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Abstract: We analyzed hydrological responses to changing climate and land use/land cover (LULC)
for the past (1985–2020) and future (2021–2080) in the Chemoga watershed of the Upper Blue Nile
Basin. The watershed comprises four agroecological environments: Moist Kolla, Moist Weyna
Dega, Moist Dega, and Wet Wurch. Past and projected LULC changes under business-as-usual
(BAU) and land conservation (LC) scenarios were utilized. Climate projections from 2021 to 2080,
under two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5), were downscaled from Global
Climate Models. Utilizing the Soil and Water Analysis Tool, we assessed impacts on mean annual
surface runoff (SR) and evapotranspiration (ET). Maximum and minimum temperatures increased
significantly in the past and future climate scenarios, with a significant rainfall increase observed
under SSP5-8.5. Historical trends revealed a 16.6% increase in SR and 7% in ET from 1983–2002 to
2003–2020. Under BAU LULC with the SSP2-4.5 (SSP5-8.5) climate scenario, SR increased by 24%
(26.1%) and ET by 3.1% (4.4%) from 2003–2020 to 2021–2050, followed by a subsequent SR rise of
13.7% (14.0%) and ET increase of 6.0% (5.7%) from 2021–2050 to 2051–2080. Conversely, the LC LULC
with SSP2-4.5 (SSP5-8.5) resulted in a 5.3% (4.2%) SR decrease and ET increase of 9.7% (11.3%) from
2003–2020 to 2021–2050 and a further SR decrease of 1% (0.7%) and 6.1% (6.9%) ET increase from
2021–2050 to 2051–2080. The Moist Kolla agroecology experienced the highest SR increase due to
vegetation clearances for commercial farming. Meanwhile, the LC scenario indicated substantial
decreases in SR and marginal increases in ET in the Moist Weyna Dega agroecology due to forest
restoration on steep slopes. Overall, SR showed greater sensitivity to LULC changes, while ET
was more responsive to climate changes. The results emphasize considering diverse agroecological
contexts for effective water resource management under changing climate and LULC scenarios.
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1. Introduction

The change in land use/land cover (LULC) and the climate are widely recognized as
the key drivers that affect watershed hydrological processes [1,2]. Given the increasing
global scarcity of water resources, the hydrological responses to LULC dynamics and
climate change have become a major focus for the hydrological community [3–5]. These
drivers can have complex interactions that influence the quantity, quality, and timing of
water flows within watersheds [6]. The continued temporal and spatial variations in LULC
and climate significantly influence various aspects of the water balance, such as surface
runoff, evapotranspiration, groundwater, and sediment load [7].

Alterations in LULC have been noted to substantially impact surface runoff [8,9],
streamflow [10,11], flood frequency [12], base flow [8], groundwater replenishment [13],
and evapotranspiration [3,8] within a watershed and hydrological cycles in general [14]. The
climate also substantially influences the various components of the hydrologic cycle [15].
Variations in precipitation patterns, temperature, and extreme weather events substantially
affect water availability, quality, and the natural hydrological balance [16]. In recent decades,
global surface temperatures have risen markedly, witnessed through a 1.1 ◦C increase in
surface temperature in 2011–2020 compared to the average for 1850–1900 [17]. From 1991
to 2021, Africa experienced an average warming rate of approximately +0.3 ◦C/decade,
which was more rapid than the +0.2 ◦C/decade observed from 1961 to 1990 [18]. These
increased temperatures contribute to increased evaporation and alterations in precipitation
patterns, potentially causing droughts or floods [19].

General circulation models (GCMs) derived from the Coupled Model Intercompar-
ison Project Phase 6, incorporating socioeconomic development scenarios and emission
trends have been widely utilized for predicting climate conditions [20]. While these models
provide credible projections, their spatial resolution is insufficient for detailed impact assess-
ments [21,22]. Spatial downscaling methods, such as statistical downscaling models [23,24],
bridge the resolution gap between GCMs and localized impact models by utilizing large-
scale climate variables to condition local climate variables, thereby enhancing the accuracy
of downscaled data [25,26]. These downscaled projections are crucial for evaluating the
effect of climate change on agriculture and water resources [25].

The Upper Blue Nile Basin (UBNB) is a geographically and hydrologically important
region in East Africa, predominantly in Ethiopia. Characterized by diverse geography and
high agricultural potential, the UBNB is a crucial source of the Nile River system, providing
more than 60% of the Nile River’s water [27]. Indeed, the increasing water demand in
the basin [28], combined with anthropogenic activities and climate change impacts, poses
complex challenges for water resource management in the region [29,30]. The basin faces
challenges such as soil erosion [31] and water-related issues [32]. Numerous studies in
the UBNB have examined the impact of either LULC change [33–35] or climate change
alone on the water balance [36–38]. Some recent studies have investigated the separate
and combined impacts of change in LULC and climate on the water resources of the
UBNB and reported contrasting findings. Studies by [3,39] indicate that the hydrological
processes, particularly surface runoff, are affected by the combined effects of LULC change
and climate variability, with LULC change being the dominant factor. Conversely, other
studies [4,11,40,41] showed that more hydrological impacts from the combination of LULC
with climate than the isolated impacts with the impacts of climate change are predominant.
These studies collectively emphasize that the impact of changes in climate and LULC on
watershed hydrology varies spatially and may either act synergistically or offset depending
on watershed characteristics. The hydrological responses to varying climate and LULC
changes in the Chemoga watershed, located in the UBNB, have not been studied in detail
despite the spatial variations observed in other regions. Moreover, improvements in climate
data and projection scenarios of climate models facilitate further investigation.

Here, we examined the hydrological responses to the separate and combined impacts
of climate and LULC changes in the Chemoga watershed. We used statistical downscaling
models to develop future climate change scenarios, Cellular Automata–Markov models
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to project future LULC changes, Mann–Kendall and Pettitt tests for climate trends and
change point detection, and a Soil and Water Assessment Tool (SWAT) model to examine
the separate and combined impact of LULC and climate changes on watershed hydrology.

2. Material and Methods
2.1. Description of Study Area

The Chemoga watershed is situated within the UBNB of Ethiopia. The study water-
shed is a part of the Choke Mountain watershed, which is a water tower of the UBNB
and is renowned as the origin of over 60 rivers and 270 springs [42]. The study watershed
encompasses an approximate area of 714 km2, featuring elevations that vary between
1160 and 4000 m above sea level (m a.s.l.). A study area’s geographical coordinates span
from 10◦0′46′′ N to 10◦38′43′′ N latitude and 37◦30′14′′ E to 37◦50′24′′ E longitude. The
Chemoga watershed is characterized by complex topography, heterogeneous land features,
and diverse agroecological environments [42,43]. The Chemoga watershed consists of
four distinct agroecologies, namely Moist Kolla, Moist Weyna Dega, Moist Dega, and Wet
Wurch, each characterized by diverse land features such as varying elevations, slopes,
local climates, soil types, and the local dynamics of LULC. The areas of these respective
agroecological environments are 83 km2, 205 km2, 359 km2, and 67 km2, as depicted in
Figure 1. The agroecologies of the watershed under investigation (Figure 1) were derived
from the agroecological zonation outlined for the purpose of deciding on soil and water
conservation strategies in Ethiopia [44].
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logical zonation system adopted from [44]; (C) photo showing cultivation and settlements on steep 
Figure 1. (A) The location of the study area along with hydrometeorological stations; (B) agroeco-
logical zonation system adopted from [44]; (C) photo showing cultivation and settlements on steep
terrain in Wet Wurch agroecology; (D) photo showing cultivation over the undulating topography in
Moist Weyna Dega; and (E) photo showing the deforestation in the Moist Kolla agroecology.

The long-term mean annual rainfall varied from 1108 mm in Moist Kolla to 1513 mm
in Wet Wurch agroecological environments (average 1252 mm). The daily minimum tem-
perature ranged from −1.0 to 8.7 ◦C at the meteorological stations in Wet Wurch (MS-1) and
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Moist Kolla (MS-6), respectively (Figure 1). The daily maximum temperature ranged from
15.6 ◦C at MS-1 to 40 ◦C at MS-6. The typical characteristics within the four agroecological
environments are presented in Table S1 and Figure S1 of the Supplementary Materials.

2.2. Data and Methodology
2.2.1. Land Use/Land Cover Data

LULC datasets were obtained from [42]; see the Supplementary Materials for more de-
tail. The datasets were generated from Landsat satellite images supplemented by 12 aerial
photographs with a base scale of about 1:50,000 through the application of a hybrid clas-
sification technique that combines unsupervised and supervised techniques. Six LULC
types—cropland, woodland, forest, grassland, built-up, and water body—were classified
for the years 1985, 1995, 2013, and 2020. Additionally, projections for the years 2040 and
2060 were made using a hybrid Cellular Automata–Markov model under two alterna-
tive scenarios: business-as-usual (BAU) and land conservation (LC). These historical and
projected thematic maps of LULC were used as the input for the hydrological model
(Figure S2). More details concerning LULC classification and future scenario projections of
LULC changes are in the Supplementary Materials Sections 1A and 1B, respectively.

2.2.2. Climate Change Scenarios

The majority of climate and hydrological analyses conducted in Ethiopia, particularly
in various regions of the UBNB, have relied on existing ground station climate datasets
from within the region and neighboring stations. However, these ground stations are
often sparse and obtaining meteorological data within small- to medium-sized watersheds
(<1000 km2) can be challenging. Fortunately, in the middle of our study watershed (near
MS-4 of our installed station), there is one meteorological station that provides long-term
climate data. Nevertheless, the agroecological conditions in the watershed vary over short
distances [42,43], which complicates the characterization of the entire study area based
solely on a single meteorological station.

To validate the presence of varying agroecological settings (Figure 1) and analyze local
climate fluctuations in the environments of the various agroecological settings within the
study watershed, six automatic weather stations were strategically installed in various
watershed areas, taking into consideration the spatial differences in local climate patterns
(Figure 1). These weather stations have recorded essential climate data such as rainfall,
temperature, and humidity since 2020. We detected spatially diverse climate variables
through our installed weather stations (Figure 2). This variability in local climate poses a
challenge to utilizing data from established ground stations with long historical records
(Figure 2) for drawing conclusions regarding climate and hydrology. For such problems,
using satellite climate products is a solution [45]. Therefore, to capture climate variabil-
ity across different agroecological environments, we utilized spatially gridded datasets
from the Enhanced National Climate Time-series Service (ENACTS) in addition to the
available climate data from ground stations. ENACTS provides quality-controlled and
high-resolution (4 km × 4 km) datasets developed by merging data from ground stations
and satellites for Africa [46]. These datasets are more highly correlated both spatially
and temporally with ground station data than other available merged datasets including
CHIRPS, ARC, and TAMSAT [47]. Abebe [48] evaluated several high-resolution climate
data products (i.e., IMERG6, MSWEP2.2, CHIRPS2, and SM2RAIN-ASCAT1.1) within
various elevation ranges and reported that the ENACTS dataset develops stronger correla-
tions with ground station data and is more suitable for climate and hydrological studies
in UBNB. The observed daily rainfall, minimum and maximum temperature, wind speed,
relative humidity, and hours of sunshine as well as the ENACTS grided daily rainfall and
maximum and minimum temperature (1983–2018) data were acquired from the National
Meteorological Agency of Ethiopia.
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Figure 2. Local climate variability within different agroecological environments from installed
automatic weather stations (MS-1, MS-4, MS-5, and MS-6) (Figure 1). Tmin and Tmax indicate
minimum and maximum temperature, respectively.

Future climate data from 2021 to 2080 were downscaled statistically from ten General
Circulation Models (GCMs) in the sixth phase of the Coupled Model Intercomparison
Project of the Intergovernmental Panel on Climate Change for two Shared Socioeconomic
Pathways (SSPs), the SSP2–4.5 and SSP5–8.5 scenarios. The SSP2–4.5 scenario represents
a moderate path in which global and national institutions aim for sustainable develop-
ment goals without exceeding a nominal radiative forcing level of 4.5 W/m2. In contrast,
SSP5–8.5 represents a business-as-usual or fossil-fueled development scenario, leading to
a nominal radiative forcing level of 8.5 W/m2 by 2100 [20]. From a thorough evaluation
of over 31 available GCMs, 10 were carefully selected for downscaling and ensemble use
(Table S3), with the primary criteria being the availability on a daily basis of historical and
future climate variables, precipitation, and minimum and maximum temperatures, for
both SSP2–4.5 and SSP5–8.5 scenarios. For additional details about the General Circulation
Models (GCMs) and the methodology employed for downscaling, please refer to Section
2A in the Supplementary Materials.

2.2.3. Streamflow Data

The 1983–2009 streamflow data were obtained from the Ethiopian Ministry of Wa-
ter, Irrigation and Energy (https://mowe.gov.et/). The streamflow gauging station was
located in the middle part of the watershed flow gauging (FG) station (FG-2 in Figure 1).
Additionally, we installed four automatic pressure transducer water level recorders called
“TD-Divers” (Schlumberger Water Services, The Netherlands) along the Chemoga River
and its tributaries labeled FG-1 to -4 (Figure 1). Staff gauges for manual readings were
positioned at the same locations as the FG stations. To ensure accuracy, the water levels
measured by the pressure sensors were adjusted using the manually recorded water levels
from the staff gauges. The current meters and floating method were used for flow velocity
measurement at various water stages. Subsequently, discharge rating curves were devel-
oped for each station, and the water levels recorded from 2020 to 2023 were converted into
discharge values.

Thereafter, the transfer of the long-term streamflow data from station FG-2 to FG-4
was performed. Numerous techniques are available for estimating river flows at ungauged
sites, such as regional regression, the area-ratio method, and physically based models.
Given the topographical heterogeneity, varying soil types, complex land use dynamics,
and other characteristics within the study watershed across the various agroecological
environments [42,43], utilizing the abovementioned transfer methods may yield inaccurate
results. Hence, instead of relying solely on these transfer methods, we opted to transfer
streamflow data by establishing correlation factors derived from recorded data at two

https://mowe.gov.et/
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stations within the same time spans. These correlation coefficients were then utilized to
transfer long-term historical flow data from station FG-2 to FG-4, with separate coefficients
developed for the rainy season and dry season (Figure S11).

2.2.4. Spatial Data

A Digital Elevation Model (DEM) with a 30 m resolution was obtained from the USGS
website (https://earthexplorer.usgs.gov (accessed on 10 February 2021)) and then projected
onto UTM zone 37 using the WGS 1984 data. The DEM was subsequently employed to
delineate the study watershed and analyze drainage patterns.

The soil map of the Chemoga watershed with six major soil types (i.e., Haplic Luvi-
sols, Haplic Alisols, Eutric Leptosols, Eutric Cambisols, Eutric Vertisols, and Urban) was
acquired from the Ethiopian Ministry of Water, Irrigation and Energy (Figure S1). The
physio-chemical properties and textural classes of soil were acquired from soil property
maps of Africa with 250 m resolution at six standard depths (0–5, 5–15, 15–30, 30–60, 60–100,
and 100–200 cm) accessed from ISRIC–World Soil Information (\protect\unhbox\voidb@
x\hbox{https://www}.isric.org/projects/soil-property-maps-africa-250-m-resolution (ac-
cessed on 25 May 2022)). These datasets are high-resolution, reliable, and suitable products
available for Africa that have been used by various researchers for the current study
region [37,38] and others.

2.2.5. Trend and Change Point Detection of Climatic Variables

The non-parametric Mann–Kendall (MK) [49] test for trend analysis, Sen’s slope
estimator [50] for estimation of trend magnitude, and the Pettitt test [51] for change point
detection were applied. These models were chosen because of their suitability for non-
normally distributed data of hydroclimatic time series [52].

The existence of autocorrelation in time series data may cause the MK test to reject the
null hypothesis of no trend detection [53]. To mitigate the influence of autocorrelation when
conducting MK trend analysis, we employed a method known as trend-free prewhitening
before performing the MK trend test, the most suitable and widely applied technique to
remove autocorrelation in hydroclimatic data [54]. The S statistic used for the MK trend
test and its variance [49] were calculated as follows:

S = ∑x−1
i=1 ∑x

j=i+1 sgn
(
xj − xi

)
(1)

Var(S) =
n(n − 1)(2n + 5)

18
(2)

where xi denotes the independent observations, i is the range from 1 to n, and n is the total
number of observations.

The trend magnitude was estimated using the following equation (1968):

β = Median
[Xj − Xk

j − k

]
f or all k < j (3)

where Xj and Xk are the sequential data values. j < k and k = 1, 2, . . . (n − 1) and
j = 2, 3, . . . , n, and β is considered the median among all conceivable pair combinations
within the entire dataset. A β value that is positive indicates an upward trend, whereas a
negative β value suggests a downward trend in the time series.

The Pettitt test is used to identify the time at which the shift (change point) occurs
by comparing two segments of a time series and evaluating the change in their means. It
calculates a test statistic based on the total number of times one observation in the series is
greater than another, considering different split points in the data [55]. If the time series
data of x1, x2, . . . , xn has a distribution function F1(x) ̸= F2(x) of the second time series
data ( xk+1, xk+2, . . . , xT), then the data series has a change point.

https://earthexplorer.usgs.gov
\protect \unhbox \voidb@x \hbox {https://www}.isric.org/projects/soil-property-maps-africa-250-m-resolution
\protect \unhbox \voidb@x \hbox {https://www}.isric.org/projects/soil-property-maps-africa-250-m-resolution
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2.2.6. Hydrological Model Setup

The SWAT model is a spatially distributed, process-based, physically based model
designed to analyze how hydrological systems respond to changes in climate, land use,
and land management practices within watersheds that vary in size and complexity [56].
The setup and data preprocessing for the SWAT model were carried out utilizing the Arc-
SWAT2012 tool within the ArcGIS platform (Figure S7). Utilizing the DEM and stream
networks, the watershed under investigation was divided into 138 sub-basins, which
were then further subdivided into 1872 hydrological response units (HRUs). These HRUs
were defined by their consistent attributes related to LULC, soil type, and slope. This
detailed subdivision aimed to specifically accommodate hydrological simulations for vari-
ous agroecological settings within the study watershed. The modified Soil Conservation
Service Curve Number method [57] and the Penman–Monteith method were utilized for
surface runoff and potential evapotranspiration estimation, respectively. To simulate the
hydrological processes, SWAT uses a water balance equation [3,11]:

SWt = SW0 +
t

∑
i=1

(Ri − SRi − ETi − Pi − QRi) (4)

where (t) is time in days; SW0 (mm) is the content of soil water at the initial time; SWt (mm)
is the water content of the soil at the final time; and R, ET, P, and QR are the daily amounts
of precipitation, evapotranspiration, percolation, and return flow, respectively; all units
are in mm. Qsurf represents the quantity of surface runoff or the surplus rainfall for day i,
measured in (mm) (Equation (5)):

SRi =

(
Rday − 0.2S

)2(
Rday + 0.8S

) , if Rday > 0.2S; Qsur f = 0 otherwise (5)

S represents the retention parameter (mm):

S = 25.4
(

100
CN

− 10
)

, (6)

where CN denotes the curve number for the day. The evapotranspiration was estimated
through the Penman–Monteith method.

2.2.7. Hydrological Model Calibration and Validation

Parameter sensitivity analysis, calibration, and validation were conducted using the
SWAT-CUP model, employing the Sequential Uncertainty Fitting (SUFI-2) algorithm [58].
The global sensitivity analysis option [59] was utilized to identify the parameters most
sensitive to model calibration and validation (Figure S7). Following the selection of these
sensitive parameters, adjustments to input parameters were made during the calibration
process, with the goal of reducing prediction uncertainty [11].

The daily weather data and monthly streamflow from 1983–2023 were divided into
three periods: 1983–1985 for the warm-up period, 1986–2009 for the calibration period, and
2015–2023 for the validation period. Note the absence of streamflow data between 2009 and
2014. We used an extended calibration period to incorporate a wide range of meteorological
and hydrological conditions, including both wet and dry years [60]. Calibration was carried
out at the watershed outlet. Due to the short-term flow data for stations FG-1–3, we utilized
the flow data from these stations for validation purposes. During both the calibration and
validation periods, the model’s performance was assessed with essential goodness-of-fit
evaluation criteria. The methodological framework we employed for land use/land cover
and climate change impact studies on water balance and details of model performance
evaluation are found (Figure S7; Section 2A) in the Supplementary Materials.
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2.2.8. Evaluation of LULC and Climate Change Impacts on Surface Runoff

To assess the effects on both separate and combined impacts in comparison to the
baseline condition, we formulated twenty-eight scenarios by partitioning the climate period
into four intervals (Table 1). The criteria to divide the climate periods was based on an
analysis of the results obtained from the Pettitt test change point detection applied to
both past and future climate variables: the long-term climate dataset was segmented into
period-1 (1983–2002), period-2 (2003–2020), period-3 (2021–2050), and period-4 (2051–2080).
The details of the change point detection are further discussed in Section 3.1.

Table 1. Simulated scenarios within the Soil and Water Assessment Tool. The scenarios labeled
S-10, S-12, S-14, . . . correspond to the SSP2–4.5 climate projection scenarios, while S-11, S-13, S-15, . . .
correspond to the SSP5–8.5 scenarios. BAU and LC represent the land use/land cover changes
associated with business-as-usual and land conservation scenarios, respectively.

Model Runs

Scenario Climate LULC Map Remark Scenario Climate LULC Map Remark

S-1 1983–2002 1985 S-12 (S-13) 2021–2050 2040

BAU
S-2 2003–2020 1985 S-14 (S-15) 2051–2080 2040
S-3 1983–2002 1995 S-16 (S-17) 2021–2050 2060
S-4 2003–2020 1995 S-18 (S-19) 2051–2080 2060

S-5 1983–2002 2013 S-20 2003–2020 2040

LC
S-6 2003–2020 2013 S-21 (S-22) 2021–2050 2040
S-7 1983–2002 2020 S-23 (S-24) 2051–2080 2040
S-8 2003–2020 2020 S-25 (S-26) 2021–2050 2060
S-9 2003–2020 2040 BAU S-27 (S-28) 2051–2080 2060
S-10 (S-11) 2021–2050 2020

The combined impact of LULC and climate change was assessed by running the
calibrated SWAT model using both historical climate data 1983–2002 and 2003–2020 with
LULC 1995 and LULC 2013, respectively, and the future ensemble mean of climate variables
2021–2050 and 2051–2080 under the SSP2–4.5 and SSP5–8.5 scenarios with LULC 2040 and
2060, respectively, under the BAU and LC scenarios.

The separate impact analysis was conducted through a “one-factor-at-a-time” method,
in which individual factors were modified one at a time while keeping the other conditions
constant [3]. The separate impacts from climate (∆QC) and land use/land cover (∆QL) and
their combined ( ∆Q) impacts on hydrological processes were estimated using Equations
(7), (8), and (9), respectively:

∆QC =
1
n

[(
QLi

Ci+1
− QLi

Ci

)
+

(
QLi+1

Ci+1
− QLi+1

Ci

)
. . . +

(
QLn

Cn
− QLn

Cn−1

)]
(7)

∆QL =
1
n

[(
QCi

Li+1
− QCi

Li

)
+

(
QCi+1

Li+1
− QCi+1

Li

)
. . . +

(
QCn

Ln
− QCn

Ln−1

)]
(8)

∆Q = QCi+1
Li+1

− QCi
Li

(9)

where i represents the simulation numbers (i.e., i = 1, 2, 3, 4, 5 . . .n) and n denotes the
simulation periods.

While there was limited focus on SWC practices in the study watershed, we observed
SWC measures like soil bunds in some sub-basins. To address this, SWC practices within
the study area were mapped from Google Earth imagery and subsequently validated
through on-site field surveys (Figure S8). The parameter values related to the management
practices in the SWAT model, specifically curve number (CN2.mgt) values for sub-basins
with SWC practices, were modified based on results from the experimental plots [7,61].
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3. Results
3.1. Climate Projection and Trend Analysis

The ensemble means of climate variables downscaled from ten GCMs for SSP2–4.5
and SSP5–8.5 scenarios were utilized for trend analysis and to evaluate their impacts on
hydrology. The Mann–Kendall trend test was conducted at the 5% significance level on
areal average at the watershed level (Table 2) and each of the four agroecological environ-
ments was separately considered (Table S4). We found significant increases in maximum
temperature and minimum temperature both in the past and future scenarios. Over the
last 35 years, maximum and minimum temperatures revealed a significant upward trend,
with increases reaching 0.7 ◦C and 1.7 ◦C, respectively. The warmer climate in the future is
expected to be reflected in 2080 by increases of up to 1.8 ◦C (2.4 ◦C) for maximum tempera-
ture and 1.8 ◦C (3 ◦C) for minimum temperature under SSP2–4.5 (SSP5–8.5). Precipitation
did not show consistent patterns in the past and future under SSP2–4.5 while a notable
increase by 2080 of 231.6 mm was observed under the SSP5–8.5 climate scenario (Table 2).
The patterns and trends of climate variables, both in the past and future climate projections
were relatively similar across the agroecological environments with the exception of Moist
Kolla agroecology for the past study periods. Moist Kolla agroecology experienced an in-
significant trend of maximum temperature with a significant rise in minimum temperature
and precipitation in the past.

Table 2. Mann–Kendall test of trends and Pettitt test of change points in the areal average for
Chemoga watershed precipitation and mean, maximum, and minimum temperatures.

Variables Mann–Kendall Test Pettitt Test

z-Stat Sen’s Slope Ha
0 Trend p Value Hb

0 Change Point

Precipitation (mm)
1.73
0.51
6.41 *

4.22
0.22
3.86

A
A
R

No trend
No trend
Increasing

0.051
0.729
<0.0001

A
A
R

No
No
2050

Mean temperature (◦C)
4.45 *
10.27 *
10.73 *

0.04
0.03
0.05

R
R
R

Increasing
Increasing
Increasing

<0.0001
<0.0001
<0.0001

R
R
R

2002
2050
2050

Maximum temperature (◦C)
2.98 *
9.88 *
10.58 *

0.02
0.03
0.04

R
R
R

Increasing
Increasing
Increasing

0.012
<0.0001
<0.0001

R
R
R

1994
2050
2050

Minimum temperature (◦C)
5.22 *
10.30 *
10.77 *

0.05
0.03
0.05

R
R
R

Increasing
Increasing
Increasing

<0.0001
<0.0001
<0.0001

R
R
R

2002
2050
2050

Note(s): The 1st row for each variable represents the past (1983–2020); the 2nd row, results for SSP2–4.5 (2021–2080);
and 3rd row, results for SSP5–8.5 (2021–2080). A: accepts the null hypothesis; R: rejects the null hypothesis.
* Statistically significant at 5% significant level.

For both historical and future climate variables, change points were detected in the
annual minimum, maximum, and mean temperatures, and rainfall data (Table 2). In
the case of historical climate variables, these change points occurred in 2002, while they
occurred in 2050 in the future scenarios (Table 2). Additional information about the
results of the MK trend test, Pettitt test, and Sen’s slope estimator can be found in the
Supplementary Materials (Table S4; Figures S4–S6).

3.2. SWAT Model’s Sensitivity Analysis, Calibration, and Validation

The SWAT model was initially set up with a 1995 LULC map and climate data for
1983–2020. A global sensitivity analysis was carried out using the SWAT-CUP model on
18 flow parameters (Table S5), resulting in the identification of 10 parameters that were
found to be more sensitive for the Chemoga watershed (Table S6). The calibration process
utilized monthly observed streamflow data for 1983–2009 with the 1995 LULC map at
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the FG-4 station (outlet point) (Figure 1), whereas validation was performed for multiple
stations (i.e., FG-1, FG-2, FG-3, and FG-4) using streamflow records for 2015–2023 with the
2020 LULC map. The calibration results indicate that the SWAT model can capture the
observed flow with R2, NSE, and PBIAS values of 0.83, 0.83, and 5.50, respectively (Table 3,
Figure 3). Additionally, the validation results demonstrate favorable agreement with the
observed streamflow (Table 3, Figure 4).

Table 3. Goodness-of-fit statistics for streamflow simulation results during both the calibration period
(1983–2009) and the validation period (2015–2023).

Objective Function

Calibration Validation

R2 NSE PBIAS R2 NSE PBIAS

FG-1 0.79 0.77 9.10
FG-2 0.80 0.77 9.30
FG-3 0.75 0.76 10.00
FG-4 (outlet) 0.83 0.83 5.50 0.80 0.79 −2.90

Water 2024, 16, x FOR PEER REVIEW 10 of 21 
 

 

10.77 * 0.05 R Increasing <0.0001 R 2050 
Note(s): The 1st row for each variable represents the past (1983–2020); the 2nd row, results for SSP2–
4.5 (2021–2080); and 3rd row, results for SSP5–8.5 (2021–2080). A: accepts the null hypothesis; R: 
rejects the null hypothesis. * Statistically significant at 5% significant level. 

3.2. SWAT Model’s Sensitivity Analysis, Calibration, and Validation  
The SWAT model was initially set up with a 1995 LULC map and climate data for 

1983–2020. A global sensitivity analysis was carried out using the SWAT-CUP model on 
18 flow parameters (Table S5), resulting in the identification of 10 parameters that were 
found to be more sensitive for the Chemoga watershed (Table S6). The calibration process 
utilized monthly observed streamflow data for 1983–2009 with the 1995 LULC map at the 
FG-4 station (outlet point) (Figure 1), whereas validation was performed for multiple sta-
tions (i.e., FG-1, FG-2, FG-3, and FG-4) using streamflow records for 2015–2023 with the 
2020 LULC map. The calibration results indicate that the SWAT model can capture the 
observed flow with R2, NSE, and PBIAS values of 0.83, 0.83, and 5.50, respectively (Table 
3, Figure 3). Additionally, the validation results demonstrate favorable agreement with 
the observed streamflow (Table 3, Figure 4). 

Table 3. Goodness-of-fit statistics for streamflow simulation results during both the calibration pe-
riod (1983–2009) and the validation period (2015–2023). 

 Objective Function 
 Calibration Validation 
 R2 NSE PBIAS R2 NSE PBIAS 
FG-1    0.79 0.77 9.10 
FG-2    0.80 0.77 9.30 
FG-3    0.75 0.76 10.00 
FG-4 (outlet) 0.83 0.83 5.50 0.80 0.79 −2.90 

 
Figure 3. The monthly streamflow data for both observed and simulated values during the calibra-
tion period (1983–2009) of the Chemoga watershed. 
Figure 3. The monthly streamflow data for both observed and simulated values during the calibration
period (1983–2009) of the Chemoga watershed.

Water 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 4. Observed and simulated streamflow during the validation period (2015–2023) across sta-
tions FG-1 (A), FG-2 (B), FG-3 (C), and FG-4 (D). 

3.3. Combined Effect of LULC and Climate Change on Surface Runoff and Evapotranspiration 
The combined effects of the changes in LULC and climate on surface runoff (SR) and 

evapotranspiration (ET) were assessed at the watershed scale (Table 4) and across four 
distinct agroecological environments (Tables 5 and 6). The watershed-level analysis re-
vealed a substantial increase in mean annual SR of 16.6% from period-1 (1983–2002) to 
period-2 (2003–2020). This continued with a 24% (26.1%) increase from period-2 to period-
3 (2021–2050) and an additional 13.7% (14.0%) increase from period-3 to period-4 (2051–
2080) in the SSP2–4.5 (SSP5–8.5) climate combined with the BAU LULC scenario (Table 4; 
Figure S9). In contrast, with the LC LULC scenario combined with the SSP2–4.5 (SSP5–
8.5) climate scenario, the mean annual SR declined by 5.3% (4.2%) from period-2 to period-
3 and by an additional 1.0% (0.7%) from period-3 to period-4 (Table 4). ET increased by 
7.0% from period-1 to period-2, by 3.1% (4.4%) from period-2 to period-3, and by 6.0% 
(5.7%) from period-3 to period-4 under the SSP2–4.5 (SSP5–8.5) climate scenarios with the 
BAU LULC scenario. Under the LC LULC scenario combined with the SSP2–4.5 (SSP5–
8.5) climate scenarios, ET increased by 9.7% (11.3%) from period-2 to period-3 and by 6.1% 
(6.9%) from period-3 to period-4 (Table 4; Figure S10). 

Table 4. Combined and isolated effects of climate change and LULC on mean annual SR (upper) 
and ET (lower) in the Chemoga watershed. The study periods, labeled as Periods-1, -2, -3, and -4, 
correspond to the years 1983–2002, 2003–2020, 2021–2050, and 2051–2080, respectively. 

 Change in Mean Annual Runoff (∆SR) 

Period 
Climate Scenarios LULC Scenarios 
  BAU LC 

  ∆𝑆𝑅  ∆𝑆𝑅  ∆𝑆𝑅  ∆𝑆𝑅  ∆𝑆𝑅  
  mm % mm % mm % mm % mm % 
Period-1–Period-2  6.9 1.2 80.3 16.6 62.9 12.9 - - -  

Period-2–Period-3 
SSP2–4.5 15.5 2.9 135.0 24.0 

127.1 22.6 
−29.8 −5.3 

−63.4 −11.3 SSP5–8.5 23.9 4.3 146.9 26.1 −23.8 −4.2 

Period-3–Period-4 
SSP2–4.5 19.5 3.0 95.9 13.7 

68.1 9.5 
−5.2 −1.0 

−18.8 −3.4 SSP5–8.5 24.2 3.7 99.1 14.0 −3.8 −0.7 
 Change in Mean Annual Evapotranspiration (∆ET) 
Period-1–Period-2  29.0 9.3 22.2 7.0 −5.4 −1.6     

Figure 4. Observed and simulated streamflow during the validation period (2015–2023) across
stations FG-1 (A), FG-2 (B), FG-3 (C), and FG-4 (D).
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3.3. Combined Effect of LULC and Climate Change on Surface Runoff and Evapotranspiration

The combined effects of the changes in LULC and climate on surface runoff (SR)
and evapotranspiration (ET) were assessed at the watershed scale (Table 4) and across
four distinct agroecological environments (Tables 5 and 6). The watershed-level analysis
revealed a substantial increase in mean annual SR of 16.6% from period-1 (1983–2002)
to period-2 (2003–2020). This continued with a 24% (26.1%) increase from period-2 to
period-3 (2021–2050) and an additional 13.7% (14.0%) increase from period-3 to period-4
(2051–2080) in the SSP2–4.5 (SSP5–8.5) climate combined with the BAU LULC scenario
(Table 4; Figure S9). In contrast, with the LC LULC scenario combined with the SSP2–4.5
(SSP5–8.5) climate scenario, the mean annual SR declined by 5.3% (4.2%) from period-2 to
period-3 and by an additional 1.0% (0.7%) from period-3 to period-4 (Table 4). ET increased
by 7.0% from period-1 to period-2, by 3.1% (4.4%) from period-2 to period-3, and by 6.0%
(5.7%) from period-3 to period-4 under the SSP2–4.5 (SSP5–8.5) climate scenarios with the
BAU LULC scenario. Under the LC LULC scenario combined with the SSP2–4.5 (SSP5–8.5)
climate scenarios, ET increased by 9.7% (11.3%) from period-2 to period-3 and by 6.1%
(6.9%) from period-3 to period-4 (Table 4; Figure S10).

Table 4. Combined and isolated effects of climate change and LULC on mean annual SR (upper)
and ET (lower) in the Chemoga watershed. The study periods, labeled as Periods-1, -2, -3, and -4,
correspond to the years 1983–2002, 2003–2020, 2021–2050, and 2051–2080, respectively.

Change in Mean Annual Runoff (∆SR)

Period
Climate Scenarios LULC Scenarios

BAU LC

∆SRCC ∆SRCombined ∆SRLULC ∆SRCombined ∆SRLULC

mm % mm % mm % mm % mm %

Period-1–Period-2 6.9 1.2 80.3 16.6 62.9 12.9 - - -

Period-2–Period-3
SSP2–4.5 15.5 2.9 135.0 24.0

127.1 22.6
−29.8 −5.3 −63.4 −11.3SSP5–8.5 23.9 4.3 146.9 26.1 −23.8 −4.2

Period-3–Period-4
SSP2–4.5 19.5 3.0 95.9 13.7

68.1 9.5
−5.2 −1.0 −18.8 −3.4SSP5–8.5 24.2 3.7 99.1 14.0 −3.8 −0.7

Change in Mean Annual Evapotranspiration (∆ET)

Period-1–Period-2 29.0 9.3 22.2 7.0 −5.4 −1.6

Period-2–Period-3
SSP2–4.5 21.7 6.5 10.5 3.1 −4.8 −1.8

32.8 9.7
19.5 5.2SSP5–8.5 25.9 7.7 14.7 4.4 38.3 11.3

Period-3–Period-4
SSP2–4.5 18.5 7.6 21.0 6.0

0.4 0.1
22.6 6.1

1.8 0.5SSP5–8.5 24.8 6.8 24.6 5.7 25.8 6.9

Table 5. The separate and combined effects of climate and LULC change on mean annual runoff within
four agroecological environments of the Chemoga watershed. The study periods labeled as Periods-1, -2,
-3, and -4 correspond to the years 1983–2002, 2003–2020, 2021–2050, and 2051–2080, respectively.

Change in Mean Annual Runoff (∆SR)

Agroecology Period

Climate Scenarios LULC Scenarios

BAU LC

∆SRCC ∆SRCombined ∆SRLULC ∆SRCombined ∆SRLULC

mm % mm % mm % mm % mm %

Wet Wurch

Period-1–Period-2 2.9 0.6 77.6 19.2 70.8 14.0

Period-2–Period-3
SSP2–4.5 2.9 0.6 110.4 22.9 71.4 16.7 −44.4 −9.2 −87.3 −16.5
SSP5–8.5 11.2 2.1 125.7 26.1 −41.9 −8.9

Period-3–Period-4
SSP2–4.5 7.8 1.4 71.5 12.1 58.9 9.7 −2.0 −0.5 −7.5 −1.7
SSP5–8.5 22.0 3.9 89.4 14.7 −1.1 −0.3
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Table 5. Cont.

Change in Mean Annual Runoff (∆SR)

Agroecology Period

Climate Scenarios LULC Scenarios

BAU LC

∆SRCC ∆SRCombined ∆SRLULC ∆SRCombined ∆SRLULC

mm % mm % mm % mm % mm %

Moist Dega

Period-1–Period-2 9.5 1.6 49.9 8.6 26.3 4.5

Period-2–Period-3
SSP2–4.5 4.5 1.0 63.8 10.1 58.6 10.1 −85.2 −13.5 −100.7 −15.0
SSP5–8.5 16.7 3.0 81.6 13.0 −73.3 −11.6

Period-3–Period-4
SSP2–4.5 17.8 2.8 86.5 12.5 63.5 8.9 0.1 0.0 −13.5 −2.4
SSP5–8.5 30.6 4.7 101.3 14.2 5.3 0.9

Moist
Weyna Dega

Period-1–Period-2 13.5 3.2 85.4 14.9 62.1 10.9

Period-2–Period-3
SSP2–4.5 15.7 2.6 130.4 19.8 54.4 8.3 −112.0 −17.0 −183.2 −24.5
SSP5–8.5 29.3 4.6 136.9 20.8 −92.0 −14.0

Period-3–Period-4
SSP2–4.5 13.5 1.9 68.1 8.6 50.8 6.3 −5.1 −0.9 −18.7 −3.3
SSP5–8.5 27.4 3.1 81.5 10.2 −3.9 −0.7

Moist Kolla

Period-1–Period-2 17.6 3.1 232.3 315.9 168.1 164.8

Period-2–Period-3
SSP2–4.5 16.3 2.8 173.3 56.6 180.7 41.9 168.0 55.0 32.4 16.3
SSP5–8.5 27.6 4.7 192.0 62.8 177.0 57.9

Period-3–Period-4
SSP2–4.5 22.5 3.4 168.0 35.2 153.4 23.9 6.6 1.4 −8.5 −1.4
SSP5–8.5 27.4 4.2 192.3 38.6 11.5 2.4

Table 6. The separate and combined effects of climate and LULC change on mean annual evapotran-
spiration within four agroecological environments of the Chemoga watershed. The study periods
labeled as Periods-1, -2, -3, and -4 correspond to the years 1983–2002, 2003–2020, 2021–2050, and
2051–2080, respectively.

Change in Mean Actual Evapotranspiration (∆ET)

Agroecology Period

Climate Scenarios LULC Scenarios

BAU LC

∆ETCC ∆ETCombined ∆ETLULC ∆ETCombined ∆ETLULC

mm % mm % mm % mm % mm %

Wet Wurch

Period-1–Period-2 19.2 6.7 13.4 4.7 −5.3 −1.8

Period-2–Period-3
SSP2–4.5 18.9 6.3 12.2 4.1 −4.6 −1.8 24.6 8.2 9.6 2.8
SSP5–8.5 21.1 7.0 16.1 5.4 29.6 9.9

Period-3–Period-4
SSP2–4.5 17.1 5.4 7.5 2.4 −7.5 −2.3 27.2 8.4 8.2 2.5
SSP5–8.5 20.1 6.2 10.4 3.3 28.2 8.6

Moist Dega

Period-1–Period-2 28.2 9.2 22.2 7.2 −2.4 −0.8

Period-2–Period-3
SSP2–4.5 21.4 4.8 6.5 1.9 −3.3 −1.0 32.1 9.7 23.7 7.0
SSP5–8.5 25.0 5.6 9.7 2.9 36.0 10.8

Period-3–Period-4
SSP2–4.5 20.1 5.7 24.5 7.2 −4.1 −1.2 27.9 7.7 −1.5 −0.4
SSP5–8.5 25.5 7.2 27.6 8.1 30.1 8.2

Moist
Weyna Dega

Period-1–Period-2 28.6 9.6 25.0 8.4 −2.3 −0.7

Period-2–Period-3
SSP2–4.5 36.2 11.3 34.6 10.7 −4.0 −1.1 57.5 17.7 20.6 5.9
SSP5–8.5 43.8 13.3 39.7 12.2 67.5 20.8

Period-3–Period-4
SSP2–4.5 30.1 8.1 25.3 7.0 −3.6 −0.9 36.3 9.5 4.7 1.2
SSP5–8.5 33.2 8.8 28.1 7.7 39.0 10.0

Moist Kolla

Period-1–Period-2 30.8 8.7 8.6 2.4 −5.0 −1.2

Period-2–Period-3
SSP2–4.5 39.1 9.9 25.5 6.9 −10.9 −2.6 34.1 9.3 −1.4 −0.1
SSP5–8.5 51.2 14.2 40.7 11.1 48.9 13.3

Period-3–Period-4
SSP2–4.5 36.1 9.1 32.5 8.3 −12.2 −3.2 36.3 9.0 3.0 0.7
SSP5–8.5 43.5 10.6 38.3 9.4 48.3 11.6
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The analysis considering the four agroecological environments revealed varying trends
in the mean annual SR for different LULC and climate change scenarios. The mean annual
SR increased when the BAU LULC changes were combined with the two climate scenarios
across all the agroecologies; Moist Kolla experienced the highest increase in SR followed
by Wet Wurch (Table 5; Figure S9). In Moist Kolla under the BAU LULC change scenario
combined with SSP2–4.5 (SSP5–8.5), the mean annual SR substantially increased by 315.9%
from period-1 to period-2, by 56.6% (62.8%) from period-2 to period-3, and by an additional
35.2% (38.6%) from period-3 to period-4. Likewise, under the SSP2–4.5 (SSP5–8.5) climate
scenarios combined with the BAU LULC change scenario, SR in Wet Wurch increased by
19.2% from period-1 to period-2, by 22.9% (26.1%) from period-2 to period-3, and by an
additional 12.1% (14.7%) from period-3 to period-4. In contrast, under the LC LULC change
scenario, the mean annual SR substantially decreased across the four agroecological zones
with the exception of Moist Kolla. Under the LC LULC scenario, the reduction in SR in
Moist Weyna Dega was the highest followed by Moist Dega: in Moist Weyna Dega under
the SSP2–4.5 (SSP5–8.5) climate scenarios, SR decreased by 17% (14%) from period-2 to
period-3 and by an additional 0.9% (0.7%) from period-3 to period-4. Under the SSP2–4.5
(SSP5–8.5) climate scenarios, SR in Moist Dega decreased by 13.5% (11.6%) from period-2
to period-3 (Table 5; Figure S9).

The combined Impact of LULC and climate change increased ET in all four agroe-
cological environments (Table 6; Figure S10). This rise was observed for both BAU and
LC LULC change scenarios and both the SSP2–4.5 and SSP5–8.5 climate scenarios. The
increases were greater in the SSP5–8.5 scenario than in the SSP2–4.5 scenario. Moreover,
the ET increases under the LC LULC change scenario were greater than under the BAU
LULC change scenario (Table 6; Figure S10).

3.4. Isolated Impacts of LULC and Climate Change on SR and ET

At the watershed level, the mean annual SR increased under the separate impact of the
BAU LULC change scenario by 12.9% from period-1 to period-2, by 22.6% from period-2 to
period-3, and further by 9.5% from period-3 to period-4 (Table 4). In contrast, under the LC
LULC scenario, SR decreased by 11.3% from period-2 to period-3 and further decreased
by 3.4% from period-3 to period-4. ET decreased in the past and under the BAU LULC
change scenario and increased under the LC LULC change scenario. Under the BAU LULC
change scenario, ET decreased by 1.8% from period-2 to period-3 and increased by 0.1%
from period-3 to period-4. ET increased under the LC LULC change scenario by 5.2% from
period-2 to period-3 and by 0.5% from period-3 to period-4.

The separate impacts of climate change on SR and ET showed positive trends both
in the past and future study periods. SR increased by 1.2% from period-1 to period-2, by
2.9% (4.3%) from period-2 to period-3, and further increased by 3% (3.7%) from period-3 to
period-4 under the SSP2–4.5(SSP5–8.5) climate scenarios. Similarly, ET showed an increase
of 9.3% from period-1 to period-2, of 6.5% (7.7%) from period-2 to period-3, and a further
increase of 7.6% (6.8%) from period-3 to period-4 under the SSP2–4.5(SSP5–8.5) climate
scenarios (Table 4).

The increase in mean annual SR was revealed across the distinct agroecological en-
vironments with each exhibiting varying rates of increase under the BAU LULC change
scenario (Table 5). The rate of change in the mean annual SR in Moist Kolla agroecology
was a severe surge, with a substantial increase of 164.8% from period-1 to period-2, of
41.9% from period-2 to period-3, and a further increase of 23.9% from period-3 to period-4.
Following the severe surge in SR in Moist Kolla, Wet Wurch agroecology also witnessed
a substantial rise in SR, with a 14% increase from period-1 to period-2, a 16.7% increase
from period-2 to period-3, and a subsequent increase of 9.7% from period-3 to period-4.
In contrast, SR exhibited a decrease across the distinct agroecological environments under
the LC LULC change scenario with the exception of in Moist Kolla agroecology. In Moist
Kolla agroecology, the SR increased by 16% from period-2 to period-3, and then slightly
decreased by 1.4% from period-3 to period-4 under the separate impact of the LC LULC
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change scenario. Under this LULC change scenario, Moist Weyna Dega agroecology experi-
enced a substantial reduction in SR with a rate of 24.5% from period-2 to period-3 and a
further decrease of 3.3% from period-3 to period-4 compared to other agroecologies.

Considered separately from climate change, the impact of BAU LULC on the mean
annual ET was negative for all agroecological environments (Table 6), with the decreases
greater in the Moist Kolla agroecological environment than those in the other agroecological
zones. In Moist Kolla, ET decreased by 1.2%, 2.6%, and 3.2% from period-1 to period-2,
period-2 to period-3, and period-3 to period-4, respectively. In contrast, the mean annual
ET increased under the LC LULC change scenario across all agroecological environments
(Table 6).

Under the impact of climate change considered separately from changes in LULC,
the mean annual SR increased consistently across all four agroecological environments,
with higher increases under the SSP5–8.5 climate scenario compared to SSP2–4.5 (Table 5).
Likewise, the mean annual ET increased under the separate impacts of the climate change
scenarios, with the increases under the SSP5–8.5 climate scenario being greater (Table 6).
More information on the hydrological model simulation results for separate and combined
impacts of climate and LULC change scenarios on SR and ET both at watershed and distinct
agroecological levels is in Tables S7 and S8 of the Supplementary Materials.

4. Discussion
4.1. SR and ET Responses to the Combined Impact of LULC and Climate Change

The combined impact of LULC and climate change differed from their separate impacts
depending on the scenarios and hydrological components. The BAU LULC change scenario
combined with climate change resulted in a synergistic impact on SR and an offsetting
impact on ET. In contrast, the effects of the LC LULC change scenario combined with climate
change were offsetting for SR and synergistic for ET. Furthermore, the rate of SR change
was predominantly affected by LULC change, rather than climate change. Meanwhile, ET
was more impacted by climate change, rather than LULC change scenarios.

The agroecological analysis of the combined impact of BAU LULC and climate change
on SR and ET revealed synergistic effects on SR and offsetting effects on ET consistently
across the distinct agroecological environments. More specifically, the increased rate of
SR under the BAU LULC scenario combined with climate change in Moist Kolla was
higher than in the other agroecological environments. The rates of SR increases in Moist
Kolla were intense from period-1 to period-2 and then continued increasing. This rapid
change is due to the fact that this environment was fully covered with woodland until 1995,
after which a dramatic expansion of cropland, particularly for commercial agriculture, led
to substantial increases in SR rates. Although the rate of change in SR was high in the
Moist Kolla followed by the Wet Wurch agroecological environment, in fact, Moist Dega is
characterized by little vegetative cover and extensive cultivated areas subject to high SR
over the past long history. The increased SR causes sheet erosion to intensify and rills and
gullies to widen and deepen, as observed in the field [42].

The effects of the LC LULC change scenario combined with climate change were
offsetting for SR and synergistic for ET across the distinct agroecological environments.
Under this combination, the rate of decrease in SR in the Moist Weyna Dega was substan-
tially higher than those in the other agroecological environments, because Moist Weyna
Dega is characterized by steep slopes comprising more than 62% of the total area. The
synergistic impact of the LC LULC scenario combined with climate change caused ET
to increase consistently across all four agroecological environments. Our findings align
with those of prior studies conducted in various regions of the UBNB: as the extent of
cropland increases, SR increases and ET decreases [3,4,10,41,62,63]. The research conducted
by Berihun [3] in lowland, midland, and highland environments in the UBNB found that
the counterbalance (offsetting) effect of LULC change to climate change led to a decrease
in the ET. Their findings also revealed that the change in LULC change had the dominant
role for SR and ET were highly correlated with climate change which is in agreement with
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our findings. Similarly, the study by Wedajo [63] on the separate and combined impacts of
climate and LULC on hydrological components in the Dhidhessa River basin of the UBNB
revealed an increase in both SR and ET under their combined effects. SR was more affected
by LULC changes, whereas ET was more affected by climate changes. Their study also
reported that the combined effects were synergistic and offsetting for SR and ET, respec-
tively. Teklay et al. [41], in their study of hydrological responses to the climate and LULC
change in the Gumara watershed of the UBNB under three alternative LULC scenarios
(BAU, expansion of forestland, and expansion of irrigated crops) and two climate change
scenarios, reported that SR increased under BAU and decreased with increased ET under
the other two alternative scenarios. Another study on the projected climate and LULC with
alternative scenarios reported that the combined effects of climate and LULC increase both
SR and ET under the BAU scenario and reduce SR under management scenarios [62].

4.2. SR and ET Responses to the Impact of LULC Changes

The major changes in LULC were the substantial increases in cropland and built-up
areas, accompanied by reductions in grassland and woodland. Future projected LULC
change under the BAU scenario indicates a further increase in cropland and built-up areas
at the expense of woodland and grassland. The intensive cultivation and reduction in
vegetation cover in this watershed have contributed substantially to land degradation,
leading to increased SR and decreased ET. As vegetation cover decreases, SR increases,
simultaneously reducing transpiration, and leading to decreased ET. With the complex
topography of steep to very steep slopes covering more than 30% of the study watershed, SR
has substantially increased in the past and is projected to continue increasing into the future.
In contrast, the rise in vegetation coverage under the LC LULC change scenario leads to
a decrease in SR and an increase in ET. This scenario projects an increase in vegetation
cover, particularly over steep and very steep slopes, which would intercept SR, increase
transpiration from plants to the atmosphere, and increase ET.

The agroecological-based hydrological analysis revealed more detailed information
that can help in designing and implementing effective and sustainable water resource man-
agement strategies at the local level. The separate impact of LULC shows a consistent trend
of increasing SR and a slight decrease in ET across distinct agroecological environments
in the past and continued into the future with projected LULC changes under the BAU
scenario. More specifically, the rate of increase in SR was higher in the Moist Kolla followed
by the Wet Wurch agroecological environments compared to the other agroecological envi-
ronments. This intensified SR in the Moist Kolla was aggravated by a substantial increase in
cropland at the expense of woodland. This change occurred because of the introduction of
commercial farming into the hotter, and less populated areas. Similarly, in the Wet Wurch
agroecology, the expansion of cropland over steep and very steep slopes increased the SR
change. ET was impacted negatively by LULC changes under the BAU scenario across the
four agroecological environments. The substantial reduction in woodland resulted in a
decrease in transpiration from plants and decreased ET.

In the LC LULC change scenario, SR decreased in all agroecological environments
except in Moist Kolla. The SR decreased because the LC scenario promotes increased
vegetation cover over steep and very steep slopes (>15% slope) to facilitate sustainable land
management. In Moist Kolla, approximately 82.7% of the area is flat to sloping (<15% slope;
Table S1), making it suitable for cropland expansion. This leads to the expansion of
commercial farming to this agroecological environment causing the increase in SR under
this LC scenario; however, the rate of the SR increase was noticeably lower than that
under the BAU scenario. The Moist Weyna Dega agroecological environment experienced
the most substantial reduction in SR compared to others under the LC scenario. This
agroecology is characterized by 62.8% of its area being under steep to very steep slopes
(>15% slope) and the LC scenario projects to increase in vegetation cover over this steep
area rather than agricultural use. Moreover, the increase in SR under BAU and the decrease
under the LC scenario from period-2 to period-3 were higher compared to the changes
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from period-3 to period-4. These findings are in accordance with those of previous studies
in various parts of the UBNB [7,33,35]. Gashaw [33] studied the hydrological impact of
the projected LULC changes under the BAU scenario by 2030 and 2045 in the Andassa
watershed of the UBNB; they found increases in both SR and ET. A similar study by
Leta [64] in the Nashe watershed of the UBNB reported increases in SR and decreases in ET
in the future to 2050. Another study by Bekele [65] in the Ketela watershed of Ethiopia also
reported an increase in SR under the impact of LULC changes.

4.3. SR and ET Responses to the Impact of Climate Changes

Both minimum and maximum temperatures in the study watershed have significantly
and consistently increased from 1983 to 2020, and they are projected to continue to increase
in the future (2021–2080) under the SSP2–4.5 and SSP5–8.5 climate scenarios. Rainfall
patterns have been highly variable, with a non-significant increase in the past (1983–2020)
and a significant increasing trend in the future, particularly under the SSP5-8.5 climate
scenario. Climate change has been observed to be positively correlated with SR and
ET. Looking ahead, the projected impact of future climate change on both SR and ET is
more pronounced under the SSP5–8.5 climate scenario than SSP2–4.5. In both past and
future study periods, there was a consistent relationship between the impact of climate
on SR and ET across the studied agroecological environments. Previous studies of the
impact of climate change scenarios on watershed hydrology in the UBNB [36,37,60] agreed
that SR and ET will consistently increase [38]. Teklay et al. [37] observed significant
hydrological changes in the Lake Tana Basin of the UBNB in response to climate change.
Their study, conducted under RCP 4.5 and RCP 8.5 climate scenarios, revealed that by 2055,
temperatures and rainfall are projected to substantially increase, particularly under the
RCP 8.5 emission scenario. Additionally, they noted a significant rise in ET. A similar study
by Mengistu [60] in the UBNB also projected a significant increase in temperature with
inconsistent patterns of rainfall attributed to an increase in SR of 14% and 27% in ET by the
end of the twenty-first century. In contrast, a study by Worku [38] in the Jemma sub-basin
of the UBNB revealed a consistent decrease in SR and an increase in ET under both the RCP
4.5 and RCP 8.5 climate scenarios in the twenty-first century. These contrasting results are
mainly due to the spatial heterogeneity of LULC changes and climate variability.

5. Conclusions

This study presents an integrated modeling approach for assessing the separate and
combined effects of LULC and climatic changes on hydrologic processes in four varied
agroecological regions of the Chemoga watershed in Ethiopia. The study used an ensemble
mean from ten GCM outputs downscaled for the SSP2–4.5 and SSP5–8.5 climate scenarios.
LULC maps from 1985, 1995, 2013, and 2020 along with projected LULC for 2040 and
2060 under BAU and LC LULC scenarios were employed to understand their impacts on
hydrological processes across these four distinct agroecological environments.

Both the minimum and maximum temperatures significantly increased, evident in
both historical (1983–2020) and future (2021–2080) periods under the SSP2–4.5 and SSP5–8.5
climate scenarios, ranging from 0.02 to 0.05 ◦C/year. A slight increase in mean annual
rainfall was observed in the past, with more substantial increases projected under SSP5–8.5.
The combined impact of climate and LULC change during the historical period reveals
SR increases of 316%, 15%, 9%, and 19% in Moist Kolla, Moist Weyna Dega, Moist Dega,
and Wet Wurch agroecologies, respectively. Similarly, ET increased by 5%, 7%, 8%, and
2%, respectively, in the corresponding agroecological environments. Further SR increases
are projected in the near future (2021–2050) and far future (2051–2080). In the respective
agroecological environments under the BAU LULC coupled with the SSP2–4.5 (SSP5–8.5)
climate scenario, SR in the far future is projected to increase by 38% (45%), 24% (29%), 30%
(33%), and 112% (126%) compared to the recent past (2013–2020), while ET is projected to
increase by 8% (9%), 9% (11%), 18% (21%), and 16% (22%).
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In contrast, the LC LULC scenario combined with the SSP2–4.5 (SSP5–8.5) climate
change scenarios result in decreasing SR by 18% (15%), 14% (11%), and 10% (9%), in the
Moist Weyna Dega, Moist Dega, and Wet Wurch agroecological environments, respectively,
in the far future compared to the observed recent past SR. In general, the LULC changes
under BAU combined with the climate change scenarios were synergistic for SR and
offsetting for ET, and the LC LULC scenario combined with climate change scenarios had
offsetting impacts for SR and synergistic ones for ET. These findings provide essential
insights for the sustainable management of natural resources in the Chemoga watershed
and other regions facing similar challenges from changes in climate and LULC.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/w16071037/s1: Figure S1. Major soil textures (A), types (B),
and slope classes (C) within distinct agroecological regions in Chemoga watershed. Figure S2. Land
use land cover maps (left) and areal extent of land use and land cover (LULC) categories (right)
at the watershed level and in four different agroecological environments. Figure S3. Suitability
map for land allocation to (A) built-up, (B) cropland, (C) forest, (D) grassland, (E) water body, and
(F) woodland in the Chemoga watershed. Figure S4. Pettitt’s test for change point detection in
historical rainfall (A–D) and future downscaled rainfall under the SSP2-4.5 climate scenario (E–H)
and under the SSP5-8.5 climate scenario (I–L) in the Wet Wurch, Moist Dega, Moist Weyna Dega,
and Moist Kolla agroecological environments, respectively. Figure S5. Pettitt’s test for change point
detection in historical maximum temperature (A–D) and future downscaled maximum temperature
under the SSP2-4.5 climate scenario (E–H) and under the SSP5-8.5 climate scenario (I–L) in the Wet
Wurch, Moist Dega, Moist Weyna Dega, and Moist Kolla agroecological environments respectively.
Figure S6. Pettitt’s test for change point detection in historical minimum temperature (A–D) and
future downscaled minimum temperature under the SSP2-4.5 climate scenario (E–H) and under
the SSP5-8.5 climate scenario (I–L) in the Wet Wurch, Moist Dega, Moist Weyna Dega, and Moist
Kolla agroecological environments, respectively. Figure S7. Methodological framework employed for
land use/land cover and climate change impact studies on water balance. The land use/land cover
(LULC) datasets utilized in this study were obtained from [2]. Figure S8. Soil and Water Conservation
(SWC) practices (bunds with/out grass) identified, along with the corresponding images captured
from Google Earth. Figure S9. Mean annual surface runoff (SR) both at the watershed level (on
the left) and across four distinct agroecological environments (on the right). Figure S10. Mean
annual Evapotranspiration (ET) both at the watershed level (on the left) and across four distinct
agroecological environments (on the right). Figure S11. Correlation of streamflow between stations
FG-2 and FG-4 in the rainy and dry seasons. Table S1. Typical characteristics of four agroecological
environments in Chemoga watershed. Table S2. Factors and constraints considered and their weights
for predicting LULC conditions in the Chemoga watershed. Table S3. Global climate models used in
this study. Table S4. Mann–Kendall and Sen’s slope results for rainfall (mm/year) and maximum and
minimum temperature (◦C/year) trends. Table S5. SWAT model parameters with their initial values.
Table S6. Final optimized parameter values within the parameter range during the last iteration of
calibration. Table S7. The SWAT model simulated results of hydrological responses to the separate
and combined impacts of climate and land use/land cover (LULC) changes. Table S8. SWAT model
simulated results of hydrological responses to the separate and combined impacts of climate and
land use/land cover (LULC) changes in four agroecological environments. References [66–73] are
cited in the supplementary materials.
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