Advancing River Health Assessments: Integrating Microscopy and Molecular Techniques through Diatom Indices
Abstract
:1. Introduction
2. The Evolution of Microscopy-Enabled Diatom-Based Water Quality Assessment
3. Advancements in Diatom Research through Molecular Techniques
4. Advancing River Water Quality Assessment through Integrated Microscopy and Molecular Techniques via Diatom Indices
5. Advancing River Health Assessments: The Future of Diatom-Based Strategies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Ding, R.; Yu, K.; Fan, Z.; Liu, J. Study and Application of Urban Aquatic Ecosystem Health Evaluation Index System in River Network Plain Area. Int. J. Environ. Res. Public Health 2022, 19, 16545. [Google Scholar] [CrossRef]
- Fu, L.; Dong, X.; Shen, H.; Zhu, T.; Sun, F. River Ecosystem Health Assessment in Rapid Urbanization Regions (Shenzhen, China) under the Guidance of Bioremediation Objectives. Water 2023, 15, 3859. [Google Scholar] [CrossRef]
- Hu, X.; Zuo, D.; Xu, Z.; Huang, Z.; Liu, B.; Han, Y.; Bi, Y. Response of macroinvertebrate community to water quality factors and aquatic ecosystem health assessment in a typical river in Beijing, China. Environ. Res. 2022, 212, 113474. [Google Scholar] [CrossRef] [PubMed]
- Ibisch, P.L.; Hobson, P.; Vega, A. Mutual mainstreaming of biodiversity conservation and human development: Towards a more radical Ecosystem Approach. In Interdependence of Biodiversity and Development under Global Change; Ibisch, P.L., Vega, E., Herrmann, T.M., Eds.; Technical Series No. 54; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2010; pp. 15–34. Available online: http://www.cbd.int/doc/publications/cbd-ts-54-en.pdf (accessed on 11 February 2024).
- Li, M.; Li, L.; Strielkowski, W. The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China. Energies 2019, 12, 2194. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Z.; Yin, X.; Li, F.; Dou, T. Development of a multimetric index based on benthic macroinvertebrates for the assessment of urban stream health in Jinan City, China. Environ. Monit. Assess. 2017, 189, 205. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, G.; Alimohammadi, M.; Kahkah, M.R.R.; Mahvi, A.H. Relationship between algae diversity and water quality—A case study: Chah Niemeh reservoir Southeast of Iran. J. Environ. Health Sci. Eng. 2021, 19, 437–443. [Google Scholar] [CrossRef]
- Markad, A.T.; Landge, A.T.; Nayak, B.B.; Inamdar, A.B.; Mishra, A.K. Trophic state modeling for shallow freshwater reservoir: A new approach. Environ. Monit. Assess. 2019, 191, 586. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, J.-X.; Pei, G.-F.; Liu, G.-X. Using benthic diatom assemblages to assess human impacts on streams across a rural to urban gradient. Environ. Sci. Pollut. Res. 2015, 22, 18093–18106. [Google Scholar] [CrossRef]
- Ceschin, S.; Bellini, A.; Scalici, M. Aquatic plants and ecotoxicological assessment in freshwater ecosystems: A review. Environ. Sci. Pollut. Res. 2021, 28, 4975–4988. [Google Scholar] [CrossRef]
- Rakib, R.J.; Jolly, Y.N.; Begum, B.A.; Choudhury, T.R.; Fatema, K.J.; Islam, S.; Ali, M.M.; Idris, A.M. Assessment of trace element toxicity in surface water of a fish breeding river in Bangladesh: A novel approach for ecological and health risk evaluation. Toxin Rev. 2022, 41, 420–436. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.V.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Choi, I.-C.; Shin, H.-J.; Nguyen, T.T.; Tenhunen, J. Water Policy Reforms in South Korea: A Historical Review and Ongoing Challenges for Sustainable Water Governance and Management. Water 2017, 9, 717. [Google Scholar] [CrossRef]
- Kwak, J.I.; Nam, S.-H.; An, Y.-J. Water quality standards for the protection of human health and aquatic ecosystems in Korea: Current state and future perspective. Environ. Sci. Pollut. Res. 2018, 25, 3108–3119. [Google Scholar] [CrossRef] [PubMed]
- Feio, M.J.; Hughes, R.M.; Callisto, M.; Nichols, S.J.; Odume, O.N.; Quintella, B.R.; Kuemmerlen, M.; Aguiar, F.C.; Almeida, S.F.; Alonso-Eguíalis, P.; et al. The Biological Assessment and Rehabilitation of the World’s Rivers: An Overview. Water 2021, 13, 371. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, C.; Sun, Y.; Lu, X.; Fan, Y. Ecological health evaluation of rivers based on phytoplankton biological integrity index and water quality index on the impact of anthropogenic pollution: A case of Ashi River Basin. Front. Microbiol. 2022, 13, 942205. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Gessner, M.O.; Giller, P.S.; Gulis, V.; Hladyz, S.; Lecerf, A.; Malmqvist, B.; McKie, B.G.; Tiegs, S.D.; Cariss, H.; et al. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning. Science 2012, 336, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Imran, M.; Ahsan, H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023, 15, 1630. [Google Scholar] [CrossRef]
- Brantschen, J.; Blackman, R.C.; Walser, J.-C.; Altermatt, F. Environmental DNA gives comparable results to morphology-based indices of macroinvertebrates in a large-scale ecological assessment. PLoS ONE 2021, 16, e0257510. [Google Scholar] [CrossRef]
- Hellal, J.; Barthelmebs, L.; Bérard, A.; Cébron, A.; Cheloni, G.; Colas, S.; Cravo-Laureau, C.; De Clerck, C.; Gallois, N.; Hery, M.; et al. Unlocking secrets of microbial ecotoxicology: Recent achievements and future challenges. FEMS Microbiol. Ecol. 2023, 99, fiad102. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, Q.; Burford, M.A.; Sheldon, F.; Bunn, S.E. Benthic Diatom Based Indices for Water Quality Assessment in Two Subtropical Streams. Front. Microbiol. 2017, 8, 601. [Google Scholar] [CrossRef] [PubMed]
- Nhiwatiwa, T.; Dalu, T.; Sithole, T. Assessment of river quality in a subtropical Austral river system: A combined approach using benthic diatoms and macroinvertebrates. Appl. Water Sci. 2017, 7, 4785–4792. [Google Scholar] [CrossRef]
- Leese, F.; Bouchez, A.; Abarenkov, K.; Altermatt, F.; Borja, A.; Bruce, K.; Ekrem, T.; Ciampor, F., Jr.; Ciamporova-Zatovicova, Z.; Costa, F.O.; et al. Chapter Two—Why We Need Sustainable Networks Bridging Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A Perspective Derived from the DNAqua-Net COST Action. In Advances in Ecological Research; Bohan, D.A., Dumbrell, A.J., Woodward, G., Jackson, M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 58, pp. 63–99. [Google Scholar] [CrossRef]
- Jo, T.S. Utilizing the state of environmental DNA (eDNA) to incorporate time-scale information into eDNA analysis. Proc. R. Soc. B Biol. Sci. 2023, 290, 20230979. [Google Scholar] [CrossRef] [PubMed]
- Balasingham, K.D.; Walter, R.P.; Heath, D.D. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem. Mol. Ecol. Resour. 2017, 17, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Xu, Y.; Yu, Z.; Song, S.; Zhang, Y. Analysis of river health variation under the background of urbanization based on entropy weight and matter-element model: A case study in Huzhou City in the Yangtze River Delta, China. Environ. Res. 2015, 139, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-K.; Cho, I.-H.; Hwang, E.-A.; Kim, Y.-J.; Kim, B.-H. Benthic Diatom Communities in Korean Estuaries: Species Appearances in Relation to Environmental Variables. Int. J. Environ. Res. Public Health 2019, 16, 2681. [Google Scholar] [CrossRef] [PubMed]
- Masouras, A.; Karaouzas, I.; Dimitriou, E.; Tsirtsis, G.; Smeti, E. Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water 2021, 13, 478. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, W.; Li, Y.; Xiao, X.; Hillman, A. Diatom-based inferences of environmental changes from an alpine lake on the southeast edge of the Tibetan plateau over the last 4000 years. Front. Earth Sci. 2024, 12, 1324724. [Google Scholar] [CrossRef]
- Hasan, M.; Gani, A.; Alfasane, A.; Ayesha, M.; Nahar, K. Benthic diatom communities and a comparative seasonal-based ecological quality assessment of a transboundary river in Bangladesh. PLoS ONE 2023, 18, e0291751. [Google Scholar] [CrossRef]
- Bueno, G.; Deniz, O.; Pedraza, A.; Ruiz-Santaquiteria, J.; Salido, J.; Cristóbal, G.; Borrego-Ramos, M.; Blanco, S. Automated Diatom Classification (Part A): Handcrafted Feature Approaches. Appl. Sci. 2017, 7, 753. [Google Scholar] [CrossRef]
- Kutty, S.N.; Loh, R.K.; Bannister, W.; Taylor, D. Evaluation of a diatom eDNA-based technique for assessing water quality variations in tropical lakes and reservoirs. Ecol. Indic. 2022, 141, 109108. [Google Scholar] [CrossRef]
- Pinto, R.; Vilarinho, R.; Carvalho, A.P.; Moreira, J.A.; Guimarães, L.; Oliva-Teles, L. Raman spectroscopy applied to diatoms (microalgae, Bacillariophyta): Prospective use in the environmental diagnosis of freshwater ecosystems. Water Res. 2021, 198, 117102. [Google Scholar] [CrossRef] [PubMed]
- Burfeid-Castellanos, A.M.; Kloster, M.; Beszteri, S.; Postel, U.; Spyra, M.; Zurowietz, M.; Nattkemper, T.W.; Beszteri, B. A Digital Light Microscopic Method for Diatom Surveys Using Embedded Acid-Cleaned Samples. Water 2022, 14, 3332. [Google Scholar] [CrossRef]
- Andersson, B.; Godhe, A.; Filipsson, H.L.; Rengefors, K.; Berglund, O. Differences in metal tolerance among strains, populations, and species of marine diatoms—Importance of exponential growth for quantification. Aquat. Toxicol. 2020, 226, 105551. [Google Scholar] [CrossRef] [PubMed]
- Burfeid-Castellanos, A.M.; Martín-Martín, R.P.; Kloster, M.; Angulo-Preckler, C.; Avila, C.; Beszteri, B. Epiphytic diatom community structure and richness is determined by macroalgal host and location in the South Shetland Islands (Antarctica). PLoS ONE 2021, 16, e0250629. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Dejean, T.; Valentini, A.; Duparc, A.; Pellier-Cuit, S.; Pompanon, F.; Taberlet, P.; Miaud, C. Persistence of Environmental DNA in Freshwater Ecosystems. PLoS ONE 2011, 6, e23398. [Google Scholar] [CrossRef] [PubMed]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation Monitoring of Aquatic Biodiversity Using Environmental DNA Metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef]
- Fediajevaite, J.; Priestley, V.; Arnold, R.; Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 2021, 11, 4803–4815. [Google Scholar] [CrossRef]
- Papaioannou, C.; Geladakis, G.; Kommata, V.; Batargias, C.; Lagoumintzis, G. Insights in Pharmaceutical Pollution: The Pro-spective Role of eDNA Metabarcoding. Toxics 2023, 11, 903. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Wang, J.; Yao, Y.; Chen, Y.; Xu, Q.; Zhao, Z.; Chen, N. Diatom Biodiversity and Speciation Revealed by Comparative Analysis of Mitochondrial Genomes. Front. Plant Sci. 2022, 13, 749982. [Google Scholar] [CrossRef] [PubMed]
- Zanovello, L.; Girardi, M.; Marchesini, A.; Galla, G.; Casari, S.; Micheletti, D.; Endrizzi, S.; Fedrigotti, C.; Pedrini, P.; Bertorelle, G.; et al. A validated protocol for eDNA-based monitoring of within-species genetic diversity in a pond-breeding amphibian. Sci. Rep. 2023, 13, 4346. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, R.; Pearman, J.K.; Atalah, J.; Waters, S.; Vandergoes, M.J.; Howarth, J.D.; Thomson-Laing, G.; Thompson, L.; Wood, S.A. A taxonomy-free diatom eDNA-based technique for assessing lake trophic level using lake sediments. J. Environ. Manag. 2023, 345, 118885. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhong, W.; Zhang, X.; Zhou, X.; He, L.; Lv, J.; Zhao, Z. Environmental DNA metabarcoding revealed the impacts of anthropogenic activities on phytoplankton diversity in Dianchi Lake and its three inflow rivers. Ecol. Evol. 2023, 13, e10088. [Google Scholar] [CrossRef] [PubMed]
- Machuca-Sepúlveda, J.; Miranda, J.; Lefin, N.; Pedroso, A.; Beltrán, J.F.; Farias, J.G. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. Biology 2023, 12, 923. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Gaur, A.; Suravajhala, R.; Chauhan, U.; Pant, M.; Tripathi, V.; Pant, G. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. Sci. Total Environ. 2023, 905, 167098. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Zheng, B.; Meng, F.; Wang, Y.; Zhang, L.; Cheng, P. Assessment of Aquatic Ecosystem Health of the Wutong River Based on Benthic Diatoms. Water 2019, 11, 727. [Google Scholar] [CrossRef]
- Armbrecht, L.; Weber, M.E.; Raymo, M.E.; Peck, V.L.; Williams, T.; Warnock, J.; Kato, Y.; Hernández-Almeida, I.; Hoem, F.; Reilly, B.; et al. Ancient Marine Sediment DNA Reveals Diatom Transition in Antarctica. Nat. Commun. 2022, 13, 5787. [Google Scholar] [CrossRef]
- Clark, D.; Pilditch, C.; Pearman, J.; Ellis, J.; Zaiko, A. Environmental DNA metabarcoding reveals estuarine benthic community response to nutrient enrichment—Evidence from an in-situ experiment. Environ. Pollut. 2020, 267, 115472. [Google Scholar] [CrossRef]
- Djurhuus, A.; Closek, C.J.; Kelly, R.P.; Pitz, K.J.; Michisaki, R.P.; Starks, H.A.; Walz, K.R.; Andruszkiewicz, E.A.; Olesin, E.; Hubbard, K.; et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 2020, 11, 254. [Google Scholar] [CrossRef]
- Rivera, A.J.; Pérez-Godoy, M.D.; Elizondo, D.; Deka, L.; del Jesus, M.J. Analysis of clustering methods for crop type mapping using satellite imagery. Neurocomputing 2022, 492, 91–106. [Google Scholar] [CrossRef]
- Van Rossum, T.; Ferretti, P.; Maistrenko, O.M.; Bork, P. Diversity within species: Interpreting strains in microbiomes. Nat. Rev. Microbiol. 2020, 18, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Mittal, D.; Mease, R.; Kuner, T.; Flor, H.; Kuner, R.; Andoh, J. Data management strategy for a collaborative research center. GigaScience 2022, 12, giad049. [Google Scholar] [CrossRef] [PubMed]
- Penjor, U.; Kaszta, Ż.; Macdonald, D.W.; Cushman, S.A. Prioritizing areas for conservation outside the existing protected area network in Bhutan: The use of multi-species, multi-scale habitat suitability models. Landsc. Ecol. 2021, 36, 1281–1309. [Google Scholar] [CrossRef]
- Trakhtenbrot, A.; Kadmon, R. Effectiveness of Environmental Cluster Analysis in Representing Regional Species Diversity. Conserv. Biol. 2006, 20, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Bailet, B.; Bouchez, A.; Franc, A.; Frigerio, J.-M.; Keck, F.; Karjalainen, S.-M.; Rimet, F.; Schneider, S.; Kahlert, M. Molecular versus morphological data for benthic diatoms biomonitoring in Northern Europe freshwater and consequences for ecological status. Metabarcoding Metagenomics 2019, 3, e34002. [Google Scholar] [CrossRef]
- Smucker, N.J.; Pilgrim, E.M.; Nietch, C.T.; Darling, J.A.; Johnson, B.R. DNA metabarcoding effectively quantifies diatom responses to nutrients in streams. Ecol. Appl. 2020, 30, e02205. [Google Scholar] [CrossRef]
- Luddington, I.A.; Kaczmarska, I.; Lovejoy, C. Distance and Character-Based Evaluation of the V4 Region of the 18S rRNA Gene for the Identification of Diatoms (Bacillariophyceae). PLoS ONE 2012, 7, e45664. [Google Scholar] [CrossRef]
- Jacobs-Palmer, E.; Gallego, R.; Cribari, K.; Keller, A.G.; Kelly, R.P. Environmental DNA Metabarcoding for Simultaneous Monitoring and Ecological Assessment of Many Harmful Algae. Front. Ecol. Evol. 2021, 9, 612107. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Thalinger, B.; Deiner, K.; Harper, L.R.; Rees, H.C.; Blackman, R.C.; Sint, D.; Traugott, M.; Goldberg, C.S.; Bruce, K. A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ. DNA 2021, 3, 823–836. [Google Scholar] [CrossRef]
- Nagarajan, R.P.; Bedwell, M.; Holmes, A.E.; Sanches, T.; Acuña, S.; Baerwald, M.; Barnes, M.A.; Blankenship, S.; Connon, R.E.; Deiner, K.; et al. Environmental DNA Methods for Ecological Monitoring and Biodiversity Assessment in Estuaries. Estuaries Coasts 2022, 45, 2254–2273. [Google Scholar] [CrossRef]
- Banerjee, P.; Dey, G.; Antognazza, C.M.; Sharma, R.K.; Maity, J.P.; Chan, M.W.Y.; Huang, Y.-H.; Lin, P.-Y.; Chao, H.-C.; Lu, C.-M.; et al. Reinforcement of Environmental DNA Based Methods (Sensu Stricto) in Biodiversity Monitoring and Conservation: A Review. Biology 2021, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- Rimet, F.; Gusev, E.; Kahlert, M.; Kelly, M.G.; Kulikovskiy, M.; Maltsev, Y.; Mann, D.G.; Pfannkuchen, M.; Trobajo, R.; Vasselon, V.; et al. Diat.barcode, an open-access curated barcode library for diatoms. Sci. Rep. 2019, 9, 15116. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Abarca, N.; Enke, N.; Skibbe, O.; Kusber, W.-H.; Jahn, R. Taxonomic reference libraries for environmental barcoding: A best practice example from diatom research. PLoS ONE 2014, 9, e108793. [Google Scholar] [CrossRef] [PubMed]
- Gostel, M.R.; Kress, W.J. The Expanding Role of DNA Barcodes: Indispensable Tools for Ecology, Evolution, and Conservation. Diversity 2022, 14, 213. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Oulas, A.; Pavloudi, C.; Polymenakou, P.; Pavlopoulos, G.A.; Papanikolaou, N.; Kotoulas, G.; Arvanitidis, C.; Iliopoulos, L. Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinform. Biol. Insights 2015, 9, 75–88. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Yang, C.-Q.; Wang, Y.; Orr, M.C.; Wang, H.; Zhang, A.-B. Identification of Species by Combining Molecular and Morphological Data Using Convolutional Neural Networks. Syst. Biol. 2022, 71, 690–705. [Google Scholar] [CrossRef]
- Manoylov, K.M. Taxonomic identification of algae (morphological and molecular): Species concepts, methodologies, and their implications for ecological bioassessment. J. Phycol. 2014, 50, 409–424. [Google Scholar] [CrossRef]
- Kloster, M.; Langenkämper, D.; Zurowietz, M.; Beszteri, B.; Nattkemper, T.W. Deep learning-based diatom taxonomy on virtual slides. Sci. Rep. 2020, 10, 14416. [Google Scholar] [CrossRef]
- Wee, A.K.S.; Salmo, S., III; Sivakumar, K.; Then, A.Y.-H.; Basyuni, M.; Fall, J.; Habib, K.A.; Isowa, Y.; Leopardas, V.; Peer, N.; et al. Prospects and challenges of environmental DNA (eDNA) metabarcoding in mangrove restoration in Southeast Asia. Front. Mar. Sci. 2023, 10, 1033258. [Google Scholar] [CrossRef]
- Fonseca, V.G.; Davison, P.I.; Creach, V.; Stone, D.; Bass, D.; Tidbury, H.J. The Application of eDNA for Monitoring Aquatic Non-Indigenous Species: Practical and Policy Considerations. Diversity 2023, 15, 631. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y.; Shu, Y.; Hu, X.; Wu, D.; Jiang, H.; Wang, K.; Liu, W.; Fu, W. Recent Progress on Systems and Synthetic Biology of Diatoms for Improving Algal Productivity. Front. Bioeng. Biotechnol. 2022, 10, 908804. [Google Scholar] [CrossRef]
- Wu, N.; Dong, X.; Liu, Y.; Wang, C.; Baattrup-Pedersen, A.; Riis, T. Using river microalgae as indicators for freshwater biomonitoring: Review of published research and future directions. Ecol. Indic. 2017, 81, 124–131. [Google Scholar] [CrossRef]
Diatom Index | Description | |
---|---|---|
Advantages | Sensitivity | Diatoms quickly indicate changes in water quality, such as pollution and nutrient levels, signaling ecosystem health shifts. |
Integrative indicator | They reflect cumulative environmental stressors, offering a comprehensive view of river health and long-term trends. | |
Historical insights | Diatoms help track historical water quality changes, showing the effects of human and environmental shifts. | |
Non-destructive sampling | They are collected harmlessly, preserving river ecosystems while assessing health. | |
Early warning | Diatoms alert to water quality issues early, preventing severe problems. | |
Challenges | Regional variation | Diatom sensitivity varies regionally, necessitating tailored indices for accurate health assessments. |
Taxonomic expertise | Identifying diatoms accurately demands specialized knowledge, posing challenges for assessment accuracy. | |
Sample handling | Collecting and processing diatom samples requires effort and specific equipment, with careful handling needed for sample integrity. | |
Limited scope | The diatom index mainly detects changes related to diatoms, possibly missing broader ecosystem health indicators. | |
Lag time | Environmental changes may not immediately reflect in diatom communities, potentially delaying pollution detection. |
Techniques | Methods (Tools) |
---|---|
Microscopy | Simplified to essential imaging techniques and software for diatom study, focusing on confocal and electron microscopy for morphology analysis (confocal microscopy, electron microscopy, basic image analysis). |
Molecular Methods | Streamlined genomic analysis utilizing Next-Generation Sequencing and CRISPR-Cas9 for targeted gene editing, with a focus on essential DNA and RNA analysis (NGS, CRISPR-Cas9, DNA/RNA analysis). |
Culture and Automation | Reduced to core automated culture and sample processing techniques for efficient diatom research (automated diatom culture, sample processing, DNA extraction, PCR). |
Collaborative Research | Focused on key interdisciplinary collaborations using computational models and data sharing for diatom biology and ecology (interdisciplinary projects, data sharing). |
Bioinformatics and Data Analysis | Condensed to fundamental bioinformatics and data analysis techniques, with an emphasis on sequence analysis and taxonomic categorization using machine learning (bioinformatics and machine learning for data analysis). |
Aspect | Diatom Analysis | eDNA Analysis |
---|---|---|
Strengths | Provides comprehensive insights from specific to broad ecosystem views with enhanced sensitivity Offers efficient, precise evaluation by combining both methods | Potential for diverse species detection using DNA markers Can detect a wider range of organisms beyond diatoms Non-invasive, reducing ecological disruption Suitable for long-term monitoring Provides a more comprehensive view of ecosystem health Utilizes DNA sequencing with the potential for automated identification Offers potential for more standardized protocols |
Challenges | Dependent on taxonomic skills Requires investment in microscopes and personnel Demands taxonomic expertise\ Labor-intensive with potential identification errors Involves physical sample collection with potential ecological disruption Requires consistent access to skilled personnel Shows variable sample representativeness Subject to variability and taxonomic revisions | Requires lab setup and molecular biology equipment costs Requires bioinformatics skills for DNA sequence analysis Faces technical challenges in DNA analysis, an evolving field with sequencing challenges Detects species presence, potentially with less contextual information |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-K.; Cho, I.-H.; Hwang, E.-A.; Han, B.-H.; Kim, B.-H. Advancing River Health Assessments: Integrating Microscopy and Molecular Techniques through Diatom Indices. Water 2024, 16, 853. https://doi.org/10.3390/w16060853
Kim H-K, Cho I-H, Hwang E-A, Han B-H, Kim B-H. Advancing River Health Assessments: Integrating Microscopy and Molecular Techniques through Diatom Indices. Water. 2024; 16(6):853. https://doi.org/10.3390/w16060853
Chicago/Turabian StyleKim, Ha-Kyung, In-Hwan Cho, Eun-A Hwang, Byung-Hun Han, and Baik-Ho Kim. 2024. "Advancing River Health Assessments: Integrating Microscopy and Molecular Techniques through Diatom Indices" Water 16, no. 6: 853. https://doi.org/10.3390/w16060853
APA StyleKim, H. -K., Cho, I. -H., Hwang, E. -A., Han, B. -H., & Kim, B. -H. (2024). Advancing River Health Assessments: Integrating Microscopy and Molecular Techniques through Diatom Indices. Water, 16(6), 853. https://doi.org/10.3390/w16060853