Evaluation of Physicochemical Parameters, Carbamazepine and Diclofenac as Emerging Pollutants in the Machángara River, Quito, Ecuador
Abstract
:1. Introduction
2. Experimental
2.1. Study Area
2.2. Sampling
2.3. Chemicals
2.4. Methods
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Metals
3.3. Carbamazepine and Diclofenac
3.3.1. Carbamazepine
3.3.2. Diclofenac
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, G.S.; Orbán, A. Water is life, life is water: (Un) sustainable use and management of water in the 21st century. Corvinus J. Sociol. Soc. Policy 2018, 9, 81–100. [Google Scholar]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R. Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water 2020, 12, 169. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Fox, K.R. Water treatment and equipment decontamination techniques. J. Contemp. Water Res. Educ. 2009, 129, 5. [Google Scholar] [CrossRef]
- Zuluaga-Gomeza, J.; Bonaverib, P.; Zuluagab, D.; Álvarez-Peñaa, C.; Ramirez-Ortiza, N. Techniques for water disinfection, decontamination and desalinization: A review. Desalin. Water Treat 2020, 181, 47–63. [Google Scholar] [CrossRef]
- Bi, J.; Tao, Q.; Huang, X.; Wang, J.; Wang, T.; Hao, H. Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. Chemosphere 2021, 284, 131270. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Borthakur, A.; Singh, R.; Bhadouria, R.; Singh, V.K.; Devi, P. A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundw. Sustain. Dev. 2021, 14, 100607. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Gowda, G.B.; Adak, T.; Guru-Pirasanna-Pandi, G.; Patil, N.B.; Annamalai, M.; Rath, P.C. Pesticides occurrence in water sources and decontamination techniques. In Pesticides-Updates on Toxicity, Efficacy and Risk Assessment; IntechOpen: London, UK, 2022. [Google Scholar]
- Méndez, G.; Vásquez, K.; Coyago, E. Bacteria Identification in Machángara River Water Capable of Metabolizing Emerging Estrone Pollutant. In Communication, Smart Technologies, and Innovation for Society: Proceedings of CITIS 2021; Springer Singapore: Singapore, 2021; pp. 21–30. [Google Scholar]
- Pare, S.; Bonzi-Coulibaly, L.Y. Water quality issues in West and Central Africa: Present status and future challenges. IAHS Publ. 2013, 361, 87–95. [Google Scholar]
- Li, C.; Wu, K.; Chen, L.; Liu, Z.; Zhao, X.; Li, Y.; Hu, M.; Zhao, Q.; Ye, Z. Advanced treatment of low-pollution and poor biodegradability sewage by combined process. J. Clean. Prod. 2023, 414, 137366. [Google Scholar] [CrossRef]
- Zhang, B.; Ning, D.; Yang, Y.; Van Nostrand, J.D.; Zhou, J.; Wen, X. Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants. Water Res. 2020, 169, 115276. [Google Scholar] [CrossRef]
- Patel, N.; Khan, M.D.; Shahane, S.; Rai, D.; Chauhan, D.; Kant, C.; Chaudhary, V.K. Emerging pollutants in aquatic environment: Source, effect, and challenges in biomonitoring and bioremediation-a review. Pollution 2020, 6, 99–113. [Google Scholar]
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and fate of emerging pollutants in water environment and options for their removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A review on emerging pollutants in the water environment: Existences, health effects and treatment processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Jjemba, P.K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol. Environ. Saf. 2006, 63, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Balakrishna, K.; Joshua, D.I.; Kannan, K. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 2017, 167, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Shankar, P.R.; Partha, P.; Nagesh, S. Prescribing patterns in medical outpatients. Int. J. Clin. Pract. 2002, 56, 549–551. [Google Scholar] [CrossRef]
- Poot, E.; Nelson, K.; Taylor, D.; Weatherall, M. Antimicrobial prescribing in New Zealand: Medical versus non-medical prescribing practices. In Proceedings of the Pharmacology Conference, Wellington, New Zealand, 16 December 2019. [Google Scholar]
- Aydin, S.; Aydin, M.E.; Ulvi, A. Monitoring the release of anti-inflammatory and analgesic pharmaceuticals in the receiving environment. Environ. Sci. Pollut. Res. 2019, 26, 36887–36902. [Google Scholar] [CrossRef]
- Santos, L.H.; Gros, M.; Rodriguez-Mozaz, S.; Delerue-Matos, C.; Pena, A.; Barceló, D.; Montenegro, M.C.B. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Sci. Total Environ. 2013, 461, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Vieira, Y.; Pereira, H.A.; Leichtweis, J.; Mistura, C.M.; Foletto, E.L.; Oliveira, L.F.; Dotto, G.L. Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation. Sci. Total Environ. 2021, 783, 146991. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, M.V.; Cipriani-Avila, I.; Jara-Negrete, E.; Acosta-López, S.; Acosta, B.; Pérez-González, A.; Molinero, J.; Pinos-Vélez, V. Emerging contaminants in the northeast Andean foothills of Amazonia: The case of study of the city of Tena, Napo, Ecuador. Bull. Environ. Contam. Toxicol. 2021, 107, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Cipriani-Avila, I.; Molinero, J.; Cabrera, M.; Medina-Villamizar, E.J.; Capparelli, M.V.; Jara-Negrete, E.; Pinos-Velez, V.; Acosta, S.; Andrade, D.L.; Barrado, M.; et al. Occurrence of emerging contaminants in surface water bodies of a coastal province in Ecuador and possible influence of tourism decline caused by COVID-19 lockdown. Sci. Total Environ. 2023, 866, 161340. [Google Scholar] [CrossRef] [PubMed]
- Quilumbaqui, C. Determinación de la Concentración de Elementos Mayores en Dieciocho Ríos de la Provincia de Pichincha, Ecuador. Trabajo de Titulación Presentado Como Requisito Para la Obtención del Título: Ingeniero Ambiental. Universidad San Francisco de Quito. 2017. Available online: http://repositorio.usfq.edu.ec/bitstream/23000/7047/1/135154.pdf (accessed on 17 August 2020).
- SGI. Sistema de Gestión Integral. Consumos de Medicamentos Esenciales. Subsecretaría de Gobernanza de la Salud Pública. Dirección Nacional de Medicamentos y Dispositivos Médicos. Quito-Ecuador. 2017. Available online: https://www.conasa.gob.ec/biblioteca-conasa/CNMB-XI/Libro-Cuadro-Medicamentos-Basicos-11a-revision-2022.pdf/ (accessed on 18 August 2020).
- Bahlmann, A.; Brack, W.; Schneider, R.J.; Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 2014, 57, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Huber, C.; Preis, M.; Harvey, P.J.; Grosse, S.; Letzel, T.; Schröder, P. Emerging pollutants and plants–metabolic activation of diclofenac by peroxidases. Chemosphere 2016, 146, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2018, 90, 398–428. [Google Scholar] [CrossRef]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Chaminda, G.T.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Kasonga, T.K.; Coetzee, M.A.; Kamika, I.; Ngole-Jeme, V.M.; Momba, M.N.B. Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. J. Environ. Manag. 2021, 277, 111485. [Google Scholar] [CrossRef]
- Daughton, C.G. Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 2004, 24, 711–732. [Google Scholar] [CrossRef]
- Halden, R.U.; Paull, D.H. Co-occurrence of triclocarban and triclosan in US water resources. Environ. Sci. Technol. 2005, 39, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a sustainable resource and generator of secondary resources in the 21st century: Stressors, threats, risks, management and protection strategies, and conservation approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Bhattacharya, A.J.A.W.S. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef]
- Weerasooriya, R.R.; Liyanage, L.P.K.; Rathnappriya, R.H.K.; Bandara, W.B.M.A.C.; Perera, T.A.N.T.; Gunarathna, M.H.J.P.; Jayasinghe, G.Y. Industrial water conservation by water footprint and sustainable development goals: A review. Environ. Dev. Sustain. 2021, 23, 12661–12709. [Google Scholar] [CrossRef]
- Gil, M.I.; Selma, M.V.; López-Gálvez, F.; Allende, A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. Int. J. Food Microbiol. 2009, 134, 37–45. [Google Scholar] [CrossRef]
- Sakthivadivel, M.; Nirmala, A.; Sakthivadivel, J.; Mukhilan, R.R.; Tennyson, S. Physicochemical and biological parameters of water at industrial sites of metropolitan city of Chennai, Tamil Nadu, India. Water Conserv. Manag. 2020, 4, 90–98. [Google Scholar] [CrossRef]
- Jerves-Cobo, R.; Everaert, G.; Iñiguez-Vela, X.; Córdova-Vela, G.; Díaz-Granda, C.; Cisneros, F.; Nopens, I.; Goethals, P.L.M. A methodology to model environmental preferences of EPT taxa in the Machángara river basin (Ecuador). Water 2017, 9, 195. [Google Scholar] [CrossRef]
- Herrera, I.A.; Burneo, P.C. Environmental flow assessment in Andean rivers of Ecuador, case study: Chanlud and El Labrado dams in the Machángara River. Ecohydrol. Hydrobiol. 2017, 17, 103–112. [Google Scholar] [CrossRef]
- Veintimilla-Reyes, J.; De Meyer, A.; Cattrysse, D.; Tacuri, E.; Vanegas, P.; Cisneros, F.; Van Orshoven, J. MILP for optimizing water allocation and reservoir location: A case study for the Machángara river basin, Ecuador. Water 2019, 11, 1011. [Google Scholar] [CrossRef]
- EPMAPS. Memoria de Sostenibilidad 2016. Alcaldía de Quito. 2016. Available online: https://www.aguaquito.gob.ec/wp-content/uploads/2017/06/MEMORIA-DE-SOSTENIBILIDAD-AGUA-DE-QUITO-2016.pdf (accessed on 17 August 2020).
- Vizcaíno, I.P.; Carrera, E.V.; Sanromán-Junquera, M.; Muñoz-Romero, S.; Luis Rojo-Alvarez, J.; Cumbal, L.H. Spatio-temporal analysis of water quality parameters in Machángara river with nonuniform interpolation methods. Water 2016, 8, 507. [Google Scholar] [CrossRef]
- Ortega-Paredes, D.; Barba, P.; Mena-López, S.; Espinel, N.; Crespo, V.; Zurita, J. High quantities of multidrug-resistant Escherichia coli are present in the Machángara urban river in Quito, Ecuador. J. Water Health 2020, 18, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Territorial Arrangement Planning. Secretaría de Territorio, Hábitat y Vivienda 2012–2022. Distrito Metropolitano de Quito. 2012–2022. Available online: https://www.quito.gob.ec/documents/96rticulac_cuentas/AZC/96rticulación_politicas_publicas/PLAN_ORDENAMIENTO_TERRITORIAL2012.pdf (accessed on 18 August 2020).
- ASTEC. Río Machángara: Historia, Nacimiento y Todo lo Que Desconoce. Ríos del Planeta. 2020. Available online: https://riosdelplaneta.com/rio-machangara/ (accessed on 18 August 2020).
- Borja-Serrano, P.; Ochoa-Herrera, V.; Maurice, L.; Morales, G.; Quilumbaqui, C.; Tejera, E.; Machado, A. Determination of the microbial and chemical loads in rivers from the Quito capital province of Ecuador (Pichincha)—A preliminary analysis of microbial and chemical quality of the main rivers. Int. J. Environ. Res. Public Health 2020, 17, 5048. [Google Scholar] [CrossRef] [PubMed]
- NTC ISO 5667-1:2010. Calidad del Agua. Muestreo. Parte 1: Directrices Para el Diseño de Programas de Muestreo. Available online: https://tienda.icontec.org/gp-calidad-del-agua-muestreo-parte-1-directrices-para-el-diseno-de-programas-y-tecnicas-de-muestreo-ntc-iso5667-1-2010.html (accessed on 18 August 2020).
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF): Washington, DC, USA, 2012; Parts 2000, 3000, and 4000. [Google Scholar]
- U.S. EPA. Method 300.1: Determination of Inorganic Anions in Drinking Water by Ion Chromatography; Revision 1.0.; U.S. EPA: Cincinnati, OH, USA, 1997. [Google Scholar]
- Al-Hadithi, N.; Saad, B.; Grote, M. A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen, and car-bamazepine in river water. Microchim. Acta 2011, 172, 31–37. [Google Scholar]
- Kubitza, F. El Parámetro de Calidad del Agua a Menudo Ignorado: pH. Global Aquaculture Alliance. Jundiai/SP-España. 2017. Available online: https://www.aquaculturealliance.org/advocate/el-parametro-de-calidad-del-agua-a-menudo-ignorado-ph/ (accessed on 19 August 2020).
- Tulsma. Anexo 1 Del Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente: Norma de Calidad Ambiental y de Descarga de Efluentes al Recurso Agua. Norma de Calidad Ambiental y de Descarga de Efluentes: Recurso Agua. Reforma Texto Unificado Legislación Secundaria, Medio Ambiente, Libro VI, Decreto Ejecutivo 3516, Registro Oficial Suple-mento 2. Acuerdo Ministerial. 2015. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/Acuerdo-097.pdf (accessed on 20 August 2020).
- Tulsma. Revisión del Anexo 1 del Libro VI del Texto Unificado de legislación Secundaria Del Ministerio del Ambiente: Norma de Calidad Ambiental y de Descarga de Efluentes al Recurso Agua. Revisión y Actualización de la Norma De Calidad Ambiental y de descarga de Efluentes: Recurso Agua. 2016. Available online: http://www.cip.org.ec/attachments/article/1579/PROPUESTA%20ANEXO%201.pdf (accessed on 21 August 2020).
- Durfor, C.N.; Becker, E. Public Water Supplies of the 100 Largest Cities in the United States, 1962 (No. 1812); US Government Printing Office: Washington, DC, USA, 1964. [Google Scholar]
- Hessen, D.O.; Hindar, A.; Holtan, G. The significance of nitrogen runoff for eutrophication of freshwater and marine recipients. Ambio 1997, 26, 312–320. [Google Scholar]
- Cabrera, E.; Hernández, L.; Gómez, H.; Cañizares, M. Determinación de nitratos y nitritos en agua: Comparación de costos entre un método de flujo continuo y un método estándar. Rev. Soc. Química México 2003, 47, 88–92. [Google Scholar]
- Amoako, J.; Karikari, A.Y.; Ansa-Asare, O.D.; Adu-Ofori, E. Water quality characteristics of Densu River basin in south-east Ghana. Water Sci. Technol. 2010, 61, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.E. The phosphate story. J. Food Prot. 1972, 35, 597–603. [Google Scholar]
- Chapman, D. Water Quality Assessment: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; Chapman and Hall: London, UK, 1996; p. 585. [Google Scholar]
- Roberge, P.R. Corrosion Inspection and Monitoring; John Wiley Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Alobaidi, R.A.K.; Ulucan-Altuntas, K.; Mhemid, R.K.S.; Manav-Demir, N.; Cinar, O. Biodegradation of emerging pharmaceuticals from domestic wastewater by membrane bioreactor: The effect of solid retention time. Int. J. Environ. Res. Public Health 2021, 18, 3395. [Google Scholar] [CrossRef] [PubMed]
- Tixier, C.; Singer, H.P.; Oellers, S.; Müller, S.R. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ. Sci. Technol. 2003, 37, 1061–1068. [Google Scholar] [CrossRef]
- Zhou, X.F.; Dai, C.M.; Zhang, Y.L.; Surampalli, R.Y.; Zhang, T.C. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China. Environ. Monit. Assess. 2011, 173, 45–53. [Google Scholar] [CrossRef]
- Voloshenko-Rossin, A.; Gasser, G.; Cohen, K.; Gun, J.; Cumbal-Flores, L.; Parra-Morales, W.; Sarabia, F.; Ojeda, F.; Lev, O. Emerging pollutants in the Esmeraldas watershed in Ecuador: Discharge and attenuation of emerging organic pollutants along the San Pedro–Guayllabamba–Esmeraldas rivers. Environ. Sci. Process. Impacts 2015, 17, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A. Cuantificación de Carbamazepina en Efluentes Hospitalarios por Cromatografía de Líquidos de Alta Resolución y Determinación de la Cinética de Degradación. Master’s Thesis, Universidad Autónoma de México (UNAM), Mexico City, Mexico, 2018. [Google Scholar]
- Rodrigues, P.; Guimarães, L.; Carvalho, A.P.; Oliva-Teles, L. Carbamazepine, venlafaxine, tramadol, and their main metabolites: Toxicological effects on zebrafish embryos and larvae. J. Hazard. Mater. 2023, 44, 130909. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Araújo, A.; Fachini, A.; Peña, A.; Delerue-Matos, C. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2020, 175, 45–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Hanif, H.; Waseem, A.; Kali, S.; Qureshi, N.A.; Majid, M.; Iqbal, M.; Ur-Rehman, T.; Tahir, M.; Yousaf, S.; Zafar, M.I. Environmental risk assessment of diclofenac residues in surface waters and wastewater: A hidden global threat to aquatic ecosystem. Environ. Monit. Assess. 2020, 192, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, P.; Meena, R.A.A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F.L. Occurrence, interactive effects, and ecological risk of diclofenac in environmental compartments and biota-a review. Sci. Total Environ. 2020, 698, 134057. [Google Scholar] [CrossRef] [PubMed]
- González-González, R.B.; Sharma, P.; Singh, S.P.; Américo-Pinheiro, J.H.P.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M. Persistence, environmental hazards, and mitigation of pharmaceutically active residual contaminants from water matrices. Sci. Total Environ. 2022, 821, 153329. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H.; Negele, R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 2004, 68, 141–150. [Google Scholar]
- Triebskorn, R.; Casper, H.; Heyd, A.; Eikemper, R.; Köhler, H.R.; Schwaiger, J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects in liver, kidney, gills, and intestine of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2004, 68, 151–166. [Google Scholar] [CrossRef]
Point | Identification Code | Coordinates (UTM) | Locations | |
---|---|---|---|---|
North (m) | East (m) | |||
1 | T1 | 9,966,694.740 | 772,071.393 | Wastewater Treatment Plant (WWTP) entrance |
2 | T2 | 9,966,694.740 | 772,071.393 | Wastewater Treatment Plant (WWTP) exit |
3 | T3 | 9,971,692.545 | 775,429.148 | Hospital del Sur |
4 | T4 | 9,971,613.600 | 775,424.500 | El Recreo (R. Torres) |
5 | T5 | 9,973,317.587 | 775,757.796 | Villaflora (Av. Chávez) |
6 | T6 | 9,974,181.580 | 776,725.057 | Puente Sena |
7 | T7 | 9,976,804.729 | 780,897.876 | La Tolita |
8 | T8 | 9,978,056.787 | 781,834.774 | Guápulo |
9 | T9 | 9,978,512.478 | 784,240.642 | Av. Guayasamín |
10 | T10 | 9,979,506.740 | 787,747.701 | Cumbayá |
Parameter | Chemical Reagent | Trademark | Purity |
---|---|---|---|
pH | Buffer Solution | Millipore | - |
Conductivity | Conductivity standard | Oakton | 1413 µS/cm |
Hardness | EDTA | LobaChemie | 99.0% |
Magnesium sulphate | Merck | 99.0% | |
Ammonium chloride | LobaChemie | 99.5% | |
Ammonium hydroxide | Fisher Chemical | 25.0% | |
Eriochrome black | Merck | 99.0% | |
Anions | Powder Pillows: NitraVer 5, NitriVer 3, SulphaVer, PhosphaVer | Hach | - |
Heavy metals | Standard sol: Cu, Ni, Zn, Fe | Inorganic ventures | 1000 ppm |
Nitric acid | Fisher Chemical | 98.0% | |
Hydrochloric acid | Fisher Chemical | 37.0% | |
CBZ, DIC | CBZ and DIC | Sigma Aldrich | 99.9% |
Methanol HPLC | Scharlau | 99.9% | |
Acetonitrile | Merck | 99.0% | |
Ammonium phosphate | PanReac | 98.0% |
Parameter | Method | Equipment |
---|---|---|
Temperature | SM 2550 B | pHmeter Mettler Toledo |
Hydrogen Potential | SM 4500-H+ B2 | pHmeter Mettler Toledo |
Electric Conductivity | SM 2510 B | Conductimeter Metrohm CH-9100 |
Turbidity Hardness TSS, TDS, TS | USEPA 180.1 2340 C SM 2540D, SM 2540C | Portable Turbidimeter, HACH 2100Q Titration method Spectrophotometer, HACH DR/850 |
Anions | USEPA 300.1 | Dionex Chromatograph, ICS 1100 RFIC |
Cations | SM 3500 | AA Perkin Elmer Analyst 800 |
Standard Concentrations CBZ (mg/L) | Peak Area (mAU.min) |
---|---|
0.00 | 0.0000 |
0.10 | 0.1590 |
0.50 | 0.2768 |
1.00 | 0.7777 |
2.50 | 1.3649 |
5.00 | 2.8610 |
10.00 | 5.5248 |
Concentration Standards DIC (mg/L) | Peak Area (mAU.min) |
---|---|
0.00 | 0.0000 |
0.10 | 0.9672 |
0.50 | 1.4326 |
1.00 | 2.0489 |
5.00 | 10.6521 |
10.00 | 17.9854 |
50.00 | 73.6901 |
Parameter | CBZ | DIC |
---|---|---|
Flow (mL/min) | 0.80 | 0.40 |
Run time (min) | 4.00 | 4.00 |
Mobile phase | Acetonitrile:Monobasic Phosphate 0.6 mM (58:42) | Methanol:Water (60:40) |
Wavelength (nm) | 288 | 220 |
Injection volume (µL) | 20 | 20 |
(a) | |||||||
---|---|---|---|---|---|---|---|
Sampling Point | Temp (°C) | pH | TDS (mg/L) | TSS (mg/L) | TS (mg/L) | Turbidity (NTU) | Hardness (mg/L) |
T1 | 16.30 | 6.79 | 1056.5 | 183.50 | 1240.0 | 238.00 | 132.00 |
T2 | 17.09 | 7.04 | 912.00 | 8.00 | 920.00 | 11.00 | 112.00 |
T3 | 16.50 | 7.17 | 311.00 | 59.75 | 370.75 | 54.00 | 136.50 |
T4 | 16.10 | 7.46 | 154.25 | 143.00 | 297.25 | 139.25 | 115.00 |
T5 | 16.83 | 6.83 | 459.48 | 60.25 | 519.73 | 67.50 | 130.00 |
T6 | 16.84 | 6.64 | 313.00 | 90.50 | 403.50 | 101.50 | 123.00 |
T7 | 17.20 | 6.96 | 391.50 | 57.00 | 448.50 | 64.25 | 126.00 |
T8 | 16.85 | 6.94 | 498.50 | 68.50 | 567.00 | 78.00 | 138.00 |
T9 | 18.30 | 7.39 | 474.75 | 30.50 | 505.25 | 42.50 | 135.00 |
T10 | 18.24 | 7.46 | 383.75 | 27.75 | 411.50 | 238.00 | 127.00 |
(b) | |||||||
Sampling Point | Cl− (mg/L) | NO3− (mg/L) | NO2− (mg/L) | SO42− (mg/L) | PO4−P (mg/L) | ||
T1 | 75.98 | 53.75 | 0.22 | 110.00 | 5.25 | ||
T2 | 87.97 | 27.75 | 0.03 | 91.00 | 4.15 | ||
T3 | 61.98 | 130.75 | 0.69 | 34.00 | 16.58 | ||
T4 | 50.98 | 264.00 | 2.02 | 60.00 | 13.48 | ||
T5 | 45.99 | 288.25 | 0.47 | 47.75 | 12.35 | ||
T6 | 59.48 | 155.50 | 2.30 | 50.50 | 12.38 | ||
T7 | 49.48 | 168.50 | 2.02 | 51.00 | 12.18 | ||
T8 | 46.99 | 274.50 | 2.81 | 51.50 | 14.53 | ||
T9 | 46.49 | 72.25 | 5.42 | 39.75 | 8.58 | ||
T10 | 44.49 | 132.00 | 0.27 | 34.75 | 12.98 |
Sampling Points | Cu2+ (mg/L) | Ni2+ (mg/L) | Zn2+ (mg/L) | Fe3+ (mg/L) |
---|---|---|---|---|
T1 | 0.072 | 0.050 | 0.020 | 0.096 |
T2 | 0.002 | 0.001 | 0.001 | ND |
T3 | 0.061 | 0.037 | 0.008 | 0.173 |
T4 | 0.057 | 0.036 | 0.011 | 0.101 |
T5 | 0.063 | 0.045 | 0.006 | 0.146 |
T6 | 0.071 | 0.041 | 0.007 | 0.079 |
T7 | 0.050 | 0.038 | 0.010 | 0.287 |
T8 | 0.053 | 0.034 | 0.009 | 0.226 |
T9 | 0.042 | 0.036 | 0.007 | 0.128 |
T10 | 0.049 | 0.035 | 0.007 | 0.106 |
Sampling Point | Sampling 1 (mg/L) | Sampling 2 (mg/L) | Sampling 3 (mg/L) | Sampling 4 (mg/L) | Average (mg/L) |
---|---|---|---|---|---|
T1 | 0.0500 | 0.0500 | 0.0500 | 0.0500 | 0.0500 |
T2 | <LOD | <LOD | <LOD | <LOD | <LOD |
T3 | 0.1156 | 0.1127 | 0.1168 | 0.1165 | 0.1154 |
T4 | >LOQ | 0.1044 | 0.1008 | 0.1010 | 0.1021 |
T5 | >LOQ | 0.1104 | 0.1007 | 0.1020 | 0.1043 |
T6 | >LOQ | >LOQ | >LOQ | >LOQ | >LOQ |
T7 | >LOQ | >LOQ | >LOQ | >LOQ | >LOQ |
T8 | 0.1169 | 0.1257 | 0.1168 | 0.1175 | 0.1192 |
T9 | >LOQ | >LOQ | 0.1089 | 0.1014 | 0.1052 |
T10 | 0.1226 | 0.1323 | 0.1078 | 0.1056 | 0.1171 |
Sampling Point | Sampling 1 (mg/L) | Sampling 2 (mg/L) | Sampling 3 (mg/L) | Sampling 4 (mg/L) | Average (mg/L) |
---|---|---|---|---|---|
T1 | 48.0525 | 48.0525 | 48.0525 | 48.0525 | 48.0525 |
T2 | 14.0678 | 14.6804 | 13.8976 | 13.5167 | 14.0406 |
T3 | 13.5099 | >LOQ | 7.2056 | 10.7143 | 10.4766 |
T4 | >LOQ | 13.0616 | 6.5201 | 8.3735 | 9.3184 |
T5 | 20.2605 | 5.5340 | 7.0886 | >LOD | 10.9610 |
T6 | >LOQ | 12.1573 | 9.8988 | 12.7580 | 11.6047 |
T7 | 13.1251 | >LOQ | 11.3766 | 14.1903 | 12.8973 |
T8 | 14.7468 | 9.5558 | >LOQ | 10.7142 | 11.6723 |
T9 | >LOQ | 10.6691 | 10.5013 | >LOQ | 10.5852 |
T10 | >LOQ | >LOQ | >LOQ | >LOQ | >LOQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarra, R.; Bolaños-Guerrón, D.; Cumbal-Flores, L. Evaluation of Physicochemical Parameters, Carbamazepine and Diclofenac as Emerging Pollutants in the Machángara River, Quito, Ecuador. Water 2024, 16, 1026. https://doi.org/10.3390/w16071026
Ibarra R, Bolaños-Guerrón D, Cumbal-Flores L. Evaluation of Physicochemical Parameters, Carbamazepine and Diclofenac as Emerging Pollutants in the Machángara River, Quito, Ecuador. Water. 2024; 16(7):1026. https://doi.org/10.3390/w16071026
Chicago/Turabian StyleIbarra, Raquel, Darío Bolaños-Guerrón, and Luis Cumbal-Flores. 2024. "Evaluation of Physicochemical Parameters, Carbamazepine and Diclofenac as Emerging Pollutants in the Machángara River, Quito, Ecuador" Water 16, no. 7: 1026. https://doi.org/10.3390/w16071026
APA StyleIbarra, R., Bolaños-Guerrón, D., & Cumbal-Flores, L. (2024). Evaluation of Physicochemical Parameters, Carbamazepine and Diclofenac as Emerging Pollutants in the Machángara River, Quito, Ecuador. Water, 16(7), 1026. https://doi.org/10.3390/w16071026