Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = dynamic clustered Bayesian averaging (DCBA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6287 KB  
Article
Superiority of Dynamic Weights against Fixed Weights in Merging Multi-Satellite Precipitation Datasets over Pakistan
by Nuaman Ejaz, Aftab Haider Khan, Muhammad Shahid, Kifayat Zaman, Khaled S. Balkhair, Khalid Mohammed Alghamdi, Khalil Ur Rahman and Songhao Shang
Water 2024, 16(4), 597; https://doi.org/10.3390/w16040597 - 17 Feb 2024
Viewed by 2511
Abstract
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to reduce these uncertainties. This study investigates the efficacy of [...] Read more.
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to reduce these uncertainties. This study investigates the efficacy of dynamically weighted MPDs in contrast to those using static weights. The analysis focuses on comparing MPDs generated using the “dynamic clustered Bayesian averaging (DCBA)” approach with those utilizing the “regional principal component analysis (RPCA)” under fixed-weight conditions. These MPDs were merged from SPPs and reanalysis precipitation data, including TRMM (Tropical Rainfall Measurement Mission) Multi-satellite Precipitation Analysis (TMPA) 3B42V7, PERSIANN-CDR, CMORPH, and the ERA-Interim reanalysis precipitation data. The performance of these datasets was evaluated in Pakistan’s diverse climatic zones—glacial, humid, arid, and hyper-arid—employing data from 102 rain gauge stations. The effectiveness of the DCBA model was quantified using Theil’s U statistic, demonstrating its superiority over the RPCA model and other individual merging methods in the study area The comparative performances of DCBA and RPCA in these regions, as measured by Theil’s U, are 0.49 to 0.53, 0.38 to 0.45, 0.37 to 0.42, and 0.36 to 0.43 in glacial, humid, arid, and hyper-arid zones, respectively. The evaluation of DCBA and RPCA compared with SPPs at different elevations showed poorer performance at high altitudes (>4000 m). The comparison of MPDs with the best performance of SPP (i.e., TMPA) showed significant improvement of DCBA even at altitudes above 4000 m. The improvements are reported as 49.83% for mean absolute error (MAE), 42.31% for root-mean-square error (RMSE), 27.94% for correlation coefficient (CC), 40.15% for standard deviation (SD), and 13.21% for Theil’s U. Relatively smaller improvements are observed for RPCA at 13.04%, 1.56%, 10.91%, 1.67%, and 5.66% in the above indices, respectively. Overall, this study demonstrated the superiority of DCBA over RPCA with static weight. Therefore, it is strongly recommended to use dynamic variation of weights in the development of MPDs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

37 pages, 6075 KB  
Article
Assessment of Merged Satellite Precipitation Datasets in Monitoring Meteorological Drought over Pakistan
by Khalil Ur Rahman, Songhao Shang and Muhammad Zohaib
Remote Sens. 2021, 13(9), 1662; https://doi.org/10.3390/rs13091662 - 24 Apr 2021
Cited by 32 | Viewed by 6425
Abstract
The current study evaluates the potential of merged satellite precipitation datasets (MSPDs) against rain gauges (RGs) and satellite precipitation datasets (SPDs) in monitoring meteorological drought over Pakistan during 2000–2015. MSPDs evaluated in the current study include Regional Weighted Average Least Square (RWALS), Weighted [...] Read more.
The current study evaluates the potential of merged satellite precipitation datasets (MSPDs) against rain gauges (RGs) and satellite precipitation datasets (SPDs) in monitoring meteorological drought over Pakistan during 2000–2015. MSPDs evaluated in the current study include Regional Weighted Average Least Square (RWALS), Weighted Average Least Square (WALS), Dynamic Clustered Bayesian model Averaging (DCBA), and Dynamic Bayesian Model Averaging (DBMA) algorithms, while the set of SPDs is Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG-V06), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA 3B42 V7), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and ERA-Interim (re-analyses dataset). Several standardized precipitation indices (SPIs), including SPI-1, SPI-3, and SPI-12, are used to evaluate the performances of RGs, SPDs, and MSPDs across Pakistan as well as on a regional scale. The Mann–Kendall (MK) test is used to assess the trend of meteorological drought across different climate regions of Pakistan using these SPI indices. Results revealed higher performance of MSPDs than SPDs when compared against RGs for SPI estimates. The seasonal evaluation of SPIs from RGs, MSPDs, and SPDs in a representative drought year (2008) revealed mildly to moderate wetness in monsoon season while mild to moderate drought in winter season across Pakistan. However, the drought severity ranges from mild to severe drought in different years across different climate regions. MAPD (mean absolute percentage difference) shows high accuracy (MAPD <10%) for RWALS-MSPD, good accuracy (10% < MAPD <20%) for WALS-MSPD and DCBA-MSPD, while good to reasonable accuracy (20% < MAPD < 50%) for DCBA in different climate regions. Furthermore, MSPDs show a consistent drought trend as compared with RGs, while SPDs show poor performance. Overall, this study demonstrated significantly improved performance of MSPDs in monitoring the meteorological drought. Full article
(This article belongs to the Special Issue Remote Sensing in Agricultural Hydrology and Water Resources Modeling)
Show Figures

Figure 1

31 pages, 6205 KB  
Article
A Regional Blended Precipitation Dataset over Pakistan Based on Regional Selection of Blending Satellite Precipitation Datasets and the Dynamic Weighted Average Least Squares Algorithm
by Khalil Ur Rahman and Songhao Shang
Remote Sens. 2020, 12(24), 4009; https://doi.org/10.3390/rs12244009 - 8 Dec 2020
Cited by 8 | Viewed by 4087
Abstract
Substantial uncertainties are associated with satellite precipitation datasets (SPDs), which are further amplified over complex terrain and diverse climate regions. The current study develops a regional blended precipitation dataset (RBPD) over Pakistan from selected SPDs in different regions using a dynamic weighted average [...] Read more.
Substantial uncertainties are associated with satellite precipitation datasets (SPDs), which are further amplified over complex terrain and diverse climate regions. The current study develops a regional blended precipitation dataset (RBPD) over Pakistan from selected SPDs in different regions using a dynamic weighted average least squares (WALS) algorithm from 2007 to 2018 with 0.25° spatial resolution and one-day temporal resolution. Several SPDs, including Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42-v7, Precipitation Estimates from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), ERA-Interim (reanalysis dataset), SM2RAIN-CCI, and SM2RAIN-ASCAT are evaluated to select appropriate blending SPDs in different climate regions. Six statistical indices, including mean bias (MB), mean absolute error (MAE), unbiased root mean square error (ubRMSE), correlation coefficient (R), Kling–Gupta efficiency (KGE), and Theil’s U coefficient, are used to assess the WALS-RBPD performance over 102 rain gauges (RGs) in Pakistan. The results showed that WALS-RBPD had assigned higher weights to IMERG in the glacial, humid, and arid regions, while SM2RAIN-ASCAT had higher weights across the hyper-arid region. The average weights of IMERG (SM2RAIN-ASCAT) are 29.03% (23.90%), 30.12% (24.19%), 31.30% (27.84%), and 27.65% (32.02%) across glacial, humid, arid, and hyper-arid regions, respectively. IMERG dominated monsoon and pre-monsoon seasons with average weights of 34.87% and 31.70%, while SM2RAIN-ASCAT depicted high performance during post-monsoon and winter seasons with average weights of 37.03% and 38.69%, respectively. Spatial scale evaluation of WALS-RPBD resulted in relatively poorer performance at high altitudes (glacial and humid regions), whereas better performance in plain areas (arid and hyper-arid regions). Moreover, temporal scale performance assessment depicted poorer performance during intense precipitation seasons (monsoon and pre-monsoon) as compared with post-monsoon and winter seasons. Skill scores are used to quantify the improvements of WALS-RBPD against previously developed blended precipitation datasets (BPDs) based on WALS (WALS-BPD), dynamic clustered Bayesian model averaging (DCBA-BPD), and dynamic Bayesian model averaging (DBMA-BPD). On the one hand, skill scores show relatively low improvements of WALS-RBPD against WALS-BPD, where maximum improvements are observed in glacial (humid) regions with skill scores of 29.89% (28.69%) in MAE, 27.25% (23.89%) in ubRMSE, and 24.37% (28.95%) in MB. On the other hand, the highest improvements are observed against DBMA-BPD with average improvements across glacial (humid) regions of 39.74% (36.93%), 38.27% (33.06%), and 39.16% (30.47%) in MB, MAE, and ubRMSE, respectively. It is recommended that the development of RBPDs can be a potential alternative for data-scarce regions and areas with complex topography. Full article
(This article belongs to the Special Issue Remote Sensing in Agricultural Hydrology and Water Resources Modeling)
Show Figures

Graphical abstract

Back to TopTop