Reconstructing Historical Intense and Total Summer Rainfall in Central North Carolina Using Tree-Ring Data (1770–2020)
Abstract
:1. Introduction
2. Methods
2.1. Tree-Ring Data
2.2. Climate Data
2.3. Statistical Analyses and Climate Reconstruction
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxwell, R.S.; Hessl, A.E.; Cook, E.R.; Buckley, B.M. A Multicentury Reconstruction of May Precipitation for the Mid-Atlantic Region Using Juniperus Virginiana Tree Rings. J. Clim. 2012, 25, 1045–1056. [Google Scholar] [CrossRef]
- Pederson, N.; Bell, A.R.; Knight, T.A.; Leland, C.; Malcomb, N.; Anchukaitis, K.J.; Tackett, K.; Scheff, J.; Brice, A.; Catron, B.; et al. A Long-Term Perspective on a Modern Drought in the American Southeast. Environ. Res. Lett. 2012, 7, 014034. [Google Scholar] [CrossRef]
- Dawson, A.; Austin, D.; Walker, D.; Appleton, S.; Gillanders, B.M.; Griffin, S.M.; Sakata, C.; Trouet, V. A Tree-Ring Based Reconstruction of Early Summer Precipitation in Southwestern Virginia (1750 1981). Clim. Res. 2015, 64, 243–256. [Google Scholar] [CrossRef]
- Knapp, P.A.; Maxwell, J.T.; Soulé, P.T. Tropical Cyclone Rainfall Variability in Coastal North Carolina Derived from Longleaf Pine (Pinus Palustris Mill.): AD 1771–2014. Clim. Chang. 2016, 135, 311–323. [Google Scholar] [CrossRef]
- Harley, G.L.; Maxwell, J.T.; Larson, E.; Grissino-Mayer, H.D.; Henderson, J.; Huffman, J. Suwannee River Flow Variability 1550–2005 CE Reconstructed from a Multispecies Tree-Ring Network. J. Hydrol. 2017, 544, 438–451. [Google Scholar] [CrossRef]
- Maxwell, R.S.; Harley, G.L.; Maxwell, J.T.; Rayback, S.A.; Pederson, N.; Cook, E.R.; Barclay, D.J.; Li, W.; Rayburn, J.A. An Interbasin Comparison of Tree-Ring Reconstructed Streamflow in the Eastern United States. Hydrol. Process. 2017, 31, 2381–2394. [Google Scholar] [CrossRef]
- Mitchell, T.; Knapp, P.; Patterson, T. Changes in Southeastern USA Summer Precipitation Event Types Using Instrumental (1940–2018) and Tree-Ring (1790–2018) Data. Environ. Res. Commun. 2019, 1, 111005. [Google Scholar] [CrossRef]
- Knapp, P.A.; Soulé, P.T.; Maxwell, J.T.; Ortegren, J.T.; Mitchell, T.J. Tropical Cyclone Precipitation Regimes since 1750 and the Great Suppression of 1843–1876 along Coastal North Carolina, USA. Int. J. Climatol. 2021, 41, 200–210. [Google Scholar] [CrossRef]
- Bregy, J.C.; Maxwell, J.T.; Robeson, S.M.; Harley, G.L.; Elliott, E.A.; Heeter, K.J. US Gulf Coast Tropical Cyclone Precipitation Influenced by Volcanism and the North Atlantic Subtropical High. Commun. Earth Environ. 2022, 3, 164. [Google Scholar] [CrossRef]
- Mitchell, T.J.; Knapp, P.A.; Patterson, T.W. The Importance of Infrequent, High-Intensity Rainfall Events for Longleaf Pine (Pinus Palustris Mill.) Radial Growth and Implications for Dendroclimatic Research. Trees For. People 2020, 1, 100009. [Google Scholar] [CrossRef]
- Anderson, S.; Ogle, R.; Tootle, G.; Oubeidillah, A. Tree-Ring Reconstructions of Streamflow for the Tennessee Valley. Hydrology 2019, 6, 34. [Google Scholar] [CrossRef]
- Mitchell, T.J.; Knapp, P.A. Radial Growth Responses of Four Southeastern USA Pine Species to Summertime Precipitation Event Types and Intense Rainfall Events. Atmosphere 2022, 13, 1731. [Google Scholar] [CrossRef]
- Moore, B.J.; Mahoney, K.M.; Sukovich, E.M.; Cifelli, R.; Hamill, T.M. Climatology and Environmental Characteristics of Extreme Precipitation Events in the Southeastern United States. Mon. Weather Rev. 2015, 143, 718–741. [Google Scholar] [CrossRef]
- Easterling, D.R.; Kunkel, K.; Arnold, J. Precipitation Change in the United States. 2017. Available online: https://repository.library.noaa.gov/view/noaa/32288 (accessed on 10 September 2022).
- Schoof, J.T. High-Resolution Projections of 21st Century Daily Precipitation for the Contiguous US. J. Geophys. Res. Atmos. 2015, 120, 3029–3042. [Google Scholar] [CrossRef]
- Shields, C.A.; Kiehl, J.T.; Meehl, G.A. Future Changes in Regional Precipitation Simulated by a Half-Degree Coupled Climate Model: Sensitivity to Horizontal Resolution. J. Adv. Model. Earth Syst. 2016, 8, 863–884. [Google Scholar] [CrossRef]
- Holmes, R.L. Quality Control of Crossdating and Measuring. Users Manual for Computer Program COFECHA. Tree-Ring Chronologies of Western North America: California, Eastern Oregon and Northern Great Basin 1986. Available online: http://hdl.handle.net/10150/304672 (accessed on 10 September 2022).
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Bunn, A.G. A Dendrochronology Program Library in R (DplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Soulé, P.T.; Knapp, P.A.; Maxwell, J.T.; Mitchell, T.J. A Comparison of the Climate Response of Longleaf Pine (Pinus Palustris Mill.) Trees among Standardized Measures of Earlywood, Latewood, Adjusted Latewood, and Totalwood Radial Growth. Trees 2021, 35, 1065–1074. [Google Scholar] [CrossRef]
- Meko, D.M.; Baisan, C.H. Pilot Study of Latewood-Width of Conifers as an Indicator of Variability of Summer Rainfall in the North American Monsoon Region. Int. J. Climatol. A J. R. Meteorol. Soc. 2001, 21, 697–708. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. Climate Data Online. Available online: https://www.ncei.noaa.gov/cdo-web/ (accessed on 10 September 2022).
- The Comprehensive R Archive Network. Caret: Classification and Regression Training. Available online: https://cran.r-project.org/package=caret (accessed on 10 September 2022).
- The Comprehensive R Archive Network. lmtest: Testing Linear Regression Models. Available online: https://cran.r-project.org/package=lmtest (accessed on 10 September 2022).
- The Comprehensive R Archive Network. ie2misc: Irucka Embry’s Miscellaneous USGS Functions. Available online: https://cran.r-project.org/package=ie2misc (accessed on 27 January 2024).
- The Comprehensive R Archive Network. dplR: Dendrochronology Program Library in R. Available online: https://cran.r-project.org/package=dplR (accessed on 10 September 2022).
- The Comprehensive R Archive Network. itdistrplus: Help to Fit of a Parametric Distribution to Non-Censored or Censored Data. Available online: https://cran.r-project.org/package=fitdistrplus (accessed on 28 January 2024).
- The Comprehensive R Archive Network. rshift: Paleoecology Functions for Regime Shift Analysis. Available online: https://cran.r-project.org/package=rshift (accessed on 10 September 2022).
- Durbin, J.; Watson, G.S. Testing for Serial Correlation in Least Squares Regression. III. Biometrika 1971, 58, 1–19. [Google Scholar] [CrossRef]
- Catherwood, A.A.; Knapp, P.A. Increasing Precipitation Variability and Climate-Growth Responses of Five Tree Species in North Carolina, USA. Environ. Res. Clim. 2023, 3, 015001. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef]
- Picard, C.J.; Winter, J.M.; Cockburn, C.; Hanrahan, J.; Teale, N.G.; Clemins, P.J.; Beckage, B. Twenty-First Century Increases in Total and Extreme Precipitation across the Northeastern USA. Clim. Chang. 2023, 176, 72. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M. How Well Do CMIP6 Historical Runs Match Observed Northeast US Precipitation and Extreme Precipitation–Related Circulation? J. Clim. 2020, 33, 9835–9848. [Google Scholar] [CrossRef]
- Howard, I.M.; Stahle, D.W. Tree-Ring Reconstruction of Single-Day Precipitation Totals over Eastern Colorado. Mon. Weather Rev. 2020, 148, 597–612. [Google Scholar] [CrossRef]
- Post, A.K.; Knapp, A.K. The Importance of Extreme Rainfall Events and Their Timing in a Semi-Arid Grassland. J. Ecol. 2020, 108, 2431–2443. [Google Scholar] [CrossRef]
- Post, A.K.; Knapp, A.K. How Big Is Big Enough? Surprising Responses of a Semiarid Grassland to Increasing Deluge Size. Glob. Chang. Biol. 2021, 27, 1157–1169. [Google Scholar] [CrossRef]
- Griffin-Nolan, R.J.; Slette, I.J.; Knapp, A.K. Deconstructing Precipitation Variability: Rainfall Event Size and Timing Uniquely Alter Ecosystem Dynamics. J. Ecol. 2021, 109, 3356–3369. [Google Scholar] [CrossRef]
- Stevenson, S.; Coats, S.; Touma, D.; Cole, J.; Lehner, F.; Fasullo, J.; Otto-Bliesner, B. Twenty-First Century Hydroclimate: A Continually Changing Baseline, with More Frequent Extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2108124119. [Google Scholar] [CrossRef]
- Emmanouil, S.; Langousis, A.; Nikolopoulos, E.I.; Anagnostou, E.N. Exploring the Future of Rainfall Extremes over CONUS: The Effects of High Emission Climate Change Trajectories on the Intensity and Frequency of Rare Precipitation Events. Earth’s Future 2023, 11, e2022EF003039. [Google Scholar] [CrossRef]
- Wise, E.K.; Dannenberg, M.P. Simulating the Impacts of Changes in Precipitation Timing and Intensity on Tree Growth. Geophys. Res. Lett. 2022, 49, e2022GL100863. [Google Scholar] [CrossRef]
- O’Donnell, A.J.; Renton, M.; Allen, K.J.; Grierson, P.F. The Role of Extreme Rain Events in Driving Tree Growth across a Continental-Scale Climatic Range in Australia. Ecography 2021, 44, 1086–1097. [Google Scholar] [CrossRef]
Mean Observed Precipitation (1940–2020) | Mean Reconstructed Precipitation (1770–2020) | R2 | RMSE (fit) | RMSE (LOOCV) | Durbin–Watson (LOOCV) | |
---|---|---|---|---|---|---|
IRE | 180.8 mm | 182.8 mm | 37% | 78.26 | 80.25 | 2.11 |
Total | 346.9 mm | 349.4 mm | 46% | 82.18 | 84.46 | 2.03 |
Variable | Minimum r | Maximum r | Mean r | Median r |
---|---|---|---|---|
IRE precipitation | 0.298 | 0.715 | 0.577 | 0.634 |
Total precipitation | 0.384 | 0.779 | 0.620 | 0.660 |
Regime Period | Mean IRE Precipitation | Mean Total Precipitation | IRE:Total Precipitation Ratio |
---|---|---|---|
1770–1935 | 181.20 mm | 347.45 mm | 52.2% |
1936–1959 | 230.45 mm | 409.70 mm | 56.2% |
1960–2020 | 168.27 mm | 331.11 mm | 50.8% |
Variable | Adjusted Latewood Correlation with IRE Precipitation | Adjusted Latewood Correlation with Total Precipitation | Explanatory Ratio | Mean Latewood |
---|---|---|---|---|
Early period (1940–1980) | 0.732 | 0.758 | 0.9661 | 1.038 |
Late period (1981–2020) | 0.430 | 0.556 | 0.7729 | 0.947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, T.J.; Knapp, P.A. Reconstructing Historical Intense and Total Summer Rainfall in Central North Carolina Using Tree-Ring Data (1770–2020). Water 2024, 16, 513. https://doi.org/10.3390/w16040513
Mitchell TJ, Knapp PA. Reconstructing Historical Intense and Total Summer Rainfall in Central North Carolina Using Tree-Ring Data (1770–2020). Water. 2024; 16(4):513. https://doi.org/10.3390/w16040513
Chicago/Turabian StyleMitchell, Tyler J., and Paul A. Knapp. 2024. "Reconstructing Historical Intense and Total Summer Rainfall in Central North Carolina Using Tree-Ring Data (1770–2020)" Water 16, no. 4: 513. https://doi.org/10.3390/w16040513
APA StyleMitchell, T. J., & Knapp, P. A. (2024). Reconstructing Historical Intense and Total Summer Rainfall in Central North Carolina Using Tree-Ring Data (1770–2020). Water, 16(4), 513. https://doi.org/10.3390/w16040513