An Integration of Logistic Regression and Geographic Information System for Development of a Landslide Hazard Index to Land Use: A Case Study in Pingtung County in Southern Taiwan
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Image Interpretation and Classification
2.2.1. Preprocessing of Satellite Images
2.2.2. Selection of Satellite Imagery Classifications
2.3. Rainfall Projection
2.3.1. Effective Accumulative Rainfall (EAR)
2.3.2. Rolling Rainfall Intensity
2.4. Random Tree Classifier (RTC)
2.5. Logistic Regression (LR)
3. Results
3.1. Interpretation of Images and Assessment of Accuracy
3.2. Identification of Landslides through Image Interpretation
3.3. Development of a Model for Assessing Rainfall-Induced Landslide Susceptibility
3.3.1. Selection of Factors Associated with Landslide
Environmental Factors
- Elevation (El)
- Slope (Sl)
- Slope Roughness (Slr)
- Aspect (As)
- Surface Roughness (Tr)
- Distance from the River (Dr)
- Geology (Gs)
Slope Disturbance Factors
Rainfall Trigger Factors
3.3.2. Analysis of Slope Environmental Strength Potential
Correlation Analyses of Slope Environmental Strength Potential Factors
Results of the Analysis of Slope Environmental Strength Potential
3.3.3. Establishment of a Landslide Hazard Index
- IRL1: From the IRL values corresponding to the grid data of all rainfall-induced landslides in the study area, the value with a cumulative probability of 1% is selected (Weber’s method) and is indicated as IRL1. Grids with IRL values less than that of IRL1 have landslide probabilities of <1%.
- IRL10: From the IRL values corresponding to the grid data of all rainfall-induced landslides in the study area, the value with a cumulative probability of 10% is selected (Weber’s method) and is indicated as IRL10. Grids with IRL values between the values of IRL1 and IRL10 have landslide probabilities of 1%–10%.
- IRL90: Landslide and non-landslide grids with values less than that of IRL10 are excluded. From the IRL values corresponding to the remaining grids, the value with a cumulative probability of 90% (Weber’s method) is selected and indicated as IRL90. Grids with IRL values exceeding that of IRL90 have landslide probabilities of >90%.
- IRL10–IRL90: To determine a landslide probability corresponding to a comprehensive index between IRL10 and IRL90, the relationship between the aforementioned index and landslide probability can be expressed as shown in Equation (12).
4. Discussion
4.1. Correlation between Slope Environmental Strength Potential and Rainfall-Induced Landslide
4.2. Evaluation of Landslide Hazards to Land Use
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Disaster Management White Paper; Central Disaster Prevention and Response Council, Executive Yuan: Taipei, Taiwan, 2012.
- Lin, C.W.; Chang, W.S.; Liu, S.H.; Tsai, T.T.; Lee, S.P.; Tsang, Y.C.; Shieh, C.L.; Tseng, C.M. Landslides triggered by the 7 August 2009 Typhoon Morakot in Southern Taiwan. Eng. Geol. 2011, 123, 3–12. [Google Scholar] [CrossRef]
- National Disasters Prevention and Protection Commission. Typhoon Morakot Disaster Responses Reports from Typhoon Morakot Central Emergency Operating Center 74th Report, National Disasters Prevention and Protection Commission: New Taipei City, Taiwan, 2009.
- Jan, C.D.; Lee, M.H. A debris-flow rainfall-based warning model. J. Chin. Soil Water Conserv. 2004, 35, 275–285. [Google Scholar]
- Chen, Y.R.; Tsai, K.J.; Hsieh, S.C.; Ho, Y.L. Evaluation of Landslide Potential due to Land Use in the Slope. Electron. J. Geotech. Eng. 2015, 20, 4277–4292. [Google Scholar]
- Jan, C.D.; Yang, S.Y.; Su, Y.W.; Haung, W.S. Investigation about rainfall-induced shallow landslides in CYL and TWR watersheds, Taiwan. Environ. Earth Sci. 2016, 75, 898. [Google Scholar] [CrossRef]
- Tseng, C.M.; Chen, Y.R.; Wu, S.M. Scale and spatial distribution assessment of rainfall-induced landslides in a catchment with mountain roads. Nat. Hazards Earth Syst. Sci. 2018, 18, 687–708. [Google Scholar] [CrossRef]
- Chen, C.W.; Tung, Y.S.; Liou, J.J.; Li, H.C.; Cheng, C.T.; Chen, Y.M.; Oguchi, T. Assessing landslide characteristics in a changing climate in northern Taiwan. Catena 2019, 175, 263–277. [Google Scholar] [CrossRef]
- Lee, C.F.; Chou, H.T.; Wei, L.W.; Huang, W.K.; Chi, S.Y.; Chen, S.C.; Huang, W.C. Geomorphic Evolution of The Dong-Ao Peak Landslide, North Eastern Taiwan. J. Chin. Soil Water Conserv. 2014, 45, 174–183. [Google Scholar]
- Caracciolo, D.; Arnone, E.; Conti, F.L.; Noto, L.V. Exploiting historical rainfall and landslide data in a spatial database for the derivation of critical rainfall thresholds. Environ. Earth Sci. 2017, 76, 222. [Google Scholar] [CrossRef]
- Chen, S.C.; Wu, C.Y. Establishment of Landslide Susceptibility Early Warning Model in National Forest Areas Based on Geo-intrinsic and Hydro-extrinsic Factors. J. Chin. Soil Water Conserv. 2018, 49, 89–97. [Google Scholar]
- Shahabi, H.; Khezri, S.; Ahmad, B.B.; Hashim, M. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process frequency ratio and logistic regression models. Catena 2014, 115, 55–70. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Chau, K.T.; Chan, J.E. Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island. Landslides 2005, 2, 280–290. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J. Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada. Nat. Hazards 2007, 42, 75–89. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2007, 4, 33–41. [Google Scholar] [CrossRef]
- Sun, X.; Chen, J.; Bao, Y.; Han, X.; Zhan, J.; Peng, W. Landslide Susceptibility Mapping Using Logistic Regression Analysis along the Jinsha River and Its Tributaries Close to Derong and Deqin County, Southwestern China. ISPRS Int. J. Geo-Inf. 2018, 7, 438. [Google Scholar] [CrossRef]
- Wubalem, A.; Meten, M. Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Appl. Sci. 2020, 2, 807. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Sridhar, V. Landslide Susceptibility Analysis: A Logistic Regression Model Case Study in Coonoor, India. Hydrology 2021, 8, 41. [Google Scholar] [CrossRef]
- Pingtung County Government, Taiwan. 2022. Available online: https://www.pthg.gov.tw/en/Default.aspx (accessed on 1 October 2022).
- Central Weather Bureau. 2021. Available online: https://www.cwb.gov.tw/eng/ (accessed on 1 January 2021).
- Central Geological Survey, Ministry of Economic Affairs. 2022. Available online: https://www.moeacgs.gov.tw/ (accessed on 1 January 2022).
- Neipu Household Registration Office, Pingtung County Government, Taiwan. 2022. Available online: https://www.neipu.gov.tw/Default.aspx (accessed on 11 November 2022).
- Sandimen Township Office, Pingtung County Government, Taiwan. 2022. Available online: https://www.pthg.gov.tw/sandimen/Default.aspx (accessed on 11 November 2022).
- Wutai Township Office, Pingtung County Government, Taiwan. 2022. Available online: https://www.wutai.gov.tw/index.php (accessed on 11 November 2022).
- Maolin National Scenic Area Administration, Tourism Bureau, MOTC. 2022. Available online: https://www.maolin-nsa.gov.tw/EN/ (accessed on 11 November 2022).
- Lin, C.W.; Shieh, C.J.; Yuan, B.D.; Shieh, Y.C.; Huang, M.L.; Lee, S.Y. Impact of Chi-Chi earthquake on the occurrenceof landslides and debris flows: Example from the Chenyulan River watershed, Nantou, Taiwan. Eng. Geol. 2004, 71, 49–61. [Google Scholar] [CrossRef]
- ERDAS. ERDAS IMAGINE® Tour Guide; ERDAS World Headquarter: Atlanta, GA, USA, 2011. [Google Scholar]
- Seo, K.; Funasaki, M. Relationship between sediment disaster (mainly debris flow damage) and rainfall. Int. J. Erosion Control Eng. 1973, 26, 22–28. [Google Scholar]
- Chen, C.Y.; Chen, T.C.; Yu, F.C.; Yu, W.H.; Tseng, C.C. Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ. Geol. 2005, 47, 715–724. [Google Scholar] [CrossRef]
- ESRI. ArcGIS. 2019. Available online: https://www.esri.com/en-us/home (accessed on 1 September 2019).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000; ISBN 978-0-471-35632-5. [Google Scholar]
- Cox, D.R. The Analysis of Binary Data; Methuen: London, UK, 1970. [Google Scholar]
- Ohlmacher, G.C.; Davis, J.C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng. Geol. 2003, 69, 331–343. [Google Scholar] [CrossRef]
- Verbyla, D.L. Satellite Remote Sensing of Natural Resources; CRC Press: New York, NY, USA, 1995. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Chen, Y.R.; Chen, J.W.; Hsieh, S.C.; Ni, P.N. The Application of Remote Sensing Technology to the Interpretation of Land Use for Rainfall-Induced Landslides Based on Genetic Algorithms and Artificial Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 87–95. [Google Scholar] [CrossRef]
- Regulations of soil and water conservation, Soil and Water Conservation Bureau. 2022. Available online: https://www.ardswc.gov.tw/Home/eng/Info/item_list?mid=392 (accessed on 26 March 2024).
- ISRM. Rock Characterization, Testing and Monitoring; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Water Resources Agency, Ministry of Economic Affairs. 2021. Available online: https://www.wra.gov.tw/ (accessed on 1 January 2021).
- SPSS. SPSS 14.0 Brief Guide; SPSS Inc.: Chicago, IL, USA, 2005. [Google Scholar]
Image Shooting Date | Before/after Event | Image Resolution | Type | Location | X TWD97 | Y TWD97 |
---|---|---|---|---|---|---|
22 July 2009 | Before Typhoon Morakot | 8 m × 8 m | FS-2 | Upper left Bottom right | 211584 230432 | 2530416 2511176 |
9 May 2009 | ||||||
15 August 2009 | After Typhoon Morakot | 8 m × 8 m | ||||
11 January 2010 | ||||||
15 January 2013 | Before 0517 Rainfall | 8 m × 8 m | Upper left Bottom right | 211584 230424 | 2530408 2511184 | |
19 January 2013 | ||||||
3 June 2013 | After 0517 Rainfall Before Typhoon Soulik | 8 m × 8 m | ||||
29 June 2013 | ||||||
27 August 2013 | After Typhoon Soulik Before Typhoon Kongrey | 8 m × 8 m | ||||
11 September 2013 | ||||||
9 September 2013 | After Typhoon Kongrey | 10 m × 10 m | SPOT-5 | Upper left Bottom right | 211570 230440 | 2530430 2511160 |
Year | Rainfall Event | Resolution | Kappa | OA (%) |
---|---|---|---|---|
2009 | Before Typhoon Morakot | 8 m | 0.66 | 70.0 |
After Typhoon Morakot | 8 m | 0.70 | 73.0 | |
2013 | Before 0517 rainfall | 8 m | 0.69 | 72.5 |
After 0517 rainfall and before Typhoon Soulik | 8 m | 0.70 | 73.3 | |
After Typhoon Soulik and Before Typhoon Kongrey | 8 m | 0.78 | 79.5 | |
After Typhoon Soulik and Before Typhoon Kongrey | 10 m | 0.77 | 79.5 | |
After Typhoon Kongrey | 10 m | 0.74 | 76.5 |
Grade Range of Elevation (m) | Code |
---|---|
Above 2101 | 7 |
1751–2100 | 6 |
1401–1750 | 5 |
1051–1400 | 4 |
701–1050 | 3 |
351–700 | 2 |
Below 350 | 1 |
Slope Grade | Grade Range of Slope (%) | Code |
---|---|---|
7 | Above 100 | 7 |
6 | 50–100 | 6 |
5 | 40–55 | 5 |
4 | 30–40 | 4 |
3 | 15–30 | 3 |
2 | 5–15 | 2 |
1 | Below 5 | 1 |
Grade Range of Slope Roughness (°) | Code |
---|---|
Above 63.34 | 7 |
56.80–63.33 | 6 |
49.47–56.79 | 5 |
41.02–49.46 | 4 |
31.21–41.01 | 3 |
18.16–31.20 | 2 |
Below 18.15 | 1 |
Aspect | Inclination Angle (°) | Code |
---|---|---|
Flat ground | — | 1 |
Northeast | 22.5–67.5° | 2 |
East | 67.5–112.5° | 3 |
Southeast | 112.5–157.5° | 4 |
South | 157.5–202.5° | 5 |
Southwest | 202.5–247.5° | 6 |
West | 247.5–292.5° | 5 |
Northwest | 292.5–337.5° | 4 |
North | 337.5–0° 0–22.5° | 3 |
Grade Range of Surface Roughness (m) | Code |
---|---|
Above 2298.55 | 7 |
2114.26–2298.54 | 6 |
1849.33–2114.25 | 5 |
1457.87–1849.32 | 4 |
957.51–1457.86 | 3 |
417.63–957.50 | 2 |
Below 417.62 | 1 |
Grade Range of Distance from the River (m) | Code |
---|---|
Below 350 | 7 |
351–700 | 6 |
701–1050 | 5 |
1051–1400 | 4 |
1401–1750 | 3 |
1751–2100 | 2 |
Above 2101 | 1 |
Slope Disturbance Factor | Forest Density | Grassland Density | Farmland Planting Rate | Road Density | Building Density | Bare Density |
---|---|---|---|---|---|---|
Score | 1 | 2 | 3 | 4 | 5 | 6 |
Management Unit | Station Code | Station Name | EAR (mm) | |||
---|---|---|---|---|---|---|
Morakot | 0517 Rainfall | Soulik | Kongrey | |||
CWB | C0R100 | Weiliaoshan | 1437.03 | 85.46 | 248.38 | 417.93 |
C0R140 | Majia | 882.32 | – | – | – | |
C0S680 | Hongyeshan | 337.62 | 46.40 | 154.62 | 38.69 | |
C1R120 | Shangdewun | 1745.22 | 121.64 | – | 378.98 | |
C1V340 | Dajin | – | 168.74 | 129.19 | – | |
C1S820 | Jinfeng | 298.88 | 19.97 | 201.45 | 93.82 | |
C0R590 | Ligang | 466.82 | – | – | 233.36 | |
C0V310 | Meinong | 312.16 | 138.47 | – | 648.74 | |
C1R110 | Gusia | 492.67 | 269.31 | 87.05 | 263.33 | |
WRA | 01S210 | Zhiben-5 | 91.57 | 16.49 | 130.31 | 54.73 |
01Q910 | Ali | 1205 | 698.56 | 141.25 | 585.02 | |
01Q930 | Sandimen | 552.93 | 146.85 | 42.03 | 245.55 |
Management Unit | Station Code | Station Name | I3R,max (mm/3 h) | |||
---|---|---|---|---|---|---|
Morakot | 0517 Rainfall | Soulik | Kongrey | |||
CWB | C0R100 | Weiliaoshan | 274 | 68.5 | 78 | 183.5 |
C0R140 | Majia | 194 | – | – | – | |
C0S680 | Hongyeshan | 75 | 27.5 | 52.5 | 21 | |
C1R120 | Shangdewun | 206 | 83 | – | 153.5 | |
C1V340 | Dajin | – | 84 | 81 | – | |
C1S820 | Jinfeng | 199.5 | 12 | 108 | 25 | |
C0R590 | Ligang | 154.5 | – | – | 97 | |
C0V310 | Meinong | 114.5 | 61 | – | 176.5 | |
C1R110 | Gusia | 192 | 54 | 46.5 | 82 | |
WRA | 01S210 | Zhiben-5 | 78 | 15 | 81 | 14 |
01Q910 | Ali | 286 | 117 | 65 | 131 | |
01Q930 | Sandimen | 171 | 60 | 33 | 107 |
Elevation (El) | Slope (Sl) | Slope Roughness (Slr) | Surface Roughness (Tr) | IDC | ||
---|---|---|---|---|---|---|
Elevation (El) | Correlation | 1 | ||||
Significance (Two-tailed) | ||||||
N | 170,651 | |||||
Slope (Sl) | Correlation | 0.299 ** | 1 | |||
Significance (Two-tailed) | 0.000 | |||||
N | 170,651 | 170,651 | ||||
Slope Roughness (Slr) | Correlation | 0.473 ** | 0.731 ** | 1 | ||
Significance (Two-tailed) | 0.000 | 0.000 | ||||
N | 170,651 | 170,651 | 170,651 | |||
Surface Roughness (Tr) | Correlation | 1.000 ** | 0.299 ** | 0.473 ** | 1 | |
Significance (Two-tailed) | 0.000 | 0.000 | 0.000 | |||
N | 170,651 | 170,651 | 170,651 | 170,651 | ||
IDC | Correlation | −0.369 ** | −0.282 ** | −0.363 ** | −0.369 ** | 1 |
Significance (Two-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | ||
N | 170,651 | 170,651 | 170,651 | 170,651 | 170,651 |
Training | Testing | Overall | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predicted | Accuracy (%) | Predicted | Accuracy (%) | Predicted | Accuracy (%) | |||||
Non-landslide | Landslide | Non-landslide | Landslide | Non-landslide | Landslide | |||||
Actual | Non-landslide | 4021 | 1692 | 70.4 | 1787 | 712 | 71.5 | 105,419 | 57,025 | 64.9 |
Landslide | 1946 | 3831 | 66.3 | 858 | 1572 | 64.7 | 2391 | 5816 | 70.9 | |
Overall accuracy | 68.3 | 68.1 | 65.2 |
Accuracy | Training (%) | Testing (%) | Overall (%) | |
---|---|---|---|---|
Rainfall Event | ||||
Typhoon Morakot | 68.3 | 68.1 | 65.2 | |
0517 Rainfall | 83.8 | 84.3 | 83.5 | |
Typhoon Soulik | 86.2 | 86.4 | 87.3 | |
Typhoon Kongrey | 86.4 | 87.5 | 85.7 | |
Average accuracy | 81.2 | 81.6 | 80.4 |
Various IRL | IRL Value |
---|---|
IRL1 | 1417.30 |
IRL10 | 6563.47 |
IRL25 | 28,307.89 |
IRL50 | 64,548.59 |
IRL90 | 122,533.70 |
ISESP | Below IRL1 | IRL1–IRL10 | IRL10–IRL25 | IRL25–IRL50 | IRL50–IRL90 | Above IRL90 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Landslide | Non-landslide | Landslide Ratio | Landslide | Non-landslide | Landslide Ratio | Landslide | Non-landslide | Landslide Ratio | Landslide | Non-landslide | Landslide Ratio | Landslide | Non-landslide | Landslide Ratio | Landslide | Non-landslide | Landslide Ratio | |
0 < 0.05 | 18 | 11,097 | 0.00162 | 26 | 6317 | 0.00412 | 101 | 8528 | 0.01184 | |||||||||
0.05 < 0.10 | 53 | 2889 | 0.01835 | |||||||||||||||
0.10 < 0.15 | ||||||||||||||||||
0.15 < 0.20 | 196 | 4564 | 0.04294 | |||||||||||||||
0.20 < 0.25 | ||||||||||||||||||
0.25 < 0.30 | 56 | 3987 | 0.01405 | |||||||||||||||
0.30 < 0.35 | 184 | 1629 | 0.11295 | |||||||||||||||
0.35 < 0.40 | ||||||||||||||||||
0.40 < 0.45 | ||||||||||||||||||
0.45 < 0.50 | 20 | 317 | 0.06309 | |||||||||||||||
0.50 < 0.55 | ||||||||||||||||||
0.55 < 0.60 | ||||||||||||||||||
0.60 < 0.65 | ||||||||||||||||||
0.65 < 0.70 | ||||||||||||||||||
0.70 < 0.75 | 63 | 507 | 0.12426 | 51 | 148 | 0.34459 | ||||||||||||
0.75 < 0.80 | ||||||||||||||||||
0.80 < 0.85 | 57 | 318 | 0.17925 | |||||||||||||||
0.85 < 0.90 | 55 | 368 | 0.14946 | 1 | 7 | 0.14286 | 22 | 19 | 1.15789 | |||||||||
0.90 < 0.95 | 27 | 131 | 0.20611 | 5 | 12 | 0.41667 | 17 | 6 | 2.83333 | |||||||||
0.95 < 1.00 | 255 | 294 | 0.86735 | 157 | 129 | 1.21705 | 29 | 17 | 1.70588 | 3 | 0 | 3 |
Hazard Interval | Average Landslide Ratio | Hazard Value |
---|---|---|
Interval Ⅷ | 0.001 | 0.00001 |
Interval Ⅶ | 0.004 | 0.00083 |
Interval Ⅵ | 0.022 | 0.00673 |
Interval Ⅴ | 0.125 | 0.04142 |
Interval Ⅳ | 0.39 | 0.1296 |
Interval Ⅲ | 0.93 | 0.30981 |
Interval Ⅱ | 2.27 | 0.7564 |
Interval Ⅰ | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, C.-M.; Chen, Y.-R.; Tsai, C.-Y.; Hsieh, S.-C. An Integration of Logistic Regression and Geographic Information System for Development of a Landslide Hazard Index to Land Use: A Case Study in Pingtung County in Southern Taiwan. Water 2024, 16, 1038. https://doi.org/10.3390/w16071038
Tseng C-M, Chen Y-R, Tsai C-Y, Hsieh S-C. An Integration of Logistic Regression and Geographic Information System for Development of a Landslide Hazard Index to Land Use: A Case Study in Pingtung County in Southern Taiwan. Water. 2024; 16(7):1038. https://doi.org/10.3390/w16071038
Chicago/Turabian StyleTseng, Chih-Ming, Yie-Ruey Chen, Ching-Ya Tsai, and Shun-Chieh Hsieh. 2024. "An Integration of Logistic Regression and Geographic Information System for Development of a Landslide Hazard Index to Land Use: A Case Study in Pingtung County in Southern Taiwan" Water 16, no. 7: 1038. https://doi.org/10.3390/w16071038
APA StyleTseng, C. -M., Chen, Y. -R., Tsai, C. -Y., & Hsieh, S. -C. (2024). An Integration of Logistic Regression and Geographic Information System for Development of a Landslide Hazard Index to Land Use: A Case Study in Pingtung County in Southern Taiwan. Water, 16(7), 1038. https://doi.org/10.3390/w16071038