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Figure S1. Major soil textures (A), types (B), and slope classes (C) within distinct agroecological regions in Chemoga watershed. 
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Table S1. Typical characteristics of four agroecological environments in Chemoga watershed. 

 Typical characteristics 
 Wet Wurch Moist Dega Moist Weyna Dega Moist Kolla 

Mean annual temperature 
range (°C) 

4.7–17.4 8.8–22.7 13.9–25.5 15.7–28.9 

Mean annual rainfall (mm) 1513 1311 1251 1108 

Altitude (m) >3200 2300–3200 1500–2300 < 1500 

Major crops Barley and potato Wheat, teff, barley, potato, fava bean 
and engido (Avena spp.) 

Maize, wheat, and teff Sorghum, maize, and 
haricot bean 

Slope class (% range) Area contribution to each slope classes (%) 

Flat (0–3) 0.8 7.9 2.0 21.2 

Gentle (3–8) 6.7 27.3 12.0 42.5 

Sloping (8–15) 26.8 29.6 23.3 19.0 

Steep (15–30) 52.3 26.4 31.3 16.3 

Very steep (>30) 13.5 8.8 31.5 1.0 

Wet Wurch is characterized by steep slopes covering 52.3 % of its area. Moist Dega primarily consists of moderately sloping terrain, covering 

29.6 % of its area. Around 31.5 % of the Moist Weyna Dega agroecology is covered by very steep slopes, whereas Moist Kolla is primarily covered 

by gentle slopes, covering 42.5 % of its area. The slope measurements were derived from SRTM–DEM data. 
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1A. Land use/land cover (LULC) change analysis 

The LULC maps were produced from Landsat satellite images of TM, ETM+, and OLI for 1985, 1995, 

2013, and 2020 with 30-m spatial resolution downloaded from the United States Geological Survey 

(https://earthexplorer.usgs.gov). In addition to Landsat satellite images, 12 aerial photographs (scale 

1:50,000) taken in 1984 and 1985 obtained from the Ethiopian Mapping Agency (EMA) were used as 

auxiliary input data for the LULC classification of 1985. The images were selected by considering data 

availability, anticipated major LULC changes due to regime (Gov’t) change and policies related to land use 

and agriculture by the government. Image was classified using hybrid (unsupervised and supervised) 

classification techniques [1]. Each Landsat image was iso-clustered into 500 classes. Supervised 

classification was then applied by geo-linking with Google Earth, and a pixel-based supervised 

classification to six LULC categories (built-up, cropland, forest, grassland, woodland, and water body). 

The analysis was done both at watershed scale and separately considering the four distinct agroecological 

environments within the watershed. Details can be found in [2]. 

The watershed level analysis evaluated changes from 1983 to 2020 and from 2021 to 2060. Cropland 

increased by 23 % in the earlier period and further increased by 3 % by 2060 under the business-as-usual 

(BAU). Woodland and grassland decreased by 23 % and 5 %, respectively, in the past 35 years and further 

decreased by 6 % and 3 %, respectively, by 2060 under the BAU LULC change scenario. In contrast, under 

the land conservation (LC) scenario, there was a significant shift towards forest restoration (8 % increase), 

along with the conservation of grasslands by 2060.  

When considering the distinct agroecological environments, important transitions and changes were 

identified that were not apparent at the watershed level [2]. These transitions likely indicate more specific 

and localized alterations in LULC within these environments (Figure S2). In 1985, woodland dominated in 

Wet Wurch and Moist Kolla, while cropland dominated in Moist Dega and Moist Weyna Dega 

agroecological environments (Figure S2). Over the past 35 years, the most substantial changes in all 

agroecological environments were the expansion of cropland accompanied by the reduction of grassland in 
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Moist Dega and woodland in the other agroecological environments (Figure S2). The most substantial 

change was observed in Moist Kolla, where cropland increased dramatically by 53.5 %, followed by that 

in the Wet Wurch agroecology, where cropland increased by 27.1 % mainly at the expense of woodland 

during the historical study period. The projected BAU LULC change showed a further increase of cropland 

in the Moist Kolla agroecology by 28.1 % with the decline of woodland by 31.6 % expected in the future 

to 2060. In contrast, in the LC scenario there was a significant shift towards vegetation cover restoration 

over steep slopes, with a substantial increase in forest coverage (12.8 %) in the Moist Weyna Dega 

agroecology (Figure S2). 
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Figure S2. Land use land cover maps (left) and areal extent of land use and land cover (LULC) categories (right) at the watershed level and in four 

different agroecological environments. BAU and LC denotes for Projected LULC maps under business-as-usual and land conservation scenarios, 

respectively. BA: built-up area; CL: cropland; FT: Forest; GL: grassland; WB: water body; and WL: woodland (source:[2]).



 

6 
 

1B. CA-Markov model 

The hybrid CA-Markov model integrates CA as a spatial distribution of transitions with the Markov Chain 

probability matrix. Prediction of LULC changes using the CA-Markov model involves three main activities 

[3] (Figure S3): (1) the development of a probability matrix (Eq. 1) and an area matrix from a pair of past 

LULC maps using the Markov module, (2) creation of a suitability map that consists of factors and 

constraints, and (3) use of special allocation in the CA-Markov module (Eq. 2):  

𝑃 = 𝑃 𝑃     … 𝑃 𝑃 𝑃      … 𝑃…𝑃 …𝑃    … …𝑃                                                                                                                         (1) 

where ∑ 𝑃 = 1, 0 ≤ 𝑃 , 𝑃  is the transition probability from LULC type i to type j, and n is the number 

of LULC types. 

 𝐿 = 𝑃 × 𝐿                                                                                                                                                 (2) 

where Lt and Lt+1 are the LULC at time of t and t + 1, respectively, and P is the transition probability matrix 

in a state that is calculated as follows: 

The prediction capacity of the CA-Markov model was assessed by simulating the 2020 LULC map by using 

the 2005 and 2013 LULC maps and comparing with the simulated results to the classified 2020 LULC map. 

The simulated map of 2020 agreed very well with the classified LULC map of 2020, and the model 

validation results of Kno (96.3 %), Klocation (95.7 %), KlocationStrata (95.7 %), and Kstandard (92.3 %). Finally, the 

validated hybrid CA-Markov model was used to produce the LULC maps of 2040 and 2060 under two 

alternative scenarios: business-as-usual and land conservation. Prediction of LULC changes using the CA-

Markov model involves three main activities [3]: (1) the development of a probability matrix and an area 

matrix from a pair of past LULC maps using the Markov module, (2) creation of a suitability map that 

consists of factors and constraints using a multicriteria evaluation (MCE) module, and (3) use of special 

allocation in the CA-Markov model.  
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The suitability map is a combination of multiple factors and constraints used to guide the relative 

suitability of land allocation in the simulation of LULC change using the CA-Markov model [4]. Table S3 

shows the factors and constraints considered for the LULC simulation.  

Table S2. Factors and constraints considered and their weights for predicting LULC conditions in the 

Chemoga watershed. 

LULC category Factors Factor 
weight 

Consistency 
ratio 

Constraints 

Built-up  
Suitable areas to built-up  0.6783 0.03 Slope > 15 % 
Distance to market centers 0.1388  Grassland 
Distance to road 0.1293   
Slope 0.0537   

Cropland 
Suitable areas to cropland 0.7854 0.07 Slope > 15 % 
Distance to rivers 0.0658  Grassland 
Slope 0.1488   

Forest 
Suitable areas to forest 0.6716 0.07  
Distance to rivers 0.0629   
Slope 0.2654   

Grassland 
Suitable areas to grassland 0.7695 0.03  
Distance to river 0.1040   
Slope 0.1265   

Water Body 
Suitable areas to water body 0.4507 0.01  
Distance to river 0.4901   
Slope 0.0592   

Woodland 
Suitable areas to woodland 0.6491 0.06  
Slope 0.0719   
Elevation 0.2790   

The suitability map for the BAU scenario was prepared from a weighted linear combination of factors for 

each LULC category (Table S2). The factors were standardized from 0 to 256 in a fuzzy membership 

function that implies 0 for less suitable and 256 for more suitable land for conversion to a specific LULC 

category. In the same way, the suitability map of the LC scenario was prepared by adding the constraints 

with Boolean images to the factors applied in the BAU scenario. The constraints were standardized to 0 

(not suitable) or 1 (suitable) for land use conversion (Table S2, Figure S3). 
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Figure S3. Suitability map for land allocation to (A) built-up, (B) cropland, (C) forest, (D) grassland, (E) 

water body, and (F) woodland in the Chemoga watershed. 

The areal extent of losses, gains, and percentage of changes for each LULC change were computed using 

Eqs. (3), (4), and (5), respectively:   

 𝑃 ( ), = 𝑃 , − 𝑃 ,(𝑃 − 𝑃 )  × 100, 𝑖 𝑗                                                                                                (3) 

 𝑃 ( ), = 𝑃 , − 𝑃 ,(𝑃 − 𝑃 )  × 100, 𝑖 𝑗                                                                                                (4) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 (%) = 𝐴 − 𝐴𝐴  × 100                                                                                 (5) 

where Ploss (i), j is the percentage taken by LULC category j from category i; Pgain(i), j is the percentage taken 

by type i from category j; Pi,j and Pj,i are the individual entries in a given change matrix; Pci is the column 
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total of type i; and Pri is the row total for type i. A1 is the area in year 1 and A2 is the area in year 2 of a 

LULC type (ha). 

The use of alternative scenarios to predict LULC is helpful for decision makers and local land use 

planners for effective and sustainable land management in the future [5,6]. The BAU and LC scenarios 

were formulated based on the land use and watershed characteristics of the study area and a literature review 

related to future land use plans [6]  and land use policies of the Ethiopian government [2]. The BAU scenario 

assumed the continuation of recent past trends of socioeconomic activities related to LULC change without 

any management intervention, whereas the LC scenario was designed to consider management intervention 

for sustainable land use. The LC scenario considered the land capability approach, which avoids cultivation 

and settlement expansion on steep slopes (>15 %)  [5,7], as well as the strict implementation of existing 

spatial policies of the Ethiopian government for forest and water body conservation [2]. 

2A. General Climate Models (GCMs) 

From a thorough evaluation of over 31 available GCMs, ten were carefully selected for downscaling and 

ensemble use (Table S3), with the primary consideration being the availability of historical and future 

climate variables, such as precipitation and minimum and maximum temperatures, for both the SSP2-4.5 

and SSP5-8.5 scenarios on a daily basis.  

 

 

 

 

 

 

 

 

Table S3. Global climate models used in this study. 
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Model Name  Organization  Resolution  
(° lat. x long.) 

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization, 
Australian Research Council Centre of Excellence for Climate 
System Science, Australia 

1.250 x 1.875 

INM-CM5-0 Institute for Numerical Mathematics, Russian Academy of 
Science, Moscow, Russia 

 1.500 x 2.000 

CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 0.938 x 1.250 
CNRM-ESM2-1 National Center of Meteorological Research, France 1.406 x 1.406 
EC-Earth3-Veg-
LR 

EC-Earth consortium, Rossby Center, Swedish Meteorological 
and Hydrological Institute, Sweden 

1.125 x 1.125 

CNRM-CM6-1 Centre National de Recherches Météorologiques–Centre 
Européen de Recherche et de Formation Avancée en Calcul 
Scientifique, France 

1.406 x 1.406 

INM-CM4-8 Institute for Numerical Mathematics, Russian Academy of 
Science, Moscow, Russia 

1.500 x 2.000 

MPI-ESM1-2-
LR 

Max Planck Institute for Meteorology, Germany 1.875 x 2.500 

MRI-ESM2-0  Meteorological Research Institute, Japan 1.125 x 1.125 
MIROC6 Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute, Japan  
1.406 x 1.406 

For statistical downscaling techniques, we employed the widely used empirical quantile mapping (EQM) 

method (Eq. 6). EQM calibrates a model's cumulative distribution function (CDF) by adjusting both the 

mean and individual delta changes for observed climate variable quantiles [8]. It has the advantage of 

producing adjusted empirical CDFs (ECDFs) for dry and wet days and can simultaneously correct 

precipitation occurrence frequencies and standard deviations [9]. The EQM method corrects means, 

variances, quantiles, wet day frequencies, and intensities while nonlinearly preserving extreme values [9]. 

Therefore, the variability of corrected data is more consistent with the original GCMs data [10]. 𝑃 = 𝐸𝐶𝐷𝐹 (𝐸𝐶𝐷𝐹 (𝑃 )                                                                                                        (6) 

where 𝑃  is the bias corrected precipitation, 𝐸𝐶𝐷𝐹  is the inverse of empirical cumulative distribution 

function of observed precipitation, 𝐸𝐶𝐷𝐹  is empirical cumulative distribution function of GCM 

precipitation, and 𝑃  is raw precipitation data from the GCMs. 
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Table S4. Mann–Kendall and Sen’s slope results for rainfall (mm/year) and maximum and minimum temperature (°C/year) trends. 

Climate 

variables 

 
Agroecology 

Wet Wurch Moist Dega Moist Weyna Dega Moist Kolla 

Observed SSP2-4.5 SSP5-8.5 Observed SSP2-4.5 SSP5-8.5 Observed SSP2-4.5 SSP5-8.5 Observed SSP2-4.5 SSP5-8.5 

Rainfall  z-stat 1.4 2.53* 5.95* 0.86 2.31* 6.01* 1.35 2.81* 5.73* 2.47* 3.11* 5.96* 

Sen's Slope  0.03 1.59 5.91 2.59 1.27 5.07 2.04 1.4 3.97 4.80 1.55 3.55 

Maximum 

temperature  

z-stat 4.40* 9.16* 10.26* 4.40* 9.22* 10.32* 2.44* 9.47* 10.31* 1.21 9.47* 10.41* 

Sen's Slope 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.01 0.02 0.03 

Minimum 

temperature  

z-stat 5.30* 9.67* 10.35* 5.76* 9.6* 10.41* 4.18* 9.63* 10.49* 4.89* 9.66* 10.5* 

Sen's Slope  0.05 0.02 0.03 0.03 0.02 0.04 0.04 0.03 0.05 0.05 0.03 0.06 

* Statistically significant at 5% significant level. 
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Figure S4. Pettitt's test for change point detection in historical rainfall (A–D) and future downscaled rainfall under the SSP2-4.5 climate scenario 

(E–H) and under the SSP5-8.5 climate scenario (I–L) in the Wet Wurch, Moist Dega, Moist Weyna Dega, and Moist Kolla agroecological 

environments, respectively. Where mu1 and mu2 are the mean precipitation before and after change point has occurred respectively. 
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Figure S5. Pettitt's test for change point detection in historical maximum temperature (A–D) and future downscaled maximum temperature under 

the SSP2-4.5 climate scenario (E–H) and under the SSP5-8.5 climate scenario (I–L) in the Wet Wurch, Moist Dega, Moist Weyna Dega, and Moist 

Kolla agroecological environments respectively. Where mu1 and mu2 are the mean maximum temperature before and after change point has occurred 

respectively. 
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Figure S6. Pettitt's test for change point detection in historical minimum temperature (A–D) and future downscaled minimum temperature under 

the SSP2-4.5 climate scenario (E–H) and under the SSP5-8.5 climate scenario (I–L) in the Wet Wurch, Moist Dega, Moist Weyna Dega, and Moist 

Kolla agroecological environments, respectively. Where mu1 and mu2 are the mean minimum temperature before and after change point has occurred 

respectively. 
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Figure S7. Methodological framework employed for land use/land cover and climate change impact studies on water balance. The land use/land 

cover (LULC) datasets utilized in this study were obtained from [2]. BAU (business-as-usual) and LC (Land conservation), representing different 

LULC projection scenarios.
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Table S5. SWAT model parameters with their initial values. 

 

 

 

 

 

 

 

Parameter Description Initial range 

r_CN2.mgt SCS runoff curve number for moisture condition II 35–98 

v_REVAPMN.gw Threshold depth of water (mm) in the shallow aquifer for 
‘revap’ to occur 

0–500 

v_GW_REVAP.gw Groundwater ‘revap’ coefficient 0.02–0.2 

v_GW_DELAY.gw Groundwater delay (days) 0–500 

v_ALPHA_BF.gw Baseflow alpha factor (days) 0–1 

v_GWQMN.gw Threshold depth of water (mm) in the shallow aquifer 
required for return flow to occur 

0–5000 

r_ESCO.hru Soil evaporation compensation factor 0–1 

r_HRU_SLP.hru Average slope steepness 0–1 

r_SLSUBBSN.hru Average slope length 10–150 

r_CH_K2.rte Effective hydraulic conductivity in main channel alluvium -0.01–500 

r_CH_N2.rte Manning’s ‘n’ value for the main channel -0.01–0.3 

r_SURLAG.bsn Surface runoff lag time 0.05–24 

r_SOL_BD.sol Moist bulk density 0–1 

r_SOL_AWC.sol Available water capacity of the soil layer 0–1 

r_SOL_K.sol Saturated hydraulic conductivity 0–2000 

r_SOL_CBN.sol Organic carbon content 0.05–10 

r_SOL_ALB.sol Moist soil albedo 0–0.25 

r_SOL_ZMX.sol Maximum rooting depth of soil profile. 0–3500 
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Table S6. Final optimized parameter values within the parameter range during the last iteration of 
calibration. 

 Parameter name Fitted value Min value Max value 

1 V__REVAPMN.gw 220.17 160.19 289.19 

2 V__GW_REVAP.gw 1.73 1.49 2.86 

3 R__CH_K2.rte 3.20 -2.86 4.58 

4 R__HRU_SLP.hru -0.20 -0.59 -0.18 

5 R__SURLAG.bsn 49.14 48.93 91.57 

6 R__CN2.mgt -0.72 -8.09 2.51 

7 V__ALPHA_BF.gw -13.98 -26.94 -13.23 

8 R__SOL_AWC(..).sol -0.69 -5.98 7.76 

9 R__SOL_K(..).sol 29.52 -103.03 201.67 

10 V__GW_DELAY.gw 115.80 -148.43 160.61 

Note: “R_” refers to a relative change in the parameter where the default values are multiplied by 1 plus a 
factor in the parameter range, while “V_” refers to the substitution of the default parameter by a value from 
the parameter range.  
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2A. Model performance evaluation 

During both the calibration and validation phases, the model's performance was assessed using essential 

goodness-of-fit evaluation criteria, including the coefficient of determination (R2) [11], Nash and Sutcliffe 

simulation efficiency (NSE) [12], and percent Bias (PBIAS) [13]. 

Coefficient of determination 

The coefficient of determination (R2) value, varying from 0 to 1, indicates the extent to which the predicted 

dispersion accounts for the observed dispersion [13]. If the value is zero, there is no correlation, while a 

value of 1 suggests that the prediction's dispersion matches that of the observations. 

𝑅 = 1 − ∑(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑙𝑜𝑤 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑙𝑜𝑤)∑(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑤 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑤)  

Nash–Sutcliffe efficiencies 

The Nash-Sutcliffe efficiencies (NSE) vary between infinity and one, computed by assessing the model's 

fitness against the variance of observed data [13]. An NSE value of one indicates an exact alignment 

between the modeled discharge and the measured data. It is calculated as one minus the total of the absolute 

squared deviations between predicted and observed values, normalized by the variance of the observed 

values within the specified investigation period. 

𝑁𝑆𝐸 = 1 − ∑(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑙𝑜𝑤 (𝑖) − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑤)∑(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑤 (𝑖) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑤)  

Percent of bias  

The percentage of bias (PBIAS) assesses how the simulated values generally lean towards being either 

larger or smaller than their observed equivalents. An ideal PBIAS value is zero. PBIAS represents the 

percentage-based variance between the data being assessed. A positive PBIAS value suggests that the model 

tends to underestimate measured values, while negative values imply an overestimation [13]. 

𝑃𝐵𝐼𝐴𝑆 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑙𝑜𝑤 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑤𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑜𝑤 × 100 
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According to Moriasi [13], model performance is categorized as excellent if R2 or NSE is equal to or greater 

than 0.90, very good if it falls within the range of 0.75 to 0.89, good if it ranges from 0.50 to 0.74, fair if it 

falls between 0.25 to 0.49, poor if it's between 0 and 0.24, and unsatisfactory if R2 or NSE is less than 0. 
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Figure S8. Soil and Water Conservation (SWC) practices (bunds with/out grass) identified, along with the 

corresponding images captured from Google Earth. 
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Table S7. The SWAT model simulated results of hydrological responses to the separate and combined impacts of climate and land use/land cover 

(LULC) changes. RF is the mean annual rainfall, SR is annual runoff, and ET is annual evapotranspiration. The bolded climate periods after 2020 

represent the SSP5-8.5 scenario while the non-bolded periods after 2020 represent the SSP2-4.5 climate scenario. * denotes for projected LULC 

under the LC scenario; values without * are for the BAU scenario projection. 

Scenario LULC  Climate period RF (mm) SR (mm) ET (mm)  Scenario LULC  Climate period SR (mm) SR (mm) ET (mm) 

S1 1985 1983–2002 1232 434 320  S15 2040 2051–2080 1458 741 380 
S2 1985 2003–2020 1286 430 350  S16 2060 2021–2050 1311 764 351 
S3 1995 1983–2002 1232 483 316  S17 2060 2021–2050 1352 774 351 
S4 1995 2003–2020 1286 484 345  S18 2060 2051–2080 1311 794 370 
S5 2013 1983–2002 1232 544 312  S19 2060 2051–2080 1458 809 378 
S6 2013 2003–2020 1286 563 338  S20 2040* 2003–2020 1286 500 349 
S7 2020 1983–2002 1232 615 303  S21 2040* 2021–2050 1311 533 371 
S8 2020 2003–2020 1286 626 334  S22 2040* 2021–2050 1352 539 376 
S9 2040 2003–2020 1286 690 322  S23 2040* 2051–2080 1311 550 390 
S10 2020 2021–2050 1311 631 351  S24 2040* 2051–2080 1458 557 396 
S11 2020 2021–2050 1352 639 353  S25 2060* 2021–2050 1311 518 372 
S12 2040 2021–2050 1311 698 349  S26 2060* 2021–2050 1352 523 376 
S13 2040 2021–2050 1352 710 353  S27 2060* 2051–2080 1311 528 391 
S14 2040 2051–2080 1311 719 367  S28 2060* 2051–2080 1458 536 402 
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Table S8. SWAT model simulated results of hydrological responses to the separate and combined impacts of climate and land use/land cover (LULC) 

changes in four agroecological environments. RF denotes the mean annual rainfall; SR, the mean annual runoff; and ET, the mean annual 

evapotranspiration. The bolded climate periods represent the SSP5-8.5 climate scenario while the non-bolded periods represent the SSP2-4.5 climate 

scenario. * denotes the LULC map for projected LULC under the LC scenario; values without * are for the BAU scenario projection. 

Agroecology Scenario LULC  Climate 
period 

RF 
(mm) 

SR 
(mm) 

ET (mm)  Scenario LULC  Climate 
period 

RF 
(mm) 

SR 
(mm) 

ET 
(mm) 

Wet Wurch S1 1985 1983–2002 1394 309 294  S15 2040 2051–2080 1600 637 330 
S2 1985 2003–2020 1423 311 310  S16 2060 2021–2050 1421 654 306 
S3 1995 1983–2002 1394 405 285  S17 2060 2021–2050 1465 664 303 
S4 1995 2003–2020 1423 406 310  S18 2060 2051–2080 1419 664 321 
S5 2013 1983–2002 1437 475 282  S19 2060 2051–2080 1600 698 322 
S6 2013 2003–2020 1424 483 299  S20 2040* 2003–2020 1423 434 309 
S7 2020 1983–2002 1394 522 277  S21 2040* 2021–2050 1421 438 323 
S8 2020 2003–2020 1423 522 296  S22 2040* 2021–2050 1465 441 328 
S9 2040 2003–2020 1423 588 292  S23 2040* 2051–2080 1419 444 340 
S10 2020 2021–2050 1421 523 319  S24 2040* 2051–2080 1600 457 353 
S11 2020 2021–2050 1465 530 317  S25 2060* 2021–2050 1421 434 330 
S12 2040 2021–2050 1421 593 311  S26 2060* 2021–2050 1465 435 340 
S13 2040 2021–2050 1465 608 315  S27 2060* 2051–2080 1419 436 351 
S14 2040 2051–2080 1419 605 327  S28 2060* 2051–2080 1600 437 357 

Moist Dega S1 1985 1983–2002 1267 559 309  S15 2040 2051–2080 1491 751 366 
S2 1985 2003–2020 1284 562 337  S16 2060 2021–2050 1320 757 347 
S3 1995 1983–2002 1267 580 310  S17 2060 2021–2050 1372 775 343 
S4 1995 2003–2020 1284 583 335  S18 2060 2051–2080 1314 781 363 
S5 2013 1983–2002 1289 613 304  S19 2060 2051–2080 1491 813 369 
S6 2013 2003–2020 1284 630 332  S20 2040* 2003–2020 1284 520 344 
S7 2020 1983–2002 1267 632 299  S21 2040* 2021–2050 1320 545 364 
S8 2020 2003–2020 1284 647 332  S22 2040* 2021–2050 1372 557 368 
S9 2040 2003–2020 1284 694 316  S23 2040* 2051–2080 1314 555 379 
S10 2020 2021–2050 1320 635 336  S24 2040* 2051–2080 1491 579 384 
S11 2020 2021–2050 1372 642 338  S25 2060* 2021–2050 1320 528 363 
S12 2040 2021–2050 1320 694 339  S26 2060* 2021–2050 1372 543 363 
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S13 2040 2021–2050 1372 712 342  S27 2060* 2051–2080 1314 545 392 
S14 2040 2051–2080 1314 715 360  S28 2060* 2051–2080 1491 562 398 

Moist Weyna 
Dega 

S1 1985 1983–2002 1183 517 302  S15 2040 2051–2080 1446 819 399 
S2 1985 2003–2020 1277 522 332  S16 2060 2021–2050 1303 829 358 
S3 1995 1983–2002 1183 573 300  S17 2060 2021–2050 1353 842 363 
S4 1995 2003–2020 1277 595 327  S18 2060 2051–2080 1297 857 385 
S5 2013 1983–2002 1192 635 296  S19 2060 2051–2080 1446 877 392 
S6 2013 2003–2020 1277 665 325  S20 2040* 2003–2020 1278 533 346 
S7 2020 1983–2002 1183 696 296  S21 2040* 2021–2050 1303 547 382 
S8 2020 2003–2020 1277 714 325  S22 2040* 2021–2050 1353 567 392 
S9 2040 2003–2020 1278 774 323  S23 2040* 2051–2080 1299 558 417 
S10 2020 2021–2050 1303 734 364  S24 2040* 2051–2080 1445 590 426 
S11 2020 2021–2050 1353 748 370  S25 2060* 2021–2050 1303 536 390 
S12 2040 2021–2050 1303 789 359  S26 2060* 2021–2050 1353 546 397 
S13 2040 2021–2050 1353 795 364  S27 2060* 2051–2080 1299 541 418 
S14 2040 2051–2080 1299 798 389  S28 2060* 2051–2080 1446 553 431 

Moist Kolla S1 1985 1983–2002 1119 50 376  S15 2040 2051–2080 1471 523 155 
S2 1985 2003–2020 1232 51 409  S16 2060 2021–2050 1244 618 136 
S3 1995 1983–2002 1119 74 359  S17 2060 2021–2050 1235 628 139 
S4 1995 2003–2020 1232 105 393  S18 2060 2051–2080 1263 690 150 
S5 2013 1983–2002 1131 270 339  S19 2060 2051–2080 1310 648 155 
S6 2013 2003–2020 1232 306 367  S20 2040* 2003–2020 1234 450 115 
S7 2020 1983–2002 1119 406 342  S21 2040* 2021–2050 1244 483 140 
S8 2020 2003–2020 1232 421 370  S22 2040* 2021–2050 1235 474 145 
S9 2040 2003–2020 1234 470 113  S23 2040* 2051–2080 1263 494 153 
S10 2020 2021–2050 1243 441 140  S24 2040* 2051–2080 1310 490 158 
S11 2020 2021–2050 1234 446 145  S25 2060* 2021–2050 1244 464 140 
S12 2040 2021–2050 1244 479 137  S26 2060* 2021–2050 1235 441 145  
S13 2040 2021–2050 1235 498 143  S27 2060* 2051–2080 1263 484 154 
S14 2040 2051–2080 1263 501 152  S28 2060* 2051–2080 1310 481  160 
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Figure S9. Mean annual surface runoff (SR) both at the watershed level (on the left) and across four distinct agroecological environments (on the 

right). BAU (business-as-usual) and LC (Land conservation), representing different LULC projection scenarios. The error bars represent the temporal 

dynamics of evapotranspiration and overlapping bars imply no significant difference between adjacent time periods. 
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Figure S10. Mean annual Evapotranspiration (ET) both at the watershed level (on the left) and across four distinct agroecological environments (on 

the right). BAU (business-as-usual) and LC (Land conservation), representing different LULC projection scenarios. The error bars represent the 

temporal dynamics of evapotranspiration and overlapping bars imply no significant difference between adjacent time periods. 
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Figure S11. Correlation of streamflow between stations FG-2 and FG-4 in the rainy and dry seasons. 
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