation models (GCMs) downscaling techniques and uncertainty modeling for climate change impact assessment. In Proceedings of the 2013 Mechanical Engineering Conference on Sustainable Research and Innovation, Kitui, Kenya, 24–26 April 2013. [Google Scholar]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W. The statistical downscaling model: Insights from one decade of application. Int. J. Climatol. 2013, 33, 1707–1719. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Change 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Holthuijzen, M.; Beckage, B.; Clemins, P.J.; Higdon, D.; Winter, J.M. Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method: Advantages of a linear correction for extremes. Theor. Appl. Climatol. 2022, 149, 863–882. [Google Scholar] [CrossRef]
- Conway, D. The climate and hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. [Google Scholar] [CrossRef]
- Coffel, E.D.; Keith, B.; Lesk, C.; Horton, R.M.; Bower, E.; Lee, J.; Mankin, J.S. Future hot and dry years worsen Nile Basin water scarcity despite projected precipitation increases. Earth’s Future 2019, 7, 967–977. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Rahut, D.B.; Marenya, P.; Stirling, C.M. Climate risks and adaptation strategies of farmers in East Africa and South Asia. Sci. Rep. 2021, 11, 10489. [Google Scholar] [CrossRef] [PubMed]
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Haregeweyn, N.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.; Adgo, E.; Poesen, J.; Schütt, B. Analyzing the hydrologic effects of region-wide land and water development interventions: A case study of the Upper Blue Nile basin. Reg. Environ. Change 2016, 16, 951–966. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619, 1394–1408. [Google Scholar] [CrossRef] [PubMed]
- Getachew, B.; Manjunatha, B.R. Impacts of Land-Use Change on the Hydrology of Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Glob. Chall. 2022, 6, 2200041. [Google Scholar] [CrossRef] [PubMed]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Gebre, S.L.; Ludwig, F. Hydrological response to climate change of the upper Blue Nile River Basin: Based on IPCC fifth assessment report (AR5). J. Climatol. Weather Forecast. 2015, 3, 1–15. [Google Scholar]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K.; Ayalew, A. Modeling the impact of climate change on hydrological responses in the Lake Tana basin, Ethiopia. Dyn. Atmos. Ocean. 2022, 97, 101278. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Modelling hydrological processes under climate change scenarios in the Jemma sub-basin of upper Blue Nile Basin, Ethiopia. Clim. Risk Manag. 2021, 31, 100272. [Google Scholar] [CrossRef]
- Kidane, M.; Tolessa, T.; Bezie, A.; Kessete, N.; Endrias, M. Evaluating the impacts of climate and land use/land cover (LU/LC) dynamics on the Hydrological Responses of the Upper Blue Nile in the Central Highlands of Ethiopia. Spat. Inf. Res. 2019, 27, 151–167. [Google Scholar] [CrossRef]
- Belete, M.; Deng, J.; Abubakar, G.A.; Teshome, M.; Wang, K.; Woldetsadik, M.; Zhu, E.; Comber, A.; Gudo, A. Partitioning the impacts of land use/land cover change and climate variability on water supply over the source region of the Blue Nile Basin. Land Degrad. Dev. 2020, 31, 2168–2184. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of climate and land use change on hydrological response in Gumara Watershed, Ethiopia. Ecohydrol. Hydrobiol. 2021, 21, 315–332. [Google Scholar] [CrossRef]
- Meshesha, T.M.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A.; Berihun, M.L.; Mulu, A.; Setargie, T.A.; Kassa, S.B. Agroecology-based land use/land cover change detection, prediction, and its implications for land degradation: A case study in the Upper Blue Nile Basin. Int. Soil Water Conserv. Res. 2024, 12, 1–12. [Google Scholar] [CrossRef]
- Simane, B.; Zaitchik, B.F.; Ozdogan, M. Agroecosystem analysis of the choke mountain watersheds, Ethiopia. Sustainability 2013, 5, 592–616. [Google Scholar] [CrossRef]
- Hurni, K.; Zeleke, G.; Kassie, M.; Tegegne, B.; Kassawmar, T.; Teferi, E.; Moges, A.; Tadesse, D.; Ahmed, M.; Degu, Y.; et al. Economics of Land Degradation (ELD) Ethiopia Case Study: Soil Degradation and Sustainable Land Management in the Rainfed Agricultural Areas of Ethiopia: An Assessment of the Economic Implications; Water and Land Resource Centre (WLRC); Centre for Development and Environment (CDE); Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Bonn, Germany, 2015. [Google Scholar]
- Fenta, A.A.; Yasuda, H.; Shimizu, K.; Ibaraki, Y.; Haregeweyn, N.; Kawai, T.; Belay, A.S.; Sultan, D.; Ebabu, K. Evaluation of satellite rainfall estimates over the Lake Tana basin at the source region of the Blue Nile River. Atmos. Res. 2018, 212, 43–53. [Google Scholar] [CrossRef]
- Dinku, T.; Thomson, M.C.; Cousin, R.; del Corral, J.; Ceccato, P.; Hansen, J.; Connor, S.J. Enhancing national climate services (ENACTS) for development in Africa. Clim. Dev. 2018, 10, 664–672. [Google Scholar] [CrossRef]
- Dinku, T.; Faniriantsoa, R.; Cousin, R.; Khomyakov, I.; Vadillo, A.; Hansen, J.W.; Grossi, A. ENACTS: Advancing climate services across Africa. Front. Clim. 2022, 3, 176. [Google Scholar] [CrossRef]
- Abebe, S.A.; Qin, T.; Yan, D.; Gelaw, E.B.; Workneh, H.T.; Kun, W.; Liu, S.; Dong, B. Spatial and temporal evaluation of the latest high-resolution precipitation products over the Upper Blue Nile River Basin, Ethiopia. Water 2020, 12, 3072. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P. A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A. Spatio-temporal trend analysis of rainfall using parametric and non-parametric tests: Case study in Uttarakhand, India. Theor. Appl. Climatol. 2020, 140, 183–207. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Von Storch, H. Taking serial correlation into account in tests of the mean. J. Clim. 1995, 8, 336–351. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trends in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Xie, H.; Li, D.; Xiong, L. Exploring the ability of the Pettitt method for detecting change point by Monte Carlo simulation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1643–1655. [Google Scholar] [CrossRef]
- Tuppad, P.; Douglas-Mankin, K.R.; Lee, T.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption. Trans. ASABE 2011, 54, 1677–1684. [Google Scholar] [CrossRef]
- Howell, T.A.; Evett, S.R. The Penman-Monteith Method; USDA-Agricultural Research Service, Conservation & Production Research Laboratory: Washington, DC, USA, 2004; Volume 14. [Google Scholar]
- Jajarmizadeh, M.; Harun, S.; Abdullah, R.; Salarpour, M. Using soil and water assessment tool for flow simulation and assessment of sensitive parameters applying SUFI-2 algorithm. Casp. J. Appl. Sci. Res. 2012, 2, 37–47. [Google Scholar]
- Wu, H.; Chen, B.; Li, P. Comparison of Sequential Uncertainty Fitting Algorithm (SUFI-2) and Parameter Solution (ParaSol) Method for Analyzing Uncertainties in Distributed Hydrological Modeling—A Case Study. GEN 2013, 309, 1. [Google Scholar]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.-J. Climate change impacts on water resources in the upper blue nile (Abay) river basin, ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 648, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, A.G.; Woldesenbet, T.A.; Dile, Y.T.; Bayabil, H.K.; Tefera, G.W. Modeling impacts of projected land use and climate changes on the water balance in the Baro basin, Ethiopia. Heliyon 2023, 9, e13965. [Google Scholar] [CrossRef] [PubMed]
- Wedajo, G.K.; Muleta, M.K.; Awoke, B.G. Impacts of combined and separate land cover and climate changes on hydrologic responses of Dhidhessa River basin, Ethiopia. Int. J. River Basin Manag. 2022, 22, 57–70. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Hydrological Responses of Watershed to Historical and Future Land Use Land Cover Change Dynamics of Nashe Watershed, Ethiopia. Water 2021, 13, 2372. [Google Scholar] [CrossRef]
- Bekele, D.; Alamirew, T.; Kebede, A.; Zeleke, G.; Melesse, A.M. Modeling the impacts of land use and land cover dynamics on hydrological processes of the Keleta watershed, Ethiopia. Sustain. Environ. 2021, 7, 1947632. [Google Scholar] [CrossRef]
- Boori, M.S.; Paringer, R.; Choudhary, K.; Kupriyanov, A. Supervised and unsupervised classification for obtaining land use/cover classes from hyperspectral and multi-spectral imagery. In Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 26–29 March 2018; Volume 10773, pp. 191–201. [Google Scholar]
- Eastman, J.R. TerrSet 2020–Geospatial Monitoring and Modeling System Manual; Clark Labs, Clark University: Worcester, MA, USA, 2020. [Google Scholar]
- Bunyangha, J.; Majaliwa, M.J.G.; Muthumbi, A.W.; Gichuki, N.N.; Egeru, A. Past and future land use/land cover changes from multi-temporal Landsat imagery in Mpologoma catchment, eastern Uganda. Egypt. J. Remote Sens. Space Sci. 2021, 24, 675–685. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Döllerer, M.; Teketay, D.; Knoke, T. Scenario modelling of land use/land cover changes in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2018, 622–623, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Jagger, P.; Pender, J. Policies for Sustainable land management in the highlands of Ethiopia: The role of trees for sustainable management of less favored lands: The case of eucalyptus in Ethiopia. In Summary of Papers and Proceedings of a Seminar Held at the International Livestock Research Institute, Addis Ababa, Ethiopia, 22–23 May 2000; International Livestock Research Institute: Nairobi, Kenya, 2000. [Google Scholar]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models’ part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Model Runs | |||||||
---|---|---|---|---|---|---|---|
Scenario | Climate | LULC Map | Remark | Scenario | Climate | LULC Map | Remark |
S-1 | 1983–2002 | 1985 | S-12 (S-13) | 2021–2050 | 2040 | BAU | |
S-2 | 2003–2020 | 1985 | S-14 (S-15) | 2051–2080 | 2040 | ||
S-3 | 1983–2002 | 1995 | S-16 (S-17) | 2021–2050 | 2060 | ||
S-4 | 2003–2020 | 1995 | S-18 (S-19) | 2051–2080 | 2060 | ||
S-5 | 1983–2002 | 2013 | S-20 | 2003–2020 | 2040 | LC | |
S-6 | 2003–2020 | 2013 | S-21 (S-22) | 2021–2050 | 2040 | ||
S-7 | 1983–2002 | 2020 | S-23 (S-24) | 2051–2080 | 2040 | ||
S-8 | 2003–2020 | 2020 | S-25 (S-26) | 2021–2050 | 2060 | ||
S-9 | 2003–2020 | 2040 | BAU | S-27 (S-28) | 2051–2080 | 2060 | |
S-10 (S-11) | 2021–2050 | 2020 |
Variables | Mann–Kendall Test | Pettitt Test | |||||
---|---|---|---|---|---|---|---|
z-Stat | Sen’s Slope | Trend | p Value | Change Point | |||
Precipitation (mm) | 1.73 0.51 6.41 * | 4.22 0.22 3.86 | A A R | No trend No trend Increasing | 0.051 0.729 <0.0001 | A A R | No No 2050 |
Mean temperature (°C) | 4.45 * 10.27 * 10.73 * | 0.04 0.03 0.05 | R R R | Increasing Increasing Increasing | <0.0001 <0.0001 <0.0001 | R R R | 2002 2050 2050 |
Maximum temperature (°C) | 2.98 * 9.88 * 10.58 * | 0.02 0.03 0.04 | R R R | Increasing Increasing Increasing | 0.012 <0.0001 <0.0001 | R R R | 1994 2050 2050 |
Minimum temperature (°C) | 5.22 * 10.30 * 10.77 * | 0.05 0.03 0.05 | R R R | Increasing Increasing Increasing | <0.0001 <0.0001 <0.0001 | R R R | 2002 2050 2050 |
Objective Function | ||||||
---|---|---|---|---|---|---|
Calibration | Validation | |||||
R2 | NSE | PBIAS | R2 | NSE | PBIAS | |
FG-1 | 0.79 | 0.77 | 9.10 | |||
FG-2 | 0.80 | 0.77 | 9.30 | |||
FG-3 | 0.75 | 0.76 | 10.00 | |||
FG-4 (outlet) | 0.83 | 0.83 | 5.50 | 0.80 | 0.79 | −2.90 |
Change in Mean Annual Runoff (∆SR) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Period | Climate Scenarios | LULC Scenarios | |||||||||
BAU | LC | ||||||||||
mm | % | mm | % | mm | % | mm | % | mm | % | ||
Period-1–Period-2 | 6.9 | 1.2 | 80.3 | 16.6 | 62.9 | 12.9 | - | - | - | ||
Period-2–Period-3 | SSP2–4.5 | 15.5 | 2.9 | 135.0 | 24.0 | 127.1 | 22.6 | −29.8 | −5.3 | −63.4 | −11.3 |
SSP5–8.5 | 23.9 | 4.3 | 146.9 | 26.1 | −23.8 | −4.2 | |||||
Period-3–Period-4 | SSP2–4.5 | 19.5 | 3.0 | 95.9 | 13.7 | 68.1 | 9.5 | −5.2 | −1.0 | −18.8 | −3.4 |
SSP5–8.5 | 24.2 | 3.7 | 99.1 | 14.0 | −3.8 | −0.7 | |||||
Change in Mean Annual Evapotranspiration (∆ET) | |||||||||||
Period-1–Period-2 | 29.0 | 9.3 | 22.2 | 7.0 | −5.4 | −1.6 | |||||
Period-2–Period-3 | SSP2–4.5 | 21.7 | 6.5 | 10.5 | 3.1 | −4.8 | −1.8 | 32.8 | 9.7 | 19.5 | 5.2 |
SSP5–8.5 | 25.9 | 7.7 | 14.7 | 4.4 | 38.3 | 11.3 | |||||
Period-3–Period-4 | SSP2–4.5 | 18.5 | 7.6 | 21.0 | 6.0 | 0.4 | 0.1 | 22.6 | 6.1 | 1.8 | 0.5 |
SSP5–8.5 | 24.8 | 6.8 | 24.6 | 5.7 | 25.8 | 6.9 |
Change in Mean Annual Runoff (∆SR) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Agroecology | Period | Climate Scenarios | LULC Scenarios | |||||||||
BAU | LC | |||||||||||
mm | % | mm | % | mm | % | mm | % | mm | % | |||
Wet Wurch | Period-1–Period-2 | 2.9 | 0.6 | 77.6 | 19.2 | 70.8 | 14.0 | |||||
Period-2–Period-3 | SSP2–4.5 | 2.9 | 0.6 | 110.4 | 22.9 | 71.4 | 16.7 | −44.4 | −9.2 | −87.3 | −16.5 | |
SSP5–8.5 | 11.2 | 2.1 | 125.7 | 26.1 | −41.9 | −8.9 | ||||||
Period-3–Period-4 | SSP2–4.5 | 7.8 | 1.4 | 71.5 | 12.1 | 58.9 | 9.7 | −2.0 | −0.5 | −7.5 | −1.7 | |
SSP5–8.5 | 22.0 | 3.9 | 89.4 | 14.7 | −1.1 | −0.3 | ||||||
Moist Dega | Period-1–Period-2 | 9.5 | 1.6 | 49.9 | 8.6 | 26.3 | 4.5 | |||||
Period-2–Period-3 | SSP2–4.5 | 4.5 | 1.0 | 63.8 | 10.1 | 58.6 | 10.1 | −85.2 | −13.5 | −100.7 | −15.0 | |
SSP5–8.5 | 16.7 | 3.0 | 81.6 | 13.0 | −73.3 | −11.6 | ||||||
Period-3–Period-4 | SSP2–4.5 | 17.8 | 2.8 | 86.5 | 12.5 | 63.5 | 8.9 | 0.1 | 0.0 | −13.5 | −2.4 | |
SSP5–8.5 | 30.6 | 4.7 | 101.3 | 14.2 | 5.3 | 0.9 | ||||||
Moist Weyna Dega | Period-1–Period-2 | 13.5 | 3.2 | 85.4 | 14.9 | 62.1 | 10.9 | |||||
Period-2–Period-3 | SSP2–4.5 | 15.7 | 2.6 | 130.4 | 19.8 | 54.4 | 8.3 | −112.0 | −17.0 | −183.2 | −24.5 | |
SSP5–8.5 | 29.3 | 4.6 | 136.9 | 20.8 | −92.0 | −14.0 | ||||||
Period-3–Period-4 | SSP2–4.5 | 13.5 | 1.9 | 68.1 | 8.6 | 50.8 | 6.3 | −5.1 | −0.9 | −18.7 | −3.3 | |
SSP5–8.5 | 27.4 | 3.1 | 81.5 | 10.2 | −3.9 | −0.7 | ||||||
Moist Kolla | Period-1–Period-2 | 17.6 | 3.1 | 232.3 | 315.9 | 168.1 | 164.8 | |||||
Period-2–Period-3 | SSP2–4.5 | 16.3 | 2.8 | 173.3 | 56.6 | 180.7 | 41.9 | 168.0 | 55.0 | 32.4 | 16.3 | |
SSP5–8.5 | 27.6 | 4.7 | 192.0 | 62.8 | 177.0 | 57.9 | ||||||
Period-3–Period-4 | SSP2–4.5 | 22.5 | 3.4 | 168.0 | 35.2 | 153.4 | 23.9 | 6.6 | 1.4 | −8.5 | −1.4 | |
SSP5–8.5 | 27.4 | 4.2 | 192.3 | 38.6 | 11.5 | 2.4 |
Change in Mean Actual Evapotranspiration (∆ET) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Agroecology | Period | Climate Scenarios | LULC Scenarios | |||||||||
BAU | LC | |||||||||||
mm | % | mm | % | mm | % | mm | % | mm | % | |||
Wet Wurch | Period-1–Period-2 | 19.2 | 6.7 | 13.4 | 4.7 | −5.3 | −1.8 | |||||
Period-2–Period-3 | SSP2–4.5 | 18.9 | 6.3 | 12.2 | 4.1 | −4.6 | −1.8 | 24.6 | 8.2 | 9.6 | 2.8 | |
SSP5–8.5 | 21.1 | 7.0 | 16.1 | 5.4 | 29.6 | 9.9 | ||||||
Period-3–Period-4 | SSP2–4.5 | 17.1 | 5.4 | 7.5 | 2.4 | −7.5 | −2.3 | 27.2 | 8.4 | 8.2 | 2.5 | |
SSP5–8.5 | 20.1 | 6.2 | 10.4 | 3.3 | 28.2 | 8.6 | ||||||
Moist Dega | Period-1–Period-2 | 28.2 | 9.2 | 22.2 | 7.2 | −2.4 | −0.8 | |||||
Period-2–Period-3 | SSP2–4.5 | 21.4 | 4.8 | 6.5 | 1.9 | −3.3 | −1.0 | 32.1 | 9.7 | 23.7 | 7.0 | |
SSP5–8.5 | 25.0 | 5.6 | 9.7 | 2.9 | 36.0 | 10.8 | ||||||
Period-3–Period-4 | SSP2–4.5 | 20.1 | 5.7 | 24.5 | 7.2 | −4.1 | −1.2 | 27.9 | 7.7 | −1.5 | −0.4 | |
SSP5–8.5 | 25.5 | 7.2 | 27.6 | 8.1 | 30.1 | 8.2 | ||||||
Moist Weyna Dega | Period-1–Period-2 | 28.6 | 9.6 | 25.0 | 8.4 | −2.3 | −0.7 | |||||
Period-2–Period-3 | SSP2–4.5 | 36.2 | 11.3 | 34.6 | 10.7 | −4.0 | −1.1 | 57.5 | 17.7 | 20.6 | 5.9 | |
SSP5–8.5 | 43.8 | 13.3 | 39.7 | 12.2 | 67.5 | 20.8 | ||||||
Period-3–Period-4 | SSP2–4.5 | 30.1 | 8.1 | 25.3 | 7.0 | −3.6 | −0.9 | 36.3 | 9.5 | 4.7 | 1.2 | |
SSP5–8.5 | 33.2 | 8.8 | 28.1 | 7.7 | 39.0 | 10.0 | ||||||
Moist Kolla | Period-1–Period-2 | 30.8 | 8.7 | 8.6 | 2.4 | −5.0 | −1.2 | |||||
Period-2–Period-3 | SSP2–4.5 | 39.1 | 9.9 | 25.5 | 6.9 | −10.9 | −2.6 | 34.1 | 9.3 | −1.4 | −0.1 | |
SSP5–8.5 | 51.2 | 14.2 | 40.7 | 11.1 | 48.9 | 13.3 | ||||||
Period-3–Period-4 | SSP2–4.5 | 36.1 | 9.1 | 32.5 | 8.3 | −12.2 | −3.2 | 36.3 | 9.0 | 3.0 | 0.7 | |
SSP5–8.5 | 43.5 | 10.6 | 38.3 | 9.4 | 48.3 | 11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meshesha, T.M.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A.; Berihun, M.L.; Mulu, A.; Belay, A.S.; Sultan, D.; Ebabu, K.; et al. Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia. Water 2024, 16, 1037. https://doi.org/10.3390/w16071037
Meshesha TM, Tsunekawa A, Haregeweyn N, Tsubo M, Fenta AA, Berihun ML, Mulu A, Belay AS, Sultan D, Ebabu K, et al. Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia. Water. 2024; 16(7):1037. https://doi.org/10.3390/w16071037
Chicago/Turabian StyleMeshesha, Taye Minichil, Atsushi Tsunekawa, Nigussie Haregeweyn, Mitsuru Tsubo, Ayele Almaw Fenta, Mulatu Liyew Berihun, Arega Mulu, Ashebir Sewale Belay, Dagnenet Sultan, Kindiye Ebabu, and et al. 2024. "Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia" Water 16, no. 7: 1037. https://doi.org/10.3390/w16071037
APA StyleMeshesha, T. M., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Fenta, A. A., Berihun, M. L., Mulu, A., Belay, A. S., Sultan, D., Ebabu, K., Setargie, T. A., Kassa, S. B., Hailu, Y. B., & Abe, T. (2024). Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia. Water, 16(7), 1037. https://doi.org/10.3390/w16071037