An Advanced Multi-Objective Ant Lion Algorithm for Reservoir Flood Control Optimal Operation
Abstract
:1. Introduction
2. Methods
2.1. Improved Multi-Objective Ant Lion Algorithm
2.1.1. Ant Lion Algorithm
- Initialization
- Random walk of ants
- Updating antlion positions
- Updating ant positions
2.1.2. Multi-Objective Ant Lion Algorithm
2.1.3. Improved Multi-Objective Ant Lion Algorithm
2.2. Reservoir Flood Control Optimization Operation Model
2.2.1. Objective Function
2.2.2. Constraint Conditions
- Water balance constraint
- 2.
- Water level constraint
- 3.
- Reservoir outflow constraint
2.2.3. Penalty Function
2.3. Evaluation Indexes for Multi-Objective Algorithm
- 4.
- Efficiency
- 5.
- Uniformity of distribution
- 6.
- Convergence
- 7.
- Distribution range of each objective function
3. Study Area
4. Results and Discussion
4.1. Parameters of the Multi-Objective Algorithms
4.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, G.; Liang, G.; Ding, W.; He, B.; Wu, J.; Ren, M.; Zhou, H. Deriving Optimal Operating Rules for Flood Control Considering Pre-Release Based on Forecast Information. J. Hydrol. 2022, 615, 128665. [Google Scholar] [CrossRef]
- Ning, Y.; Ding, W.; Liang, G.; He, B.; Zhou, H. An Analytical Risk Analysis Method for Reservoir Flood Control Operation Considering Forecast Information. Water Resour. Manag. 2021, 35, 2079–2099. [Google Scholar] [CrossRef]
- Sharifi, M.R.; Akbarifard, S.; Madadi, M.R.; Akbarifard, H.; Qaderi, K. Comprehensive Assessment of 20 State-of-the-Art Multi-Objective Meta-Heuristic Algorithms for Multi-Reservoir System Operation. J. Hydrol. 2022, 613, 128469. [Google Scholar] [CrossRef]
- Sun, X.; Luo, J.; Xie, J. Multi-Objective Optimization for Reservoir Operation Considering Water Diversion and Power Generation Objectives. Water 2018, 10, 1540. [Google Scholar] [CrossRef]
- Yeh, W.W.-G. Reservoir Management and Operations Models: A State-of-the-Art Review. Water Resour. Res. 1985, 21, 1797–1818. [Google Scholar] [CrossRef]
- Reddy, M.J.; Kumar, D.N. Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm. Water Resour. Manag. 2006, 20, 861–878. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, C.; Cai, X.; Li, Y.; Zhou, H. Multiobjective Hedging Rules for Flood Water Conservation: Hedging for Flood Water Conservation. Water Resour. Res. 2017, 53, 1963–1981. [Google Scholar] [CrossRef]
- Feng, M.; Liu, P.; Guo, S.; Yu, D.J.; Cheng, L.; Yang, G.; Xie, A. Adapting Reservoir Operations to the Nexus across Water Supply, Power Generation, and Environment Systems: An Explanatory Tool for Policy Makers. J. Hydrol. 2019, 574, 257–275. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.M. Multi-Objective Reservoir Operation of the Ukai Reservoir System Using an Improved Jaya Algorithm. Water Supply 2022, 22, 2287–2310. [Google Scholar] [CrossRef]
- Yıldız, B.S.; Kumar, S.; Pholdee, N.; Bureerat, S.; Sait, S.M.; Yildiz, A.R. A New Chaotic Lévy Flight Distribution Optimization Algorithm for Solving Constrained Engineering Problems. Expert Syst. 2022, 39, e12992. [Google Scholar] [CrossRef]
- Yıldız, B.S.; Pholdee, N.; Bureerat, S.; Erdaş, M.U.; Yıldız, A.R.; Sait, S.M. Comparision of the Political Optimization Algorithm, the Archimedes Optimization Algorithm and the Levy Flight Algorithm for Design Optimization in Industry. Mater. Test. 2021, 63, 356–359. [Google Scholar] [CrossRef]
- Akbarifard, S.; Sharifi, M.R.; Qaderi, K.; Madadi, M.R. Optimal Operation of Multi-Reservoir Systems: Comparative Study of Three Robust Metaheuristic Algorithms. Water Supply 2021, 21, 941–958. [Google Scholar] [CrossRef]
- Chaves, P.; Chang, F.-J. Intelligent Reservoir Operation System Based on Evolving Artificial Neural Networks. Adv. Water Resour. 2008, 31, 926–936. [Google Scholar] [CrossRef]
- Chang, L.-C.; Chang, F.-J.; Wang, K.-W.; Dai, S.-Y. Constrained Genetic Algorithms for Optimizing Multi-Use Reservoir Operation. J. Hydrol. 2010, 390, 66–74. [Google Scholar] [CrossRef]
- Marković, I.; Jurić-Kavelj, S.; Petrović, I. Partial Mutual Information Based Input Variable Selection for Supervised Learning Approaches to Voice Activity Detection. Appl. Soft Comput. 2013, 13, 4383–4391. [Google Scholar] [CrossRef]
- Jalali, M.R.; Afshar, A.; Mariño, M.A. Multi-Colony Ant Algorithm for Continuous Multi-Reservoir Operation Optimization Problem. Water Resour. Manag. 2007, 21, 1429–1447. [Google Scholar] [CrossRef]
- Haddad, O.B.; Afshar, A.; Mariño, M.A. Multireservoir Optimisation in Discrete and Continuous Domains. Proc. Inst. Civ. Eng.-Water Manag. 2011, 164, 57–72. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. A Novel Meta-Heuristic Optimization Method Based on Golden Ratio in Nature. Soft Comput. 2020, 24, 1117–1151. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Roni, M.H.K.; Rana, M.S.; Pota, H.R.; Hasan, M.M.; Hussain, M.S. Recent Trends in Bio-Inspired Meta-Heuristic Optimization Techniques in Control Applications for Electrical Systems: A Review. Int. J. Dyn. Control. 2022, 10, 999–1011. [Google Scholar] [CrossRef]
- Mahajan, S.; Abualigah, L.; Pandit, A.K.; Al Nasar, M.R.; Alkhazaleh, H.A.; Altalhi, M. Fusion of Modern Meta-Heuristic Optimization Methods Using Arithmetic Optimization Algorithm for Global Optimization Tasks. Soft Comput. 2022, 26, 6749–6763. [Google Scholar] [CrossRef]
- Chen, D.; Ge, Y.; Wan, Y.; Deng, Y.; Chen, Y.; Zou, F. Poplar Optimization Algorithm: A New Meta-Heuristic Optimization Technique for Numerical Optimization and Image Segmentation. Expert Syst. Appl. 2022, 200, 117118. [Google Scholar] [CrossRef]
- Verma, P.; Alam, A.; Sarwar, A.; Tariq, M.; Vahedi, H.; Gupta, D.; Ahmad, S.; Shah Noor Mohamed, A. Meta-Heuristic Optimization Techniques Used for Maximum Power Point Tracking in Solar PV System. Electronics 2021, 10, 2419. [Google Scholar] [CrossRef]
- Deb, K. Multi-Objective Optimisation Using Evolutionary Algorithms: An Introduction. In Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing; Wang, L., Ng, A.H.C., Deb, K., Eds.; Springer: London, UK, 2011; pp. 3–34. ISBN 978-0-85729-652-8. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Li, K.; Deb, K.; Yao, X. R-Metric: Evaluating the Performance of Preference-Based Evolutionary Multiobjective Optimization Using Reference Points. IEEE Trans. Evol. Comput. 2018, 22, 821–835. [Google Scholar] [CrossRef]
- Mirjalili, S.; Jangir, P.; Saremi, S. Multi-Objective Ant Lion Optimizer: A Multi-Objective Optimization Algorithm for Solving Engineering Problems. Appl. Intell. 2017, 46, 79–95. [Google Scholar] [CrossRef]
- Dariane, A.B.; Sabokdast, M.M.; Karami, F.; Asadi, R.; Ponnambalam, K.; Mousavi, S.J. Integrated Operation of Multi-Reservoir and Many-Objective System Using Fuzzified Hedging Rule and Strength Pareto Evolutionary Optimization Algorithm (SPEA2). Water 2021, 13, 1995. [Google Scholar] [CrossRef]
- Chouikha, I.; Bree, A.; Moulin-Schouleur, M.; Gilot, P.; Germon, P. Differential Expression of iutA and ibeA in the Early Stages of Infection by Extra-Intestinal Pathogenic E. coli. Microbes Infect. 2008, 10, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
Parameter | Population Size | Number of Iterations | Maximum Number of Pareto Solutions | |
---|---|---|---|---|
Value | 6h | 50 | 200 | 80 |
Algorithm | NSGA-II | SPEA-II | MOALO | AMOALO |
---|---|---|---|---|
P | 42% | 60% | 100% | 100% |
SP | 42.04 | 4.28 | 7.75 | 7.51 |
NSGA-II | SPEA-II | MOALO | AMOALO | |
---|---|---|---|---|
NSGA-II | 0 | 0 | 0 | 0 |
SPEA-II | 0.18 | 0 | 0.04 | 0 |
MOALO | 0.47 | 0.74 | 0 | 0 |
AMOALO | 0.87 | 0.81 | 0.63 | 0 |
(104/m3) | (104/m3) | (m3/s) | |
---|---|---|---|
RO | 4361 | 0 | 1021 |
NSGA-II | [1319, 2122] | [79, 694] | [417, 791] |
SPEA-II | [1659, 1796] | [0, 109] | [462, 659] |
MOALO | [1479, 1745] | [0, 170] | [477, 555] |
AMOALO | [1210, 1644] | [0, 101] | [460, 600] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Y.; Ren, M.; Guo, S.; Liang, G.; He, B.; Liu, X.; Tang, R. An Advanced Multi-Objective Ant Lion Algorithm for Reservoir Flood Control Optimal Operation. Water 2024, 16, 852. https://doi.org/10.3390/w16060852
Ning Y, Ren M, Guo S, Liang G, He B, Liu X, Tang R. An Advanced Multi-Objective Ant Lion Algorithm for Reservoir Flood Control Optimal Operation. Water. 2024; 16(6):852. https://doi.org/10.3390/w16060852
Chicago/Turabian StyleNing, Yawei, Minglei Ren, Shuai Guo, Guohua Liang, Bin He, Xiaoyang Liu, and Rong Tang. 2024. "An Advanced Multi-Objective Ant Lion Algorithm for Reservoir Flood Control Optimal Operation" Water 16, no. 6: 852. https://doi.org/10.3390/w16060852
APA StyleNing, Y., Ren, M., Guo, S., Liang, G., He, B., Liu, X., & Tang, R. (2024). An Advanced Multi-Objective Ant Lion Algorithm for Reservoir Flood Control Optimal Operation. Water, 16(6), 852. https://doi.org/10.3390/w16060852