Water Quality Assessment of a Hydro-Agricultural Reservoir in a Mediterranean Region (Case Study—Lage Reservoir in Southern Portugal)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate and Meteorological Conditions
2.3. Land Use and Land Cover (LULC) Characterization and Agricultural Practices
2.4. Sampling Campaigns
2.5. Water Status
2.5.1. General Physico-Chemical Parameters
2.5.2. Irrigation Water Quality Parameters
2.6. Statistical Treatment of Data
3. Results and Discussion
3.1. Meteorological Conditions and LULC Characterization
3.2. Physical Characteristics of the Reservoir
3.3. General Chemical Parameters Used in the Water Status Classification
3.4. Assessment of Water Quality for Irrigation
3.5. Multivariate Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN. United Nations Decade on Ecosystem Restoration (2021–2030). Retrieved from undocs.org/A/RES/73/284. March 2019; pp. 1–6. Available online: https://undocs.org/Home/Mobile?FinalSymbol=A%2FRES%2F73%2F284,03519&Language=E&DeviceType=Desktop&LangRequested=False (accessed on 7 October 2023).
- European Commission. Commission Staff Working Document: European Overview—River Basin Management Plans 296; European Commission: Brussels Belgium, 2019. [Google Scholar]
- IPCC. Climate Change (2014): Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Erol, A.; Randyr, T.O. Climatic change impacts on the ecohydrology of Mediterranean watersheds. Clim. Chang. 2012, 114, 319–341. [Google Scholar] [CrossRef]
- Loucif, K.; Menasria, T.; Cherif, M.; Houhamdi, M.; Chenchouni, H. Physico-chemical and bacteriological quality assessment of surface water at Lake Tonga in Algeria. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100284. [Google Scholar] [CrossRef]
- Palma, P.; Penha, A.; Novais, M.H.; Fialho, S.; Lima, A.; Mourinha, C.; Alvarenga, P.; Rosado, A.; Iakunin, M.; Rodrigues, G.; et al. Water-sediment physicochemical dynamics in a large reservoir in the Mediterranean region under multiple stressors. Water 2021, 13, 707. [Google Scholar] [CrossRef]
- Rocha, J.; Roebeling, P.; Rialrivas, M.E. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the swat model. Sci. Total Environ. 2015, 536, 48–58. [Google Scholar] [CrossRef]
- Tomaz, A.; Palma, P.; Fialho, S.; Lima, A.; Alvarenga, P.; Potes, M.; Salgado, R. Spatial and Temporal Dynamics of Irrigation Water Quality under Drought Conditions in a Large Reservoir in Southern Portugal. Environ. Monit. Assess. 2020, 192, 93. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef]
- Teshager, A.D.; Gassman, P.W.; Schoof, J.T.; Secchi, S. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production. Hydrol. Earth Syst. Sci. 2016, 20, 3325–3342. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef]
- Nunes, J.P.; Jacinto, R.; Keizer, J.J. Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir. Sci. Total Environ. 2017, 584–585, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.; Serafim, A.; Pinto, P.; Ilhéu, A.; Ruivo, M. Monitoring the water quality in Alqueva reservoir, Guadiana river, southern Portugal. In Reservoir and River Basin Management: Exchange of Experiences from Brazil, Portugal and Germany; Gunkel, G., Sobral, M., Eds.; Universitätsverlag der TU Berlin: Berlin, Germany, 2007; pp. 96–112. ISBN 978-3-7983-2056-7. [Google Scholar]
- Palma, P.; Ledo, L.; Soares, S.; Barbosa, I.R.; Alvarenga, P. Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; Southern Portugal). Sci. Total Environ. 2014, 470–471, 780–790. [Google Scholar] [CrossRef] [PubMed]
- EC. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–73. [Google Scholar]
- Agência Portuguesa do Ambiente (APA). Critérios para a Classificação das Massas de Água—Ficha Técnica; DRH/DEQA: Amadora, Portugal, 2021. [Google Scholar]
- Decree-Law No. 236/1998, 1 of August. In On Water Quality Assessment; Diário da República, 1ª SÉRIE-A N° 176; Ministério do Ambiente: Lisboa, Portugal, 1998.
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage, Paper 29; Food and Agriculture Organization: Rome, Italy, 1985. [Google Scholar]
- Tomaz, A.; Palma, P.; Fialho, S.; Lima, A.; Alvarenga, P.; Potes, M.; Costa, M.J.; Salgado, R. Risk Assessment of Irrigation-Related Soil Salinization and Sodification in Mediterranean Areas. Water 2020, 12, 3569. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Fernandes, M.R.; Martins, M.J.; Ferreira, M.T. Effects of a Large Irrigation Reservoir on Aquatic and Riparian Plants: A History of Survival and Loss. Water 2019, 11, 2379. [Google Scholar] [CrossRef]
- EDIA. Empresa de Desenvolvimento e Infraestruturas de Alqueva: Beja, Portugal; 2023. Available online: https://www.edia.pt/pt/ (accessed on 7 October 2023).
- Tomaz, A.; Martins, I.; Catarino, A.; Mourinha, C.; Dôres, J.; Fabião, M.; Boteta, L.; Coutinho, J.; Patanita, M.; Palma, P. Insights into the Spatial and Temporal Variability of Soil Attributes in Irrigated Farm Fields and Correlations with Management Practices: A Multivariate Statistical Approach. Water 2022, 14, 3216. [Google Scholar] [CrossRef]
- IPMA—Instituto Português do Mar e da Atmosfera. Normais Climatológicas 1981–2010 de Beja; Instituto Português do Mar e da Atmosfera: Lisbon, Portugal; Available online: https://www.ipma.pt/pt/oclima/normais.clima/1981-2010/002/ (accessed on 7 October 2023).
- Santos, J.F.; Portela, M.M.; Pulido-Calvo, I. Spring drought prediction based on winter NAO and global SST in Portugal. Hydrol. Process. 2014, 28, 1009–1024. [Google Scholar] [CrossRef]
- Fragoso, M.; Gomes, P.T. Classification of daily abundant rainfall patterns and associated large-scale atmospheric circulation types in Southern Portugal. Int. J. Climatol. 2008, 28, 537–544. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association and Water Environmental Federation: Washington, DC, USA, 1998. [Google Scholar]
- Palma, P.; Fialho, S.; Lima, A.; Catarino, A.; Costa, M.J.; Barbieri, M.V.; Monllor-Alcaraz, L.S.; Postigo, C.; de Alda, M.L. Occurrence and risk assessment of pesticides in a Mediterranean Basin with strong agricultural pressure (Guadiana Basin: Southern of Portugal). Sci. Total Environ. 2021, 794, 148703. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Vouts, D.; Anthemidis, A.; Sofonoiu, M.; Kouimtzis, T. Assessment of surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [Google Scholar] [CrossRef]
- Wunderlin, D.A.; Díaz, M.P.; Amé, M.V.; Pesce, S.F.; Hued, A.C.; de los Ángeles, B.M. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Córdoba-Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Cornes, R.C.; Van Der Schrier, G.; Van Den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Van Vliet, M.T.; Thorslund, J.; Strokal, M.; Hofstra, N.; Flörke, M.; Ehalt Macedo, H.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global river water quality under climate change and hydroclimatic extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar] [CrossRef]
- Read, E.K.; Patil, V.P.; Oliver, S.K.; Hetherington, A.L.; Brentrup, J.A.; Zwart, J.A.; Winters, K.M.; Corman, J.R.; Nodine, E.R.; Woolway, R.I.; et al. The importance of lake-specific characteristics for water quality across the continental United States. Ecol. Appl. 2015, 25, 943–955. [Google Scholar] [CrossRef]
- Elçi, Ş. Effects of thermal stratification and mixing on reservoir water quality. Limnology 2008, 9, 135–142. [Google Scholar] [CrossRef]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.A.; Werdell, P.J. Recent changes in cyanobacteria algal bloom magnitude in large lakes across the contiguous United States. Sci. Total Environ. 2023, 897, 165253. [Google Scholar] [CrossRef] [PubMed]
- Grigorszky, I.; Kiss, K.T.; Szabó, L.J.; Dévai, G.; Nagy, S.A.; Somlyai, I.; Berta, C.; Gligora-Udovič, M.; Borics, G.; Pór, G.; et al. Drivers of the Ceratium hirundinella and Micro-cystis aeruginosa coexistence in a drinking water reservoir. Limnetica 2019, 38, 41–53. [Google Scholar] [CrossRef]
- Donia, N.; Bahgat, M. Water quality management for Lake Mariout. Ain Shams Eng. J. 2016, 7, 527–541. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Bertoni, R. Limnology of Rivers and Lakes, in Limnology, in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO; EOLSS Publishers: Oxford, UK, 2011. [Google Scholar]
- Liu, W.W.; Zhao, E.M.; Kuo, Y.M.; Jang, C.S. Identifying the relationships between trophic states and their driving factors in the Shihmen Reservoir, Taiwan. Limnologica 2017, 64, 38–45. [Google Scholar] [CrossRef]
- Savira Agatha Putri, M.; Lin, J.L.; Chiang Hsieh, L.H.; Zafirah, Y.; Andhikaputra, G.; Wang, Y.C. Influencing Factors Analysis of Taiwan Eutrophicated Reservoirs. Water 2020, 12, 1325. [Google Scholar] [CrossRef]
- Zou, W.; Zhu, G.; Cai, Y.; Vilmi, A.; Xu, H.; Zhu, M.; Gong, Z.; Zhang, Y.; Qin, B. Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. J. Environ. Manag. 2020, 260, 109923. [Google Scholar] [CrossRef]
- Mavromati, E.; Kagalou, I.; Kemitzoglou, D.; Apostolakis, A.; Seferlis, M.; Tsiaoussi, V. Relationships Among Land Use Patterns, Hydromorphological Features and Physicochemical Parameters of Surface Waters: WFD Lake Monitoring in Greece. Environ. Process. 2018, 5, 139–151. [Google Scholar] [CrossRef]
- Lindim, C.; Pinho, J.L.; Vieira, J.M.P. Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling. Ecol. Model. 2011, 222, 2485–2494. [Google Scholar] [CrossRef]
- Zuccarello, P.; Manganelli, M.; Conti, G.O.; Copat, C.; Grasso, A.; Cristaldi, A.; De Angelis, G.; Testai, E.; Stefanelli, M.; Vichi, S.; et al. Water quality and human health: A simple monitoring model of toxic cyanobacteria growth in highly variable Mediterranean hot dry environments. Environ. Res. 2021, 192, 110291. [Google Scholar] [CrossRef]
- Wangka-orm, C.; Phitaktim, S.; Wisetsri, S.; Bootwong, A.; Khunphonoi, R.; Wongaree, M. Water Quality Analysis for Agriculture: A Case Study of Nong Khon Saen Community Area, Udon Thani, Thailand. Int. J. Environ. Sci. Dev. 2023, 14, 185–189. [Google Scholar] [CrossRef]
- Fernández, F.J.; Martínez, A.; Alvarez-Vázquez, L.J. Controlling eutrophication by means of water recirculation: An optimal control perspective. J. Comput. Appl. Math. 2023, 421, 114886. [Google Scholar] [CrossRef]
- Costa, M.R.A.; Cardoso, M.M.L.; Selmeczy, G.B.; Padisák, J.; Becker, V. Phytoplankton functional responses induced by extreme hydrological events in a tropical reservoir. Hydrobiologia 2023, 15, 1–19. [Google Scholar] [CrossRef]
- Korkanç, S.Y.; Kayıkçı, S.; Korkanç, M. Evaluation of spatial and temporal water quality in the Akkaya dam watershed (Niğde, Turkey) and management implications. J. Afr. Earth Sci. 2017, 129, 481–491. [Google Scholar] [CrossRef]
- Wiranegara, P.; Sunardi, S.; Sumiarsa, D.; Juahir, H. Characteristics and Changes in Water Quality Based on Climate and Hydrology Effects in the Cirata Reservoir. Water 2023, 15, 3132. [Google Scholar] [CrossRef]
- Palma, P.; Penha, A.M.; Novais, M.H.; Fialho, S.; Lima, A.; Catarino, A.; Mourinha, C.; Alvarenga, P.; Iakunin, M.; Rodrigues, G.; et al. Integrative toolbox to assess the quality of freshwater sediments contaminated with potentially toxic metals. Environ. Res. 2022, 217, 114798. [Google Scholar] [CrossRef] [PubMed]
- Tomaz, A.; Costa, M.J.; Coutinho, J.; Dôres, J.; Catarino, A.; Martins, I.; Mourinha, C.; Guerreiro, I.; Pereira, M.M.; Fabião, M.; et al. Applying Risk Indices to Assess and Manage Soil Salinization and Sodification in Crop Fields within a Mediterranean Hydro-Agricultural Area. Water 2021, 13, 3070. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. J. Eur. Public Policy 1960, 20, 141–151. [Google Scholar] [CrossRef]
Water Samples | Lage | Lage S | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||||||||||||||||||
Ap | Jl | Sp | Dc | Ap | Jl | Sp | Dc | M | Jl | Sp | Dc | Jl | Sp | Dc | Ap | Jl | Sp | Dc | M | Jl | Sp | Dc | |
Total Phosphorus (Excellent: ≤0.05 mg P L−1; Good: ≤0.07 mg P L−1) | |||||||||||||||||||||||
Total Nitrogen (Excellent: ≤1 mg N L−1; Good: ≤1.5 mg N L−1) | |||||||||||||||||||||||
Ammoniacal nitrogen (Excellent: ≤0.2 mg NH4 L−1; Good: ≤0.4 mg NH4 L−1) | |||||||||||||||||||||||
Nitrate (Excellent: ≤ 3 mg NO3 L−1; Good: ≤5 mg NO3 L−1) | |||||||||||||||||||||||
Nitrite (Excellent: ≤0.03 mg NO2 L−1; Good: ≤0.05 mg NO2 L−1) | |||||||||||||||||||||||
Total Suspended Solids (Excellent: ≤12.5 mg L−1; Good: ≤25 mg L−1) | |||||||||||||||||||||||
BOD5 (Excellent: ≤3 mg O2 L−1; Good: ≤5 mg O2 L−1) | |||||||||||||||||||||||
DO (% sat.) (Excellent: 70–115%; Good: 60–125%) | |||||||||||||||||||||||
pH (Sorensen scale) (Maximum: 6.5–8.5; Good: 6–9) | |||||||||||||||||||||||
Temperature (Good: 10.0–27.0 °C) | |||||||||||||||||||||||
Conductivity (Good: ≤1000 mS/cm) | |||||||||||||||||||||||
Transparency (Good: 1 m) | nd | nd | |||||||||||||||||||||
General Physico-Chemical Classification | M | M | M | G | M | M | M | G | M | M | M | G | M | M | M | M | M | M | M | M | M | M | M |
Location | Year | Month | Salinity | Infiltration Rate | Toxicity | Other | |||
---|---|---|---|---|---|---|---|---|---|
Na | Cl | B | NO3 | pH | |||||
L | 2018 | Ap | - | LMR | - | - | - | - | - |
Jl | - | LMR | - | - | - | - | - | ||
Sp | LMR | - | - | - | - | - | - | ||
Dc | - | LMR | - | - | - | - | - | ||
2019 | Ap | - | LMR | - | - | - | - | R | |
Jl | - | LMR | - | - | - | - | R | ||
Sp | - | LMR | - | - | - | - | R | ||
Dc | - | LMR | - | - | - | - | R | ||
2020 | M | LMR | - | - | - | - | - | R | |
Jl | - | LMR | - | - | - | - | - | ||
Sp | - | LMR | - | - | - | - | - | ||
Dc | - | LMR | - | - | - | - | - | ||
LS | 2018 | Jl | - | LMR | - | - | - | - | R |
Sp | - | LMR | - | - | - | - | - | ||
Dc | - | LMR | - | - | - | - | - | ||
2019 | Ap | - | LMR | - | - | - | - | - | |
Jl | - | LMR | - | - | - | - | - | ||
Sp | - | LMR | - | - | - | - | - | ||
Dc | - | LMR | - | - | - | - | - | ||
2020 | M | LMR | - | - | - | - | - | - | |
Jl | - | LMR | - | - | - | - | - | ||
Sp | - | LMR | - | - | - | - | R | ||
Dc | - | LMR | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarino, A.; Martins, I.; Mourinha, C.; Santos, J.; Tomaz, A.; Anastácio, P.; Palma, P. Water Quality Assessment of a Hydro-Agricultural Reservoir in a Mediterranean Region (Case Study—Lage Reservoir in Southern Portugal). Water 2024, 16, 514. https://doi.org/10.3390/w16040514
Catarino A, Martins I, Mourinha C, Santos J, Tomaz A, Anastácio P, Palma P. Water Quality Assessment of a Hydro-Agricultural Reservoir in a Mediterranean Region (Case Study—Lage Reservoir in Southern Portugal). Water. 2024; 16(4):514. https://doi.org/10.3390/w16040514
Chicago/Turabian StyleCatarino, Adriana, Inês Martins, Clarisse Mourinha, João Santos, Alexandra Tomaz, Pedro Anastácio, and Patrícia Palma. 2024. "Water Quality Assessment of a Hydro-Agricultural Reservoir in a Mediterranean Region (Case Study—Lage Reservoir in Southern Portugal)" Water 16, no. 4: 514. https://doi.org/10.3390/w16040514
APA StyleCatarino, A., Martins, I., Mourinha, C., Santos, J., Tomaz, A., Anastácio, P., & Palma, P. (2024). Water Quality Assessment of a Hydro-Agricultural Reservoir in a Mediterranean Region (Case Study—Lage Reservoir in Southern Portugal). Water, 16(4), 514. https://doi.org/10.3390/w16040514