Water–Energy–Nutrients Nexus of Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Water–Nutrients Nexus in Buildings
3.2. Energy–Nutrients Nexus in Buildings
3.3. Water–Energy Nexus in Buildings
- (1)
- For washbasin taps (and bidets): 1 min per use and five uses per person and per day;
- (2)
- For kitchen taps: 1 min per use and five uses per person and per day;
- (3)
- For showers: 7 min per use and one use per person and per day.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seko, K.; Solecki, W.; Griffith, C. The Routledge Handbook of Urbanization and Global Environment Change; Routledge: Oxford, UK, 2015; 606p. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn 2011 Nexus Conference; Stockholm Environmental Institute: Stockholm, Switzerland, 2011. [Google Scholar]
- Biggs, E.; Bruce, E.; Boruff, B.; Duncan, J.; Horseley, J.; Natasha, P.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water-energy-food-nexus. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Bieber, N.; Ker, J.; Wang, X.; Triantafyllidis, C.; Van Dam, K.; Koppelaar, R.; Shah, N. Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy 2018, 113, 584–607. [Google Scholar] [CrossRef]
- Saladini, F.; Ferragina, E.; Bouraoui, F. Linking the water-energy-food nexus and sustainable development indicators for the Mediterranean region. Ecol. Indic. 2018, 91, 689–697. [Google Scholar] [CrossRef]
- The World Economic Forum. Water Security: The Water-Food-Energy Climate Nexus; World Economic Forum: New York, NY, USA, 2011; 272p. [Google Scholar]
- United Nations (UN). The Future We Want; United Nations (UN): New York, NY, USA, 2012; 53p. [Google Scholar]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/; United Nations General Assembly: New York, NY, USA, 2015; 41p. [Google Scholar]
- Urbinatti, A.; Lazaro, L.; Carvalho, C.; Giatti, L. The conceptual basis of water-energy-food nexus governance: Systematic literature review using network and discourse analysis. J. Integr. Environ. Sci. 2020, 17, 21–43. [Google Scholar] [CrossRef]
- Lee, M.; Keller, A.; Chiang, P.; Den, W.; Wang, H.; Hou, C.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus for urban water systems. A comparative review on energy intensity and environmental impacts in relation to global water risks. Energy 2017, 205, 589–601. [Google Scholar] [CrossRef]
- FAO: AQUASTAT. Food and Agriculture Organization of the United Nations. AQUASTAT—FAO’s Global Information System on Water and Agriculture. Available online: https://www.fao.org/aquastat/en/resources/publications/reports (accessed on 2 October 2023).
- UNESCO: UN. World Water Development Report (WWDR); United Nations Educational, Scientific and Cultural Organization: New York, NY, USA, 2021; 187p. [Google Scholar]
- Artioli, F.; Acuto, M.; MCArthur, J. The water-energy-food nexus: An integration agenda and implications for urban governance. Political Geogr. 2017, 61, 215–223. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; McPhearson, T.; Davison, D. The food-energy-water nexus and urban complexity. Nat. Clim. Chang. 2017, 7, 233–235. [Google Scholar] [CrossRef]
- Covarrubias, M. The nexus between water, energy and food in cities towards conceptualization socio-material interconnections. Sustain. Sci. 2019, 14, 277–287. [Google Scholar] [CrossRef]
- Heard, B.; Miller, S.; Liang, S.; Xu, M. Emerging challenges and opportunities for the food-energy-water nexus in urban systems. Curr. Opin. Chem. Eng. 2017, 17, 48–53. [Google Scholar] [CrossRef]
- UNC. Water Institute: Building Integrated Approaches into the Sustainable Development Goals: A Declaration from the Nexus; UNC: Chapel Hill, NC, USA, 2014; 7p. [Google Scholar]
- Mulier, M.; van de Ven, F.; Kirshen, P. Circularity in urban water-energy-nutrients-food nexus. Energy Nexus 2022, 7, 1000081. [Google Scholar] [CrossRef]
- Pimentel-Rodrigues, C.; Silva-Afonso, A. Nearly zero Water buildings. In Proceedings of the International Congress on Engineering and Sustainability in the XXI Century, INCREaSE 2019, Faro, Portugal, 9–11 October 2019; Monteiro, J., Silva, J., Mortal, A., Aníbal, J., Silva, M., Oliveira, M., Sousa, N., Eds.; Springer: Cham, Switzerland; Edinburg, UK, 2020. [Google Scholar] [CrossRef]
- Cordell, D.; Neset, T.; Prior, T. The phosphorus mass balance: Identifying ‘hotspots’ in the food system as a roadmap to phosphorus security. Curr. Opin. Biotechnol. 2012, 23, 839–845. [Google Scholar] [CrossRef]
- Cordell, D.; Rosemarin, A.; Schroder, J.; Smit, A. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.; White, S. The story of phosphorus: Global food security and food for thought. Global Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Martins, G.; Sánchez, A. Nutrient recovery in wastewater treatment plants: Comparative assessment of different technological options for the metropolitan region of Buenos Aires. J. Water Process Eng. 2021, 41, 102076. [Google Scholar] [CrossRef]
- Breda, C.; Soares, M.; Tavanti, R.; Viana, D.; Freddi, O.; Piedade, A.; Mahl, D.; Traballi, R.; Guerrini, I. Successive sewage sludge fertilization: Recycling for sustainable agriculture. Waste Manag. 2020, 109, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Gowd, S.; Ramesh, P.; Vigneswaran, V.; Barathi, S.; Lee, J.; Rajendran, K. Life cycle assessment of comparing different nutrient recovery systems from municipal wastewater: A path towards self-reliance and sustainability. J. Clean. Prod. 2023, 410, 137331. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Jiménez-Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and regional potential of wastewater as a water nutrient and energy source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Theregowda, R.; González-Mejía, A.; Ma, X.; Garland, J. Nutrient recovery from municipal wastewater for sustainable food production systems: An alternative to traditional fertilizers. Environ. Eng. Sci. 2019, 36, 833–842. [Google Scholar] [CrossRef]
- Sánchez, A. Technical and economic feasibility of phosphorus recovery from wastewater in São Paulo’s Metropolitan Region. J. Water Process 2020, 38, 101537. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Gabarrell, X.; Orsini, F.; Villalba, G. Literature review on the potential of urban waste for the fertilization of urban agriculture: A closer look at the metropolitan area of Barcelona. Sci. Total Environ. 2023, 905, 167193. [Google Scholar] [CrossRef]
- Kogler, A.; Farmer, M.; Simon, J.; Tilmans, S.; Wells, G.; Tarpeh, W. Systematic evaluation of emerging wastewater nutrient removal and recovery technologies to inform practice and advance resource efficiency. ACS EST Eng. 2021, 1, 662–684. [Google Scholar] [CrossRef]
- Perera, M.; Englehardt, J.; Dvorak, A. Technologies for recovering nutrients from wastewater: A critical review. Environ. Eng. Sci. 2019, 36, 511–529. [Google Scholar] [CrossRef]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef] [PubMed]
- Jupp, A.; Beijer, S.; Narain, G.; Schipper, W.; Slootweg, J. Phosphorus recovery and recycling-closing the loop. Chem. Soc. Rev. 2021, 50, 87–101. [Google Scholar] [CrossRef]
- Rout, P.; Shahid, M.; Dash, R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.; Surampalli, R. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef]
- Beckinghausen, A.; Odlare, M.; Thorin, E.; Schwede, S. From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater. Appl. Energy 2020, 263, 114616. [Google Scholar] [CrossRef]
- Tilley, E.; Ulrich, L.; Luthi, C.; Reymond, P.; Zurbrugg, C. Compendium of Sanitation Systems and Technologies, 2nd ed.; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2014; 178p. [Google Scholar]
- Silva-Afonso, A.; Pimentel-Rodrigues, C. The water-energy-nutrients nexus: A brief review on the role of the toilet over time. In Proceedings of the Symposium CIB 2022, Taichung, Taiwan, 23–26 October 2022. [Google Scholar]
- Silva-Afonso, A. Manual de Ambiente e Saneamento Básico, 2nd ed.; Centro de Estudos e Formação Autárquica: Coimbra, Portugal, 2002; 136p. (In Portuguese) [Google Scholar]
- Bali, M.; Gueddari, M. Removal of phosphorus from secondary effluents using infiltration–percolation process. Appl. Water Sci. 2019, 9, 54. [Google Scholar] [CrossRef]
- Ali, S.; Peter, A.; Chew, K.; Munawaroh, H.; Show, P. Resource recovery from industrial effluents through the cultivation of microalgae: A review. Bioresour. Technol. 2021, 337, 125461. [Google Scholar] [CrossRef]
- Martınez, M.; Sánchez, S.; Jimenez, J.; El Yousfi, F.; Munoz, L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 2020, 73, 263–272. [Google Scholar] [CrossRef]
- Brennan, B.; Lawler, J.; Regan, F. Recovery of viable ammonia–nitrogen products from agricultural slaughterhouse wastewater by membrane contactors: A review. Environ. Sci. Water Res. Technol. 2021, 7, 259–273. [Google Scholar] [CrossRef]
- Huang, X.; Guida, S.; Jefferson, B.; Soares, A. Economic evaluation of ion-exchange processes for nutrient removal and recovery from municipal wastewater. NPJ Clean Water 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Kedwell, K.; Jørgensen, M.; Quist-Jensen, C.; Pham, T.; Morten, B.; Christensen, M. Selective electrodialysis for simultaneous but separate phosphate and ammonium recovery. Environ. Technol. 2021, 42, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Kim, M.; Nakhla, G. Simultaneous nitrification-denitrifying phosphorus removal (SNDPR) at low DO for treating carbon-limited municipal wastewater. Sci. Total Environ. 2021, 760, 143387. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.; Englehardt, J. Simultaneous nitrogen and phosphorus recovery from municipal wastewater by electrochemical pH modulation. Sep. Purif. Technol. 2020, 250, 143387. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.; Guo, W.; Chang, S.; Nguyen, D.; Zhang, X.; Liang, S. Nutrient recovery from wastewater: From technology to economy. Bioresour. Technol. Rep. 2020, 11, 100425. [Google Scholar] [CrossRef]
- Zhang, C.; Guisasola, A.; Baeza, J. A review on the integration of mainstream P-recovery strategies with enhanced biological phosphorus removal. Water Res. 2022, 212, 118102. [Google Scholar] [CrossRef] [PubMed]
- Munasinghe-Arachchige, S.; Nirmalakhandan, N. Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge. Environ. Sci. Technol. Lett. 2020, 7, 450–459. [Google Scholar] [CrossRef]
- Bradford-Hartke, Z.; Razmjou, A.; Gregory, L. Factors affecting phosphorus recovery as struvite: Effects of alternative magnesium sources. Desalination 2021, 504, 114949. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.; Białowiec, A.; Koziel, J.; Sowiński, J. Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. J. Environ. Manag. 2021, 287, 112235. [Google Scholar] [CrossRef]
- Liu, H.; Hu, G.; Basar, I.; Li, J.; Lyczko, N.; Nzihou, A.; Eskicioglu, C. Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: A review towards sustainable waste management. Chem. Eng. J. 2021, 417, 129300. [Google Scholar] [CrossRef]
- Liu, Y.; He, L.; Deng, Y.; Zhang, Q.; Jiang, G.; Liu, H. Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review. Chem. Eng. J. 2022, 43, 13620. [Google Scholar] [CrossRef]
- Magrí, A.; Carreras-Sempere, M.; Biel, C.; Colprim, J. Recovery of phosphorus from waste water profiting from biological nitrogen treatment: Upstream, concomitant or downstream precipitation alternatives. Agronomy 2020, 10, 1039. [Google Scholar] [CrossRef]
- Almeida, J.; Azevedo, A.; Brett, M.; Tadeu, A. Urine recovery at the building level. Build. Environ. 2019, 156, 110–116. [Google Scholar] [CrossRef]
- Jaatinen, S.; Palmroth, M.; Rintala, J.; Tuhkanen, T. The effect of urine storage on antiviral and antibiotic compounds in the liquid phase of source-separated urine. Environ. Technol. 2016, 37, 2189–2198. [Google Scholar] [CrossRef]
- Pronk, W.; Koné, D. Options for urine treatment in developing countries. Desalination 2009, 248, 360–368. [Google Scholar] [CrossRef]
- SEI: Stockholm Environment Institute. Urine Diversion: One Step towards Sustainable Sanitation; EcoSanRes Programme: Stockholm, Sweden, 2006; 76p. [Google Scholar]
- Shingubara, S. Fabrication of Nanomaterials Using Porous Alumina Templates. J. Nanoparticle Res. 2004, 5, 17–30. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Q.; Ma, H.; Ogawa, H. Phosphate removal from wastewater using aluminium oxide as adsorbent. Int. J. Environ. Pollut. 2005, 23, 486–491. [Google Scholar] [CrossRef]
- Larsen, T.; Alder, A.; Eggen, R.; Maurer, M.; Lienert, J. Source separation: Will we see a paradigm shift in wastewater handling? Environ. Sci. Technol. 2009, 43, 6121–6125. [Google Scholar] [CrossRef]
- Mitchell, C.; Fam, D.; Abeysuriya, K. Transitioning to Sustainable Sanitation: A Transdisciplinary Pilot Project of Urine Diversion; Institute for Sustainable Futures, University of Technology Sydney: Sydney, Australia, 2013; 139p. [Google Scholar]
- Larsen, T.; Lienert, J. NoMix—A New Approach to Urban Water Management (Final Report); Novaquatis: Duebendorf, Switzerland, 2007; 32p. [Google Scholar]
- Mangindaan, D.; Kaburuan, E.; Meindrawan, B. Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis. Sustainability 2022, 14, 3993. [Google Scholar] [CrossRef]
- Haodong Lin, H.; Borrion, A.; Fonseca-Zang, W.; Zang, J.; Leandro, J.; Campos, L. Life cycle assessment of a biogas system for cassava processing in Brazil to close the loop in the water-waste-energy-food nexus. J. Clean. Prod. 2021, 299, 126861. [Google Scholar] [CrossRef]
- Zarei, S.; Bozorg-Haddad, O.; Kheirinejad, S.; Loáiciga, H. Environmental sustainability: A review of the water–energy–food nexus. AQUA Water Infrastruct. Ecosyst. Soc. 2021, 70, 138–154. [Google Scholar] [CrossRef]
- Siah, Q.; Zabiri, H. Modeling and Optimization of Water–Food–Energy Nexus for Malaysia’s Agricultural Sector. Sustainability 2022, 14, 1799. [Google Scholar] [CrossRef]
- Ledari, M.; Saboohi, Y.; Azamian, S. Water-food-energy-ecosystem nexus model development: Resource scarcity and regional development. Energy Nexus 2023, 10, 100207. [Google Scholar] [CrossRef]
- Laquian, E. Design for the Next Millennium—The C.K.; Choi Building for the Institute of Asian Research, University of British Columbia, IAR UBC: Vancouver, BC, Canada, 1996; ISBN 13:9780888651617. [Google Scholar]
- Fadare, D.; Bamiro, O.; Oni, A. Energy and coist analysis of organic fertilizer production in Nigeria. Energy 2010, 35, 332–340. [Google Scholar] [CrossRef]
- Silva-Afonso, A.; Rodrigues, F.; Pimentel-Rodrigues, C. Water efficiency in buildings: Assessment of its impact on energy efficiency and reducing GHG emissions. In Proceedings of the 6th IASME/WSEAS International Conference on Energy & Environment—EE’11, Cambridge, UK, 23–25 February 2011; WSEAS Press: Cambridge, UK, 2011; pp. 191–195. [Google Scholar]
- European Commission (EC). MEErP Preparatory Study on Taps and Showers, Task 7 Report: Policy Scenarios (Version 1); JRC: Brussels, Belgium, 2014; 353p. [Google Scholar]
- Kelly, D. The European Water Label: An analysis and review. In Proceedings of the CIB W062 39th International Symposium on Water Supply and Drainage for Buildings, Nagano, Japan, 17–20 September 2013. [Google Scholar] [CrossRef]
- Velazquez, C.; Silva-Afonso, A.; Pimentel-Rodrigues, C. O novo rótulo unificado europeu para a eficiência hídrica e energética de produtos. In Proceedings of the XX SILUBESA—Simpósio Luso-Brasileiro e Engenharia Sanitária e Ambiental—Água e Sustentabilidade Ambiental: Desafios e ação, Aveiro, Portugal, 29 June–1 July 2022. (In Portuguese). [Google Scholar]
Recent Innovations in Toilets with Energy Needs | Recent Innovations in Toilets without Energy Needs |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Afonso, A.; Pimentel-Rodrigues, C. Water–Energy–Nutrients Nexus of Urban Environments. Water 2024, 16, 904. https://doi.org/10.3390/w16060904
Silva-Afonso A, Pimentel-Rodrigues C. Water–Energy–Nutrients Nexus of Urban Environments. Water. 2024; 16(6):904. https://doi.org/10.3390/w16060904
Chicago/Turabian StyleSilva-Afonso, Armando, and Carla Pimentel-Rodrigues. 2024. "Water–Energy–Nutrients Nexus of Urban Environments" Water 16, no. 6: 904. https://doi.org/10.3390/w16060904
APA StyleSilva-Afonso, A., & Pimentel-Rodrigues, C. (2024). Water–Energy–Nutrients Nexus of Urban Environments. Water, 16(6), 904. https://doi.org/10.3390/w16060904