Unraveling Zooplankton Diversity in a Pre-Alpine Lake: A Comparative Analysis of ZooScan and DNA Metabarcoding Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
Morphological Taxonomic Identification
2.2. Molecular Taxonomic Identification
2.3. Biomass Calculation
2.4. Statistical Analysis
3. Results
3.1. ZooScan
3.2. Metabarcoding
3.3. Comparison ZooScan vs. DNA Metabarcoding
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Number of Sample Location | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean | ||
Bosmina spp. | ZS count | 35 | 28 | 25 | 60 | 67 | 73 | 76 | 45 | 55 | 57 | 52.1 |
ZS ESD [pixel] | 27,566,182.12 | 32,495,496.12 | 19,029,160.31 | 52,665,226.17 | 55,490,778.83 | 51,028,271.22 | 60,290,752.10 | 32,217,069.42 | 69,362,878.87 | 43,161,058.88 | 44,330,687.40 | |
ZS length [pixel] | 70,587,289.32 | 85,142,052.44 | 46,622,046.35 | 132,396,936.54 | 157,732,885.05 | 133,450,427.75 | 162,635,117.60 | 81,453,143.99 | 184,883,536.82 | 118,796,394.16 | 117,369,983.00 | |
reads | 410 | 916 | 377 | 788 | 680 | 415 | 1007 | 364 | 322 | 370 | 564.9 | |
Bythotrephes longimanus | ZS count | 0 | 3 | 1 | 1 | 3 | 1 | 3 | 5 | 4 | 2 | 2.3 |
ZS ESD [pixel] | 0 | 26,066,701.65 | 6,043,315.86 | 10,914,324.13 | 24,208,511.41 | 6,209,493.52 | 18,531,729.95 | 55,292,988.65 | 32,163,017.49 | 40,780,173.55 | 22,021,025.62 | |
ZS length [pixel] | 0 | 223,473,643.05 | 94,010,182.89 | 64,481,201.00 | 232,910,637.39 | 23,124,764.56 | 118,665,461.00 | 245,621,937.54 | 232,317,861.20 | 104,543,339.72 | 133,914,902.84 | |
reads | 0 | 6 | 0 | 4 | 5 | 2 | 9 | 13 | 21 | 0 | 6 | |
calanoid copepod | ZS count | 55 | 72 | 67 | 176 | 125 | 90 | 120 | 132 | 143 | 194 | 117.4 |
ZS ESD [pixel] | 72,098,081.70 | 90,008,701.24 | 78,486,813.29 | 229,454,031.17 | 165,574,001.42 | 112,693,383.91 | 147,953,500.99 | 163,016,513.95 | 168,342,631.00 | 248,853,829.59 | 147,648,148.83 | |
ZS length [pixel] | 424,386,413.57 | 543,696,952.05 | 394,100,694.89 | 988,346,542.37 | 919,737,681.68 | 577,768,692.34 | 738,921,135.01 | 677,658,890.31 | 812,868,715.53 | 1,411,054,299.64 | 748,854,001.74 | |
reads | 40 | 101 | 27 | 90 | 36 | 140 | 35 | 79 | 42 | 47 | 63.7 | |
cyclopoid copepod | ZS count | 106 | 93 | 73 | 95 | 86 | 79 | 109 | 111 | 98 | 78 | 92.8 |
ZS ESD [pixel] | 117,447,700.49 | 96,835,928.62 | 79,929,652.05 | 103,016,793.44 | 100,803,418.60 | 80,244,816.57 | 101,225,792.52 | 121,677,697.05 | 97,790,488.10 | 78,786,373.58 | 97,775,866.10 | |
ZS length [pixel] | 640,100,884.52 | 507,669,510.88 | 439,185,225.17 | 563,845,827.32 | 597,904,269.80 | 491,577,917.21 | 646,761,576.30 | 732,360,853.05 | 519,144,921.68 | 471,955,804.21 | 561,050,679.01 | |
reads | 9778 | 4666 | 8300 | 6681 | 4942 | 6426 | 5415 | 4370 | 3445 | 3128 | 5715.1 | |
Daphnia spp. | ZS count | 173 | 235 | 139 | 233 | 274 | 202 | 183 | 316 | 350 | 288 | 239.3 |
ZS ESD [pixel] | 306,893,805.18 | 499,874,607.97 | 314,201,460.96 | 472,928,350.61 | 519,948,737.81 | 392,833,635.37 | 401,175,718.37 | 622,046,569.80 | 695,818,379.94 | 556,503,158.23 | 478,222,442.42 | |
ZS length [pixel] | 1,180,043,451.50 | 2,022,277,561.51 | 1,123,595,795.78 | 1,961,352,933.25 | 2,075,519,518.70 | 1,589,159,574.14 | 1,540,446,053.76 | 2,530,286,146.69 | 2,745,435,377.57 | 2,164,620,995.36 | 1,893,273,740.83 | |
reads | 3890 | 7042 | 5512 | 6311 | 5522 | 5839 | 6006 | 4636 | 5471 | 4181 | 5441.0 | |
Leptodora kindtii | ZS count | 3 | 2 | 1 | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 3 |
ZS ESD [pixel] | 59,423,738.91 | 110,460,445.39 | 83,242,428.14 | 36,287,042.20 | 42,822,250.27 | 128,466,750.81 | 128,466,750.81 | 133,006,482.04 | 200,730,084.96 | 213,002,171.28 | 113,590,814.48 | |
ZS length [pixel] | 389,754,324.62 | 524,410,928.38 | 273,738,689.72 | 170,400,051.70 | 200,612,600.96 | 601,837,802.89 | 601,837,802.89 | 618,792,587.69 | 1,330,508,641.16 | 828,707,218.43 | 554,060,064.84 | |
reads | 0 | 65 | 37 | 38 | 15 | 41 | 106 | 89 | 0 | 181 | 57.2 |
Appendix B
Taxa | Comparison | Sample Deviation [%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
Bosmina spp. | read_minus_ESD | 3.4 | 3.8 | 3.7 | 3.3 | 4.3 | 1.8 | 3.7 | 1.7 | 3.6 | 3.1 |
read_minus_count | 3.1 | 2.8 | 1.4 | −0.3 | 0.6 | −2.8 | 0.0 | 0.3 | 1.9 | 0.5 | |
read_minus_maj | 3.9 | 4.2 | 4.2 | 3.8 | 4.7 | 2.2 | 4.1 | 2.1 | 4.0 | 3.4 | |
calanoid copepod | read_minus_ESD | −6.2 | −3.5 | −6.2 | −4.4 | −5.9 | −2.2 | −6.7 | −4.1 | −4.1 | −4.9 |
read_minus_count | −7.7 | −8.0 | −12.4 | −11.8 | −11.4 | −7.0 | −11.7 | −8.8 | −9.1 | −11.5 | |
read_minus_maj | −6.4 | −3.6 | −6.2 | −4.3 | −5.9 | −2.3 | −6.8 | −4.1 | −4.1 | −5.2 | |
cyclopoid copepod | read_minus_ESD | 13.4 | 7.4 | 12.5 | 9.0 | 10.0 | 9.6 | 8.0 | 7.8 | 11.3 | 9.4 |
read_minus_count | 9.0 | 1.7 | 5.8 | 3.8 | 5.7 | 5.1 | 3.2 | 3.6 | 7.5 | 5.9 | |
read_minus_maj | 13.3 | 7.4 | 12.4 | 8.8 | 9.8 | 9.3 | 7.8 | 7.5 | 11.2 | 9.0 | |
Daphnia spp. | read_minus_ESD | 9.0 | 7.1 | 9.8 | 7.4 | 8.8 | 7.9 | 7.1 | 6.5 | 11.1 | 8.6 |
read_minus_count | 3.0 | −1.7 | 0.9 | −0.6 | 0.6 | 0.3 | 1.1 | −0.8 | 3.4 | 0.9 | |
read_minus_maj | 9.3 | 7.4 | 10.2 | 7.6 | 9.1 | 8.0 | 7.3 | 6.6 | 11.4 | 8.7 | |
Bythotrephes longimanus | read_minus_ESD | 0.0 | −10.0 | −14.7 | −10.1 | −9.8 | −11.1 | −8.5 | −8.3 | −4.9 | −15.7 |
read_minus_count | 0.0 | −1.3 | −3.8 | 1.4 | −0.9 | −0.1 | 0.3 | −0.2 | 3.4 | −5.0 | |
read_minus_maj | 0.0 | −10.6 | −15.8 | −10.5 | −10.5 | −11.2 | −8.9 | −8.4 | −5.3 | −15.4 | |
Leptodora kindtii | read_minus_ESD | −19.6 | −4.9 | −5.2 | −5.2 | −7.3 | −6.0 | −3.5 | −3.6 | −17.0 | −0.5 |
read_minus_count | −7.4 | 6.6 | 8.1 | 7.4 | 5.4 | 4.5 | 7.1 | 6.0 | −7.1 | 9.3 | |
read_minus_maj | −20.0 | −4.8 | −4.8 | −5.3 | −7.3 | −6.0 | −3.5 | −3.7 | −17.3 | −0.5 |
Appendix C
Sampling Location | Similarity Count vs. Reads [%] | Similarity Bodylenght Biomass vs. Reads [%] | Similarity ESD Biomass vs. Reads [%] |
---|---|---|---|
1 | 90.6 | 87.8 | 87.8 |
2 | 91.7 | 90.9 | 91.3 |
3 | 87.2 | 86.5 | 86.4 |
4 | 88.9 | 90.1 | 89.8 |
5 | 88.0 | 87.8 | 88.1 |
6 | 91.0 | 90.1 | 89.8 |
7 | 87.7 | 87.6 | 87.8 |
8 | 90.7 | 90.1 | 89.7 |
9 | 88.8 | 87.7 | 87.4 |
10 | 87.6 | 88.5 | 88.3 |
Mean | 89.2 | 88.7 | 88.6 |
Median | 88.8 | 88.2 | 88.2 |
SD | 1.56 | 1.38 | 1.40 |
References
- Beisner, B.E.; Peres-Neto, P.R.; Lindström, E.S.; Barnett, A.; Longhi, M.L. The Role of Environmental and Spatial Processes in Structuring Lake Communities from Bacteria to Fish. Ecology 2006, 87, 2985–2991. [Google Scholar] [CrossRef]
- Hairston, N.G.; Smith, F.E.; Slobodkin, L.B. Community Structure, Population Control, and Competition. Am. Nat. 1960, 94, 421–425. [Google Scholar] [CrossRef]
- Sommer, U.; Adrian, R.; De Senerpont Domis, L.; Elser, J.J.; Gaedke, U.; Ibelings, B.; Jeppesen, E.; Lürling, M.; Molinero, J.C.; Mooij, W.M. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 429–448. [Google Scholar] [CrossRef]
- Lombard, F.; Boss, E.; Waite, A.M.; Vogt, M.; Uitz, J.; Stemmann, L.; Sosik, H.M.; Schulz, J.; Romagnan, J.-B.; Picheral, M.; et al. Globally Consistent Quantitative Observations of Planktonic Ecosystems. Front. Mar. Sci. 2019, 6, 196. [Google Scholar] [CrossRef]
- Anneville, O.; Lainé, L.; Benker, S.; Ponticelli, A.; Gerdeaux, D. Food Habits and Ontogenetic Changes in the Diet of Whitefish Larvae in Lake Annecy. Bull. Fr. Pêche Piscic. 2007, 387, 21–33. [Google Scholar] [CrossRef]
- Thomas, K.; Hansen, T.; Brophy, D.; Maoiléidigh, N.Ó.; Fjelldal, P.G. Experimental Investigation of the Effects of Temperature and Feeding Regime on Scale Growth in Atlantic Salmon Salmo salar Post-smolts. J. Fish Biol. 2019, 94, jfb.13971. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Rösch, R.; Eckmann, R. Seasonal and Long-Term Changes in Fishing Depth of Lake Constance Whitefish. Fish. Manag. Ecol. 2010, 17, 386–393. [Google Scholar] [CrossRef]
- O’Brien, W.J. The Predator-Prey Interaction of Planktivorous Fish and Zooplankton: Recent Research with Planktivorous Fish and Their Zooplankton Prey Shows the Evolutionary Thrust and Parry of the Predator-Prey Relationship. Am. Sci. 1979, 67, 572–581. [Google Scholar]
- Nisson, N. Seasonal Fluctuations in the Food Segregation of Trout, Char and Whitefish in 14 North-Swedish Lakes. Rep. Inst. Freshw. Res. Drottningholm 1960, 41, 185–205. [Google Scholar]
- Wagler, E. Der Blaufelchen Des Bodensees. (Coregonus wartmanni Bloch.) Versuch Einer Monographie. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1927, 18, 129–230. [Google Scholar] [CrossRef]
- Peterson, W.T.; Fisher, J.L.; Peterson, J.O.; Morgan, C.A.; Burke, B.J.; Fresh, K.L. Applied Fisheries Oceanography: Ecosystem Indicators of Ocean Conditions Inform Fisheries Management in the California Current. Oceanography 2014, 27, 80–89. [Google Scholar] [CrossRef]
- Benfield, M.C.; Grosjean, P.; Culverhouse, P.F.; Irigoien, X.; Sieracki, M.E.; Lopez-Urrutia, A.; Dam, H.G.; Hu, Q.; Davis, C.S.; Hansen, A.; et al. RAPID: Research on Automated Plankton Identification. Oceanography 2007, 20, 172–187. [Google Scholar] [CrossRef]
- Davis, C.S.; Hu, Q.; Gallager, S.M.; Tang, X.; Ashjian, C.J. Real-Time Observation of Taxa-Specific Plankton Distributions: An Optical Sampling Method. Mar. Ecol. Prog. Ser. 2004, 284, 77–96. [Google Scholar] [CrossRef]
- Remsen, A.; Hopkins, T.L.; Samson, S. What You See Is Not What You Catch: A Comparison of Concurrently Collected Net, Optical Plankton Counter, and Shadowed Image Particle Profiling Evaluation Recorder Data from the Northeast Gulf of Mexico. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 129–151. [Google Scholar] [CrossRef]
- Vogelmann, C.; Teichert, M.; Schubert, M.; Martens, A.; Schultes, S.; Stibor, H. The Usage of a Zooplankton Digitization Software to Study Plankton Dynamics in Freshwater Fisheries. Fish. Res. 2022, 251, 106326. [Google Scholar] [CrossRef]
- Gorsky, G.; Ohman, M.D.; Picheral, M.; Gasparini, S.; Stemmann, L.; Romagnan, J.-B.; Cawood, A.; Pesant, S.; Garcia-Comas, C.; Prejger, F. Digital Zooplankton Image Analysis Using the ZooScan Integrated System. J. Plankton Res. 2010, 32, 285–303. [Google Scholar] [CrossRef]
- Grosjean, P.; Picheral, M.; Warembourg, C.; Gorsky, G. Enumeration, Measurement, and Identification of Net Zooplankton Samples Using the ZOOSCAN Digital Imaging System. ICES J. Mar. Sci. 2004, 61, 518–525. [Google Scholar] [CrossRef]
- Pierella Karlusich, J.J.; Lombard, F.; Irisson, J.-O.; Bowler, C.; Foster, R.A. Coupling Imaging and Omics in Plankton Surveys: State-of-the-Art, Challenges, and Future Directions. Front. Mar. Sci. 2022, 9, 878803. [Google Scholar] [CrossRef]
- Lamb, P.D.; Hunter, E.; Pinnegar, J.K.; Creer, S.; Davies, R.G.; Taylor, M.I. How Quantitative Is Metabarcoding: A Meta-analytical Approach. Mol. Ecol. 2019, 28, 420–430. [Google Scholar] [CrossRef]
- Thomas, A.C.; Deagle, B.E.; Eveson, J.P.; Harsch, C.H.; Trites, A.W. Quantitative DNA Metabarcoding: Improved Estimates of Species Proportional Biomass Using Correction Factors Derived from Control Material. Mol. Ecol. Resour. 2016, 16, 714–726. [Google Scholar] [CrossRef]
- Ibarbalz, F.M.; Henry, N.; Brandão, M.C.; Martini, S.; Busseni, G.; Byrne, H.; Coelho, L.P.; Endo, H.; Gasol, J.M.; Gregory, A.C.; et al. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 2019, 179, 1084–1097.e21. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.B.J.; Johnson, S.B.; Fisher, J.L.; Peterson, W.T.; Vrijenhoek, R.C. Comparison of Morphological and next Generation DNA Sequencing Methods for Assessing Zooplankton Assemblages. J. Exp. Mar. Biol. Ecol. 2017, 487, 113–126. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Xie, Y.; Song, C.; Zhang, Y.; Yu, H.; Burton, G.A. Zooplankton Community Profiling in a Eutrophic Freshwater Ecosystem-Lake Tai Basin by DNA Metabarcoding. Sci. Rep. 2017, 7, 1773. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhao, Y.; Li, H.; Dong, Y.; MacIsaac, H.; Zhan, A. Unreliable Quantitation of Species Abundance Based on High-Throughput Sequencing Data of Zooplankton Communities. Aquat. Biol. 2015, 24, 9–15. [Google Scholar] [CrossRef]
- Elbrecht, V.; Leese, F. Can DNA-Based Ecosystem Assessments Quantify Species Abundance? Testing Primer Bias and Biomass—Sequence Relationships with an Innovative Metabarcoding Protocol. PLoS ONE 2015, 10, e0130324. [Google Scholar] [CrossRef] [PubMed]
- Riedel, A.; Sagata, K.; Suhardjono, Y.R.; Tänzler, R.; Balke, M. Integrative Taxonomy on the Fast Track—Towards More Sustainability in Biodiversity Research. Front. Zool. 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Shokralla, S.; Spall, J.L.; Gibson, J.F.; Hajibabaei, M. Next-generation Sequencing Technologies for Environmental DNA Research. Mol. Ecol. 2012, 21, 1794–1805. [Google Scholar] [CrossRef]
- Pawlowski, J.; Christen, R.; Lecroq, B.; Bachar, D.; Shahbazkia, H.R.; Amaral-Zettler, L.; Guillou, L. Eukaryotic Richness in the Abyss: Insights from Pyrotag Sequencing. PLoS ONE 2011, 6, e18169. [Google Scholar] [CrossRef]
- Naito, A.; Abe, Y.; Matsuno, K.; Nishizawa, B.; Kanna, N.; Sugiyama, S.; Yamaguchi, A. Surface Zooplankton Size and Taxonomic Composition in Bowdoin Fjord, North-Western Greenland: A Comparison of ZooScan, OPC and Microscopic Analyses. Polar Sci. 2019, 19, 120–129. [Google Scholar] [CrossRef]
- Cornils, A.; Thomisch, K.; Hase, J.; Hildebrandt, N.; Auel, H.; Niehoff, B. Testing the Usefulness of Optical Data for Zooplankton Long-term Monitoring: Taxonomic Composition, Abundance, Biomass, and Size Spectra from ZooScan Image Analysis. Limnol. Ocean Methods 2022, 20, 428–450. [Google Scholar] [CrossRef]
- Motoda, S. Devices of Simple Plankton Apparatus. Mem. Fac. Fish. Hokkaido Univ. 1959, 7, 73–94. [Google Scholar]
- Gasparini, S.; Antajan, E. PLANKTON IDENTIFIER: A Software for Automatic Recognition of Planktonic Organisms. User Guide 2007–2013. Available online: http://www.obs-vlfr.fr/~gaspari/Plankton_Identifier/userguide (accessed on 5 December 2023).
- Elbrecht, V.; Leese, F. Validation and Development of COI Metabarcoding Primers for Freshwater Macroinvertebrate Bioassessment. Front. Environ. Sci. 2017, 5, 11. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-Parametric Multivariate Analyses of Changes in Community Structure. Austral Ecol 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Platell, M.E.; Potter, I.C.; Clarke, K.R. Resource Partitioning by Four Species of Elasmobranchs (Batoidea: Urolophidae) in Coastal Waters of Temperate Australia. Mar. Biol. 1998, 131, 719–734. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Parry, H.E.; Harmer, R.A.; Somerfield, P.J.; Atkinson, A. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages. PLoS ONE 2013, 8, e81327. [Google Scholar] [CrossRef]
- Hablützel, P.; Rombouts, I.; Dillen, N.; Lagaisse, R.; Mortelmans, J.; Ollevier, A.; Perneel, M.; Deneudt, K. Exploring New Technologies for Plankton Observations and Monitoring of Ocean Health. Oceanog 2021, 34, 20–25. [Google Scholar] [CrossRef]
- Deagle, B.E.; Thomas, A.C.; Shaffer, A.K.; Trites, A.W.; Jarman, S.N. Quantifying Sequence Proportions in a DNA-based Diet Study Using Ion Torrent Amplicon Sequencing: Which Counts Count? Mol. Ecol. Resour. 2013, 13, 620–633. [Google Scholar] [CrossRef]
- Kembel, S.W.; Wu, M.; Eisen, J.A.; Green, J.L. Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance. PLoS Comput. Biol. 2012, 8, e1002743. [Google Scholar] [CrossRef] [PubMed]
- Taipale, S.J.; Kahilainen, K.K.; Holtgrieve, G.W.; Peltomaa, E.T. Simulated eutrophication and browning alters zooplankton nutritional quality and determines juvenile fish growth and survival. Ecol. Evol. 2018, 8, 2671–2687. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.; Breitenstein, M.; Bia, M.M.; Rellstab, C.; Kirchhofer, A. Bottom-up Control of Whitefish Populations in Ultra-Oligotrophic Lake Brienz. Aquat. Sci. 2007, 69, 271–288. [Google Scholar] [CrossRef]
- Palmer, A.; Stich, H.-B.; Maier, G. Distribution Patterns and Predation Risk of the Coexisting Cladocerans Bythotrephes Longimanus and Leptodora Kindtii in a Large Lake—Lake Constance. Hydrobiologia 2001, 442, 301–307. [Google Scholar] [CrossRef]
Sample (ID) | Percentage Similarity [%] | ||
---|---|---|---|
ZooScan Count vs. Read [%] | Biomass (Bodylength/Major Axis) vs. Read [%] | Biomass (ESD) vs. Read [%] | |
1 | 84.9 | 73.6 | 74.2 |
2 | 88.9 | 81.0 | 81.7 |
3 | 83.8 | 73.2 | 74.0 |
4 | 87.4 | 79.9 | 80.3 |
5 | 87.7 | 76.3 | 77.0 |
6 | 90.1 | 80.5 | 90.4 |
7 | 88.3 | 80.8 | 81.2 |
8 | 90.1 | 83.8 | 84.0 |
9 | 83.8 | 73.3 | 74.0 |
10 | 83.5 | 78.9 | 78.9 |
Mean | 86.8 | 78.1 | 79.6 |
Median | 87.5 | 79.4 | 79.6 |
SD | 2.5 | 3.6 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogelmann, C.; Barco, A.; Knust, J.-M.; Stibor, H. Unraveling Zooplankton Diversity in a Pre-Alpine Lake: A Comparative Analysis of ZooScan and DNA Metabarcoding Methods. Water 2024, 16, 411. https://doi.org/10.3390/w16030411
Vogelmann C, Barco A, Knust J-M, Stibor H. Unraveling Zooplankton Diversity in a Pre-Alpine Lake: A Comparative Analysis of ZooScan and DNA Metabarcoding Methods. Water. 2024; 16(3):411. https://doi.org/10.3390/w16030411
Chicago/Turabian StyleVogelmann, Christian, Andrea Barco, Jean-Michel Knust, and Herwig Stibor. 2024. "Unraveling Zooplankton Diversity in a Pre-Alpine Lake: A Comparative Analysis of ZooScan and DNA Metabarcoding Methods" Water 16, no. 3: 411. https://doi.org/10.3390/w16030411
APA StyleVogelmann, C., Barco, A., Knust, J. -M., & Stibor, H. (2024). Unraveling Zooplankton Diversity in a Pre-Alpine Lake: A Comparative Analysis of ZooScan and DNA Metabarcoding Methods. Water, 16(3), 411. https://doi.org/10.3390/w16030411