A Framework for Operational Management of Urban Water Systems to Improve Resilience
Abstract
:1. Introduction
2. Operational Management of Hydraulic Infrastructures (GOIH)
2.1. Data Analysis
2.2. Infrastructure Assessment
2.3. Exploration
- Operational control
- Response to occurrences
- Information management
- Risk-informed management
2.4. Intervention
2.5. Decision Support
- Investment strategy
- Operational strategy
- Specific decision strategy
3. Case Studies
3.1. Water Supply System of Arouca
3.2. Wastewater Drainage System of Trofa
4. Application of the Methodology GOIH
4.1. SAA-Arouca
4.1.1. Assessment
4.1.2. Exploration
4.1.3. Intervention
4.1.4. Overview
4.1.5. Decision Support
4.2. SAR-Trofa
4.2.1. Assessment
4.2.2. Exploration
4.2.3. Intervention
4.2.4. Decision Support
5. Conclusions
- The proposed methodology combines asset management, risk management, and technical management concepts and is organized into three main operational areas: assessment, operation, and intervention.
- The operational management strategy was designed with a focus on reducing operating costs, increasing service quality, and safeguarding the environment.
- It was applied to the case studies with the aim of evaluating the methodology and obtaining results to support operational management, particularly in terms of reducing water losses and controlling undue rainfall.
- The need to train human resources was identified as part of an integrated commitment to preserving existing know-how and continuous improvement.
- The pertinence of channeling operational gains into the enhancement of infrastructure and investment in innovation is highlighted.
- In a context of increasingly complex problems and ever more demanding challenges, the contribution of knowledge production in the area of GOIH could provide methodologies that help to ask the right questions, point out the appropriate paths, and facilitate the decision-making process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matos, M.R.S. Gestão Integrada de Águas Pluviais em Meio Urbano. Visão Estratégica e Soluções para o Futuro; LNEC: Lisboa, Portugal, 2000. [Google Scholar]
- Cardoso-Gonçalves, J.; Tentúgal-Valente, J. Gestão Operacional de Infraestruturas Hidráulicas. Aplicação a Casos Práticos; Revista Recursos Hídricos: Lisboa, Portugal, 2020; ISSN 0870-1741. [Google Scholar]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Oelkers, E.; Hering, J.; Zhu, C. Water: Is there a global crisis? Elem. J. 2011, 7, 157–162. [Google Scholar] [CrossRef]
- Bagatin, R.; Klemes, J.; Reverberi, A.; Huising, D. Conservation and improvements in water resource management: A global challenge. J. Clean. Prod. 2014, 77, 1–9. [Google Scholar] [CrossRef]
- Abdulbaki, D.; Al-Hindi, M.; Yassine, A.; Abou Najm, M. An optimization model for the allocation of water resources. J. Clean. Prod. 2017, 164, 994–1006. [Google Scholar] [CrossRef]
- Brandão, P.A.; e Piqueiro, F. Interceptor do Douro. Sistema Centenário de Saneamento da Cidade do Porto; 6.as Jornadas de Hidráulica, Recursos Hídricos e Ambiente; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2011. [Google Scholar]
- Alegre, H.; Coelho, S.T.; Leitão, J.P. Gestão Patrimonial de Infra-Estruturas em Sistemas Urbanos de Água; Jornadas LNEC, Cidades e Desenvolvimento: Lisboa, Portugal, 2012. [Google Scholar]
- Almeida, M.C.; Vieira, P.; e Ribeiro, R. Uso Eficiente da Água no Sector Urbano; Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 2006. [Google Scholar]
- Alegre, H. Gestão Patrimonial de Infra- estruturas de Abastecimento de Água e de Drenagem e Tratamento de Águas Residuais. 2008. Available online: http://repositorio.lnec.pt:8080/jspui/handle/123456789/15576 (accessed on 15 November 2023).
- Feliciano, J.P.F. Infrastructure Asset Management in Urban Water Utilities. Knowledge Creation through the Implementation of COMBINED Methodologies; Tese de Doutoramento em Engenharia Civil, IST: Lisboa, Portugal, 2016. [Google Scholar]
- Baur, R. Ageing and renewal of urban water infrastructure. In Integrated Urban Water Resources Management; Hlavinek, P., Kukharchyk, T., Marsalek, J., Mahrikova, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 101–110. [Google Scholar]
- Amaral, R.O.M. Planeamento Estratégico de Investimento nos Serviços de Águas em Portugal; Tese de Doutoramento em Engenharia Civil, IST: Lisboa, Portugal, 2017. [Google Scholar]
- Baptista, J.F.M. Reabilitação de Sistemas de Distribuição de Água. Uma Metodologia de Abordagem; Programa de Investigação apresentado a concurso para provimento na categoria de Investigador-Coordenador; Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 2000. [Google Scholar]
- Hertz, D.B.; Thomas, H. Risk Analysis and Its Applications; Wiley: New York, NY, USA, 1983. [Google Scholar]
- de Almeida, A.B. Gestão da Água: Incertezas e Riscos. Conceptualização Operacional; s.l.:Esfera do Caos: Setúbal, Portugal, 2011. [Google Scholar]
- Loureiro, D. Metodologias de Análise de Consumos para a Gestão Eficiente de Sistemas de Distribuição de Água. Dissertação de Doutoramento, LNEC, Lisboa, Portugal, 2012. [Google Scholar]
- Almeida, O. A Sustentabilidade dos Sistemas de Abastecimento de Água. A Emergência do Combate às Perdas de Água e o Papel do Regulador. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2017. [Google Scholar]
- Cardoso-Gonçalves, J.; Tentúgal-Valente, J. Gestão Operacional de Infraestruturas Hidráulicas. Sistema de Abastecimento de Água de Arouca; 14° Congresso da Água: Évora, Portugal, 2018; ISBN 978-989-8509-21-5. [Google Scholar]
- Tentúgal-Valente, J. Disciplina de Hidráulica Urbana e Ambiental; Academic Notes; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2007. [Google Scholar]
- Gonçalves, J.; Valente, J.T. Gestão Operacional de Infraestruturas Hidráulicas. Sistema de Abastecimento de Água de Arouca; 13° Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Portuguesa (SILUSBA): Porto, Portugal, 2017; ISBN 978-989-8509-19-2. [Google Scholar]
- Oliveira FM, R. Redução de Perdas Reais em Sistemas de Abastecimento de Água: Otimização das Pressões Numa Grande Rede de Distribuição de Água—Aplicação ao caso do Porto; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2013. [Google Scholar]
- Cardoso-Gonçalves, J. Gestão Operacional de Infraestruturas Hidráulicas. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2019. [Google Scholar]
Infrastructure | Replacement Cost | Current Value | Infrastructure Value Index |
---|---|---|---|
Catchments | EUR 158,625 | EUR 99,460 | 0.63 |
Pipelines | EUR 1,381,695 | EUR 901,544 | 0.65 |
Reservoirs | EUR 2,353,779 | EUR 1,425,292 | 0.61 |
Treatment System | EUR 60,800 | EUR 35,760 | 0.59 |
Distributors | EUR 15,200,880 | EUR 9,287,480 | 0.61 |
Pressure Reducing Valve | EUR 590,614 | EUR 409,441 | 0.69 |
Pumping Station | EUR 99,000 | EUR 61,100 | 0.62 |
Total | EUR19,845,393 | EUR12,220,077 | 0.62 |
Infrastructure | Consumed Useful Life |
---|---|
Catchments | 37% |
Pipelines | 35% |
Reservoirs | 39% |
Treatment System | 41% |
Distributors | 39% |
Pressure Reducing Valve | 31% |
Pumping Station | 38% |
SAA-Arouca (Global) | 38% |
Assessment | Abelheira | Provisende | S. Redondo | Ameixieira | Forcada | Moldes | Autonomous Systems | Average |
---|---|---|---|---|---|---|---|---|
Status | 2.49 (good) | 2.45 (good) | 2.64 (fair) | 3.42 (fair) | 2.82 (fair) | 3.11 (fair) | 3.36 (fair) | 2.88 (fair) |
Performance | 2.20 (efficiency) | 2.32 (efficiency) | 2.70 (efficacy) | 3.30 (efficacy) | 3.27 (efficacy) | 3.07 (efficacy) | 3.30 (efficacy) | 2.86 (efficacy) |
Risk | 6.07 (interme-diate) | 4.38 (low) | 8.02 (interme-diate) | 7.81 (interme-diate) | 6.22 (interme-diate) | 8.13 (interme-diate) | 8.69 (interme-diate) | 7.77 (interme-diate) |
Actions/interventions to consider | Pressure control | Sectioning valves and Landfills discharges | Pipeline replacement in São João reservoir | Pressure control and pipeline replacement in Fráguas reservoir | Connection execution from Forcada reservoir to Santo Aleixo | Pressure control and replacement of part of the supply network | Pressure control, air valve installation, mine inspection, and deviation of part of the catchment’s water |
Functional Teams | Human Resources | Vehicles | Supplies | Total Cost | |||
---|---|---|---|---|---|---|---|
Allocation | Cost | Allocation | Cost | Allocation | Cost | ||
Prevention | 30% | EUR 47,520 | 30% | EUR 5850 | 60% | EUR 12,000 | EUR 65,370 |
Monitoring SAA | 10% | EUR 15,840 | 30% | EUR 5850 | 5% | EUR 1000 | EUR 22,690 |
Ruptures/Clearings | 10% | EUR 15,840 | 10% | EUR 1950 | 10% | EUR 2000 | EUR 19,790 |
Pressure Reducing Valve | 20% | EUR 31,680 | 15% | EUR 2925 | 20% | EUR 4000 | EUR 38,605 |
Loss/Infiltrations | 30% | EUR 47,520 | 15% | EUR 2925 | 5% | EUR 1000 | EUR 51,445 |
Total | EUR 158,400 | EUR 19,500 | EUR 20,000 | 197,900 |
ZCP | Period (2018) | Minimal Night Consumption | Annual Estimated Gains | |||
---|---|---|---|---|---|---|
Initial | Final | Decrease | ||||
ZCP Pressure Reducing Valve | June—July | 7.0 m3/h | 4.0 m3/h | 4.0 m3/h (− 57%) | 35,040 m3 | EUR 18,245 |
November—December | 3.5 m3/h | 2.5 m3/h | ||||
ZCP Vila Nova | September—October | 11.0 m3/h | 3.0 m3/h | 8.0 m3/h (− 73%) | 70,080 m3 | EUR 36,491 |
ZCP São Pedro | November—December | 7.0 m3/h | 1.0 m3/h | 6.0 m3/h (− 86%) | 52,560 m3 | EUR 27,368 |
ZCP Abelheira | November—? | * 20.0 m3/h | * 18.0 m3/h | 2.0 m3/h (− 10%) | 17,520 m3 | EUR 9123 |
ZCP Provisende | November—? | 7.0 m3/h | 6.0 m3/h | 1.0 m3/h (− 14%) | 8760 m3 | EUR 4561 |
ZCP Forcada | December—? | 9.0 m3/h | 6.4 m3/h | 2.6 m3/h (− 29%) | 22,776 m3 | EUR 11,860 |
Total: | 23.6 m3/h | 206,736 m3 | EUR 107,648 |
Subsystem | VRP Number | VRP with Pressure Reduction | Pressure Reduction after Fase 1 on Pressure Management | |
---|---|---|---|---|
(mca) | Final | |||
Abelheira | 33 | 17 | 8.5 | 26% |
Provisende | 14 | 10 | 7.0 | 23% |
S. Redondo | 40 | 12 | 4.2 | 13% |
Ameixieira | 11 | 4 | 5.7 | 18% |
Forcada | 15 | 7 | 4.4 | 12% |
Moldes | 30 | 11 | 6.7 | 19% |
Total | 143 | 62 | 6.0 | 18% |
Subsystems | Replacement Length | Replacement Cost | VRP Replacement Cost | Installation Length | Installation Cost | VRP Installation Cost |
---|---|---|---|---|---|---|
Abelheira | 1660 m | EUR 24,827 | EUR 21,000 10 VRP were replaced | 1795 m | EUR 69,804 | EUR 81,000 3 VRP were installed |
Provisende | 250 m | EUR 6520 | 285 m | EUR 3111 | ||
S. Redondo | 4014 m | EUR 88,927 | 2926 m | EUR 73,057 | ||
Ameixieira | 40 m | EUR 1600 | 70 m | EUR 2800 | ||
Forcada | 120 m | EUR 4800 | 386 m | EUR 6514 | ||
Moldes | 870 m | EUR 16,931 | 310 m | EUR 12,004 | ||
Autonomous Systems | 615 m | EUR 8370 | 300 m | EUR 5474 |
Year | Rehabilitation | Reinforcement | Total | ||
---|---|---|---|---|---|
Conducts | VRP | Conducts | VRP | ||
2016 | EUR 83,235 | - | - | - | EUR 83,235 |
2017 | EUR 202,425 | EUR 21,000 | EUR 172,764 | EUR 81,000 | EUR 477,189 |
2018 | EUR 101,663 | EUR 25,250 | EUR 109,597 | EUR 57,500 | EUR 294,010 |
Following | EUR 463,553 | EUR 52,500 | EUR 1,522,501 | EUR 123,000 | EUR 2,161,554 |
Total | EUR 850,876 | EUR 98,750 | EUR 1,804,862 | EUR 261,500 | EUR 3,015,988 |
Infrastructure | Replacement Cost | Current Value | Infrastructure Value Index |
---|---|---|---|
Connection Lines | EUR 834,064 | EUR 619,624 | 0.74 |
Collectors and Interceptors | EUR 4,545,949 | EUR 2,952,769 | 0.65 |
Manholes | EUR 1,413,500 | EUR 819,100 | 0.58 |
Lift Installations | EUR 272,288 | EUR 206,384 | 0.76 |
Total | EUR 7,065,802 | EUR 4,597,877 | 0.65 |
Operational Relevance Index (IRO) | |||||||
---|---|---|---|---|---|---|---|
Drainage Basin | Extension (km) | Clients (un) | VEA (m3) | Global | |||
BD 9BOU016 | 1734 | 0.02 | 219 | 0.05 | 6363 | 0.00 | 0.02 |
BD BOU026 | 14,850 | 0.15 | 524 | 0.13 | 398,801 | 0.24 | 0.17 |
BD 9TRO013 | 1379 | 0.01 | 12 | 0.00 | 2741 | 0.00 | 0.01 |
BD 9TRO21A | 428 | 0.00 | 6 | 0.00 | 623 | 0.00 | 0.00 |
BD 9TRO022 | 26,891 | 0.28 | 2219 | 0.53 | 1,169,647 | 0.71 | 0.51 |
BD 9TRO027 | 1108 | 0.01 | 20 | 0.00 | 3979 | 0.00 | 0.01 |
BD 9TRO040 | 5385 | 0.06 | 104 | 0.02 | 12,918 | 0.01 | 0.03 |
BD 9TRO60A | 1209 | 0.01 | 24 | 0.01 | 3793 | 0.00 | 0.01 |
BD Trofa Prolongamento | 13,120 | 0.14 | 449 | 0.11 | 20,698 | 0.01 | 0.09 |
BD 9TRO074 | 5748 | 0.06 | 270 | 0.06 | 12,151 * | 0.01 | 0.04 |
BD Covelas Poente | 24,059 | 0.25 | 344 | 0.08 | 15,482 * | 0.01 | 0.11 |
95,911 | 4191 | 1,647,196 |
Drainage Basin | Status Assessment Index | Performance Assessment Index | Risk Assessment Index | Infrastructural Assessment Index |
---|---|---|---|---|
BD 9BOU016 | 0.08 | 0.07 | 0.06 | 0.07 |
BD BOU026 | 0.12 | 0.13 | 0.12 | 0.12 |
BD 9TRO013 | 0.08 | 0.07 | 0.08 | 0.07 |
BD 9TRO21A | 0.11 | 0.12 | 0.08 | 0.11 |
BD 9TRO022 | 0.10 | 0.10 | 0.12 | 0.11 |
BD 9TRO027 | 0.08 | 0.09 | 0.09 | 0.09 |
BD 9TRO040 | 0.09 | 0.07 | 0.10 | 0.09 |
BD 9TRO60A | 0.08 | 0.07 | 0.07 | 0.07 |
BD 9TRO074 | 0.09 | 0.08 | 0.10 | 0.09 |
BD Trofa Prolongamento | 0.08 | 0.09 | 0.09 | 0.09 |
BD Covelas Poente | 0.10 | 0.09 | 0.09 | 0.09 |
Investment | Annual Gain | Return | ||||||
---|---|---|---|---|---|---|---|---|
Rehabilitation | Reinforcement | Volumes Control | Operational | Total | (Next Year) | (Years) | (Months) | |
↓ 40% VEA | EUR 54,749 | EUR 67,594 | EUR 100,000 | EUR 112,500 | EUR 334,843 | EUR 374,932 | 0.89 | 11 |
↓ 50% VEA | EUR 468,665 | 0.71 | 9 | |||||
↓ 60% VEA | EUR 562,398 | 0.60 | 7 | |||||
↓ 70% VEA | EUR 656,131 | 0.51 | 6 | |||||
↓ 75% VEA | EUR 702,998 | 0.48 | 6 | |||||
↓ 80% VEA | EUR 749,864 | 0.45 | 5 |
Drainage Basin | ↓ 60% VEA | ↓ 70% VEA | ↓ 80% VEA | ||||||
---|---|---|---|---|---|---|---|---|---|
VEA | VNF | VEA | VNF | VEA | VNF | ||||
BD 9BOU026 | 159,520 | 117,100 | 73% | 119,640 | 77,220 | 65% | 79,760 | 37,340 | 47% |
BD 9TRO022 | 442,200 | 270,432 | 61% | 331,650 | 159,882 | 48% | 221,100 | 49,332 | 22% |
Total SAR-Trofa | 680,469 | 348,429 | 51% | 530,039 | 197,999 | 37% | 379,608 | 47,568 | 13% |
Total Trofa | 1,397,874 | 547,842 | 39% | 1,247,444 | 397,412 | 32% | 1,097,013 | 246,981 | 23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso-Gonçalves, J.; Tentúgal-Valente, J. A Framework for Operational Management of Urban Water Systems to Improve Resilience. Water 2024, 16, 154. https://doi.org/10.3390/w16010154
Cardoso-Gonçalves J, Tentúgal-Valente J. A Framework for Operational Management of Urban Water Systems to Improve Resilience. Water. 2024; 16(1):154. https://doi.org/10.3390/w16010154
Chicago/Turabian StyleCardoso-Gonçalves, Jorge, and José Tentúgal-Valente. 2024. "A Framework for Operational Management of Urban Water Systems to Improve Resilience" Water 16, no. 1: 154. https://doi.org/10.3390/w16010154
APA StyleCardoso-Gonçalves, J., & Tentúgal-Valente, J. (2024). A Framework for Operational Management of Urban Water Systems to Improve Resilience. Water, 16(1), 154. https://doi.org/10.3390/w16010154