Post-Restoration Monitoring of Wetland Restored from Farmland Indicated That Its Effectiveness Barely Measured Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Experimental Analysis Data
2.2.2. Remote Sensing Image Processing Data
2.3. Methods
2.3.1. Soil Physical and Chemical Parameters
2.3.2. Water Quality
2.3.3. Wetland Waterfowl
2.3.4. Wetland Area and Land Use
2.3.5. Landscape Indices
2.3.6. Indicator System Establishment
2.3.7. Questionnaire
2.3.8. Indices’ Weight and Assessment Methods
3. Results
3.1. Restoration of Wetland Ecological Health Indicator Characteristics
3.1.1. Soil Physical and Chemical Parameters
3.1.2. Wetland Water Quality
3.1.3. Wetland Area Change Rate and Landscape Indices
3.1.4. Bird Diversity
3.2. Wetland Ecological Health Index
4. Discussion
4.1. Wetland Landscape Pattern
4.2. Ecological Indicators
4.3. Analysis of the FNWP Wetland’s Health Status
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Zhang, M. Prospective on Development Trends of International Wetland Conservation and Management from the 12th Meeting of the Conference of the Parties of the Convention on Wetlands. Wetl. Sci. Manag. 2015, 13, 523–527. [Google Scholar]
- Moreno-Mateos, D.; Power, M.E.; Comín, F.A.; Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 2012, 10, e1001247. [Google Scholar] [CrossRef] [PubMed]
- Wahlroos, O.M.; Valkama, P.; Mäkinen, E.; Ojala, A.; Vasander, H.; Väänänen, V.-M.; Halonen, A.; Linden, L.; Nummi, P.; Ahponen, H.; et al. Urban wetland parks in Finland: Improving water quality and creating endangered habitats. Int. J. Biodiv. Sci. Ecosyst. Serv. Manag. 2015, 11, 46–60. [Google Scholar] [CrossRef]
- Wondie, A. Ecological conditions and ecosystem services of wetlands in the Lake Tana Area, Ethiopia. Ecohydrol. Hydrobiol. 2018, 18, 231–244. [Google Scholar] [CrossRef]
- Chen, W.; Cao, C.; Liu, D.; Tian, R.; Wu, C.; Wang, Y.; Qian, Y.; Ma, G.; Bao, D. An evaluating system for wetland ecological health: Case study on nineteen major wetlands in Beijing-Tianjin-Hebei region, China. Sci. Total Environ. 2019, 666, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.G.; Yi, Y.; Liu, H.X.; Yang, Z.F. Integrated ecosystem services-based calculation of ecological water demand for a macrophyte-dominated shallow lake. Glob. Ecol. 2020, 21, e00858. [Google Scholar] [CrossRef]
- Cai, Y.; Liang, J.; Zhang, P.; Wang, Q.; Wu, Y.; Ding, Y.; Wang, H.; Fu, C.; Sun, J. Review on strategies of close-to-natural wetland restoration and a brief case plan for a typical wetland in northern China. Chemosphere 2021, 285, 131534. [Google Scholar] [CrossRef]
- Maltby, E.; Acreman, M.C. Ecosystem services of wetlands: Pathfinder for a new paradigm. Hydrol. Sci. J. 2011, 56, 1341–1359. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodiv. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- Jiang, T.T.; Pan, J.F.; Pu, X.M.; Wang, B.; Pan, J.J. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 2015, 164, 265–275. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Li, X.; Tian, C. Soil organic carbon changes following wetland restoration: A global meta-Analysis. Geoderma 2019, 353, 89–96. [Google Scholar] [CrossRef]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.-R. Geospatial assessment of ecosystem health of coastal urban wetlands in Ghana. Ocean Coast. Manag. 2020, 193, 105226. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth Sci. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Sieben, E.J.J.; Khubeka, S.P.; Sithole, S.; Job, N.M.; Kotze, D.C. The classification of wetlands: Integration of top-down and bottom-up approaches and their significance for ecosystem service determination. Wetl. Ecol. Manag. 2018, 26, 441–458. [Google Scholar] [CrossRef]
- Sizo, A.; Noble, B.; Bell, S. Futures analysis of urban land use and wetland change in Saskatoon, Canada: An application in strategic environmental assessment. Sustainability 2015, 7, 811–830. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, W.; Wang, X.; Couture, R.-M.; Larssen, T.; Zhao, Y.; Li, J.; Liang, H.; Liu, X.; Bu, X.; et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 2017, 10, 507–511. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2018, 12, 7–21. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 219–235. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Z.; Jiang, B.; Lu, F.; Wang, H.; Wang, D.; Zhang, M.; Cui, L. Improving wetland ecosystem health in China. Ecol. Ind. 2020, 113, 106184. [Google Scholar] [CrossRef]
- Chatanga, P.; Kotze, D.C.; Okello, T.W.; Sieben, E.J. Ecosystem services of high-altitude Afromontane palustrine wetlands in Lesotho. Ecosyst. Serv. 2020, 45, 101185. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, H.T.; Xing, X.X.; Xie, T.; Song, C.; Wang, G.; Jiang, M. Achievement of wetland protection and restoration and development strategies in China. Bull. Chin. Acad. Sci. 2023, 38, 365–375. (In Chinese) [Google Scholar]
- Cui, B.; Yang, Z. Research advance of wetland ecosystem health. Chin. J. Ecol. 2001, 20, 31–36. (In Chinese) [Google Scholar]
- Keiter, R.B. Ecosystems and the law: Toward an integrated approach. Ecol. Appl. 1998, 8, 332–341. [Google Scholar] [CrossRef]
- Kim, J.J.; Atique, U.; An, K.G. Long-Term Ecological Health Assessment of a Restored Urban Stream Based on Chemical Water Quality, Physical Habitat Conditions and Biological Integrity. Water 2019, 11, 114. [Google Scholar] [CrossRef]
- Hruby, T. Testing the Basic Assumption of the Hydrogeomorphic Approach to Assessing Wetland Functions. Environ. Manag. 2001, 27, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Rapport, D.J.; Friend, A.M. Towards a Comprehensive Framework for Environmental Statistics: A Stress-Response Approach; Statistics Canada: Ottawa, ON, Canada, 1979; Volume 11, p. 87. [Google Scholar]
- Brown, M.T.; Vivas, M.B. Landscape development intensity index. Environ. Monit. Assess. 2005, 101, 289–309. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Chen, F.; Su, S.C.; Chen, Y.; Li, N.; Wang, R.; You, W.B.; He, D.J. Ecological Health Assessment of Coastal Wetlands Based on PSR Model in Eastern Fujian. Wetl. Sci. Manag. 2020, 16, 25–29. (In Chinese) [Google Scholar]
- Zhang, L.L.; Liu, J.L.; Yang, Z.F.; Li, Y.; Yang, Y. Integrated ecosystem health assessment of a macrophyte-dominated lake. Ecol. Model. 2013, 252, 141–152. [Google Scholar] [CrossRef]
- Mo, M.; Wang, X.; Wu, H.; Cai, S.; Zhang, X.; Wang, H. Ecosystem Health Assessment of Honghu Lake Wetland of China Using Artificial Neural Network Approach. Chin. Geogra. Sci. 2009, 19, 349–356. [Google Scholar] [CrossRef]
- Sun, R.; Yao, P.; Wang, W.; Yue, B.; Liu, G. Assessment of Wetland Ecosystem Health in theYangtze and Amazon River Basins. ISPRS Int. J. Geo-Inf. 2017, 6, 81. [Google Scholar] [CrossRef]
- Wu, C.; Chen, W.; Cao, C.; Tian, R.; Liu, D.; Bao, D. Diagnosis of Wetland Ecosystem Health in the Zoige Wetland, Sichuan of China. Wetlands 2018, 38, 469–484. [Google Scholar] [CrossRef]
- Wu, C.; Chen, W. Indicator system construction and health assessment of wetland ecosystem—Taking Hongze Lake Wetland, China as an example. Ecol. Indic. 2020, 112, 106164. [Google Scholar] [CrossRef]
- Wang, W.; Sun, M.; Li, Y.; Zhao, S.; Zhang, Z.; Luan, X. Multi-Level Comprehensive Assessment of Constructed Wetland Ecosystem Health: A Case Study of Cuihu Wetland in Beijing, China. Sustainability 2022, 14, 13439. [Google Scholar] [CrossRef]
- Mao, X.; Wei, X.; Jina, X.; Tao, Y.; Zhang, Z.; Wang, W. Monitoring urban wetlands restoration in Qinghai Plateau: Integrated performance from ecological characters, ecological processes to ecosystem services. Ecol. Indic. 2019, 101, 623–631. [Google Scholar] [CrossRef]
- Galatowitsch, S.; Bohnen, J. Predicting restoration outcomes based on organizational and ecological factors. Restor. Ecol. 2020, 28, 1201–1212. [Google Scholar] [CrossRef]
- Galatowitsch, S.; Bohnen, J. Long-Term Recovery of a Restored Palustrine Wetland: The Role of Monitoring and Adaptive Management. Wetlands 2021, 41, 80. [Google Scholar] [CrossRef]
- Zhao, K. Mires in China; Science Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Li, X. Black swans were found in Sanhuanpao Nature Reserve. Chin. Wildl. 2005, 3, 29. (In Chinese) [Google Scholar]
- Li, N.; Tian, X.; Fu, H.C.; Li, Y.; Jia, X.; Jin, G.; Jiang, M. Seasonal and Spatial Variability of Water Quality and Nutrient Removal Efficiency of Restored Wetland: A Case Study in Fujin National Wetland Park, Chin. Chin. Geogr. Sci. 2018, 28, 123–133. [Google Scholar] [CrossRef]
- Liu, X.; Ma, X. Influence of Large-Scale Reclamation on Natural Environment and Regional Environmental Protection in the Sanjiang Plain. Sci. Geogr. Sin. 2000, 20, 14–19. (In Chinese) [Google Scholar]
- Liu, D.W. Land Use/Cover Change and its Environmental Effects in Sanjiang Plain in the Past 50 Years. Master’s Thesis, Jilin University, Changchun, China, 2006. [Google Scholar]
- Yuan, Z.; Liu, X.; Du, H.; Zhang, M. Can artificial ecological islands alter the biodiversity of macroinvertebrate? A case study in Fujin National Wetland Park, the Sanjiang Plain, China. Ecol. Evol. 2021, 11, 14988–15003. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.L.; Wang, S.G.; Chen, B.; Xia, C.Y.; Su, R. Ecological risk assessment and spatial threshold analysis of wetland in the Sanjiang Plain. Acta Ecol. Sin. 2022, 42, 6595–6606. [Google Scholar]
- Sun, M.Y.; Tian, X.; Zou, Y.C.; Jiang, M. Ecological aesthetic assessment of a rebuilt wetland restored from farmland and management implications for National Wetland Parks. PLoS ONE 2019, 14, e0223661. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ye, J.; Yang, W.; Guo, H.C.; Yu, S.X. A GIS-Based Landscape Pattern Optimization Approach for Lake Dianchi Watershed. J. Nat. Resour. 2012, 5, 801–808. (In Chinese) [Google Scholar]
- GB3838-2002; Environmental Quality Standards for Surface Water. China Environmental Science Press: Beijing, China, 2002. (In Chinese)
- Zhang, J.Y.; Ni, W.M.; Luo, Y.; Stevenson, R.J.; Qi, J.G. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China. Phys. Chem. Earth 2011, 36, 360–365. [Google Scholar] [CrossRef]
- Huo, S.; Ma, C.; Xi, B.; Su, J.; Zan, F.; Ji, D.; He, Z. Establishing eutrophication assessment standards for four lake regions, China. J. Environ. Sci. 2013, 25, 2014–2022. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Sun, G.; Wu, Y.; Chen, Y. Assessment of Lake Water Quality and Eutrophication Risk in an Agricultural Irrigation Area: A Case Study of the Chagan Lake in Northeast China. Water 2019, 11, 2380. [Google Scholar] [CrossRef]
- Liu, H.; Li, T.; Chen, L.; Wang, Q. Seasonal Variation of Bird Diversity in Wetlands along River in Fujin City, Heilongjiang Province. Wetl. Sci. 2015, 13, 577–581. [Google Scholar]
- Zhou, Y.; Sheng, C.; Yuan, Y. Changes of Bird Diversity in Fujin National Wetland Park in Heilongjiang Province. Wetl. Sci. Manag. 2017, 13, 57–60. [Google Scholar]
- Sun, Y. Ecosystem Health Evaluation of Rizhao Futong Estuary Wetland Based on RS and GIS. Master’s Thesis, Qufu Normal University, Jining, China, 2016. [Google Scholar]
- Zhou, Y. Assessment of the Ecological Health of Wetlands in Baiyangdian Nature Reserve by RS and GIS Techniques. Master’s Thesis, Hebei University, Baoding, China, 2017. [Google Scholar]
- Zhang, F.; Wang, X.; Liang, X.; Kong, X.; Zhang, Q.; Yang, L. Analysis of Classification and Mapping for Great Group, Subgroup in Second National Soil Survey. Soils 2014, 46, 761–765. (In Chinese) [Google Scholar]
- Ren, J.; Sun, Y.; Chen, X.; Fan, Z. An Assessment of Ecosystem Health in Jiuduansha Wetland based on PSR Model. Wetl. Sci. Manag. 2012, 8, 12–16. [Google Scholar]
- Li, N. Ecological Characteristics Change and Effect Evaluation for Typical Restored Wetlands in the Sanjiang Plain. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2019. [Google Scholar]
- Hua, G.; Li, Y.; Huang, C.; Liang, C.; Wang, J. Study on the Assess Index System of the Ecological Restoration to the Lalu Wetland in Tibet. J. Sichuan Univ. (Eng. Sci. Ed.) 2005, 37, 20–25. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Höfer, T.; Sunak, Y.; Siddique, H.; Madlener, R. Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen. Appl. Energy 2016, 163, 222–243. [Google Scholar] [CrossRef]
- Achour, Y.; Boumezbeur, A.; Hadji, R.; Chouabbi, A.; Cavaleiro, V.; Bendaoud, E.A. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab. J. Geosci. 2017, 10, 194. [Google Scholar] [CrossRef]
- Sun, B.; Tang, J.; Yu, D.; Song, Z. Penggang Wang.Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China. Ocean Coast. Manag. 2019, 168, 41–50. [Google Scholar] [CrossRef]
- Khodaparast, M.; Rajabi, A.M.; Edalat, A. Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): A case study in Qom city, Iran. Environ. Earth Sci. 2018, 77, 52. [Google Scholar] [CrossRef]
- Thanh, L.N.; De Smedt, F. Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Env. Earth Sci. 2011, 66, 1739–1752. [Google Scholar] [CrossRef]
- Carmone, F.J., Jr.; Kara, A.; Zanakis, S.H. A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP. Eur. J. Oper. Res. 1997, 102, 538–553. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera BJ, C. Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecol. Indic. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- Chen, Y.; Bouferguene, A.; Al-Hussein, M. Analytic hierarchy process-simulation framework for lighting maintenance decision-making based on the clustered network. J. Perform. Constr. Facil. 2018, 32, 04017114. [Google Scholar] [CrossRef]
- Luu, C.; Meding, J.V.; Kanjanabootra, S. Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Nat. Hazards 2018, 90, 1031–1050. [Google Scholar] [CrossRef]
- Saaty, T.L. The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; pp. 345–405. [Google Scholar]
- Xu, S.; Rowntree, J.; Borrelli, P.; Hodbod, J.; Raven, M.R. Ecological health index: A short term monitoring method for land managers to assess grazing lands ecological health. Environments 2019, 6, 67. [Google Scholar] [CrossRef]
- Song, C.Y.; Hu, H.X.; Huang, H.; Ren, H.X.; Huang, C. Assessing the health of rehabilitated reed wetland ecosystem in the Yellow River Delta. Acta Ecol. Sin. 2016, 36, 2705–2714. [Google Scholar]
- Liu, J.; Guo, J.; Guo, J.; Zheng, S.; Lin, L. The Ecological Evaluation of the Forest Ecosystems in Mangdangshan Nature Reserve. J. Fujian Coll. For. 2003, 23, 106–110. [Google Scholar]
- Li, R.; Chai, M.; Qiu, G.; Shi, F.; Sasa, K. Profile Nutrient Distribution and Sedimentary Characteristics in Typical Marshes of Sanjiang Plain. Environ. Sci. 2014, 35, 2928–2936. (In Chinese) [Google Scholar]
- Liu, D.; Liu, L.; You, Q.; Hu, Q.; Jian, M.; Liu, G.; Cong, M.; Yao, B.; Xia, Y.; Zhong, J.; et al. Development of a Landscape-Based Multi-Metric Index to Assess Wetland Health of the Poyang Lake. Remote Sens. 2022, 14, 1082. [Google Scholar] [CrossRef]
- Ma, R. Study on Landscape Ecological Health in Panjin Shuangtaizi Estuarine and Coastal Wetland Based on Remote Sensing Image. Master’s Thesis, Dalian Maritime University, Dalian, China, 2015. [Google Scholar]
- Jiao, W.; Ouyang, W.; Hao, F.; Wang, F.; Liu, B. Long-term cultivation impact on the heavy metal behavior in a reclaimed wetland, Northeast China. J. Soils Sediments 2014, 14, 567–576. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Wang, J.; Wu, X.; Ma, S.; Wu, Y.; Li, J.; Xu, N. Effects of different land use types on soil physicochemical properties and aggregate composition in Sanjiang Plain wetland. Chin. J. Ecol. 2019, 38, 1679–1687. [Google Scholar]
- Liu, J.T.; Fang, S.W.; Sun, J.J. Nutrient zoning of Poyang Lake based on aquatic eco-environment indices. Environ. Earth Sci. 2016, 75, 61. [Google Scholar] [CrossRef]
- Fang, N.; You, Q.; Liu, L.; Li, J.; Lu, C.; Zhang, L.; Yang, T.; Yu, Z.; Lü, Z.; Yang, W. Evaluation of eutrophication in Poyang Lake wetland during autumn based on the cloud model. Acta Ecol. Sin. 2019, 39, 6314–6321. [Google Scholar]
- Xiao, K.; Zhu, Y.; Zhou, M.; Fan, R. Health Assessmentof Wetland in Suzhou Based on Bird-based Index of Biotic integrity. J. Chin. Urban For. 2022, 20, 114–119. (In Chinese) [Google Scholar]
- Mereta, S.T.; Lemmens, P.; De Meester, L.; Goethals, P.L.M.; Boets, P. The Relative Importance of Human Disturbance, Environmental and Spatial Factors on the Community Composition of Wetland Birds. Water 2021, 13, 3448. [Google Scholar] [CrossRef]
- Peng, C.; Li, B.; Nan, B. An analysis framework for the ecological security of urban agglomeration: A case study of the Beijing-Tianjin-Hebei urban agglomeration. J. Clean. Prod. 2021, 315, 128111. [Google Scholar] [CrossRef]
- Cui, B.S.; Yang, Z.F. Establishing an Indicator System for Ecosystem Health Evaluation on Wetlands. A Theoretical Framework. Acta Ecol. Sin. 2002, 22, 1005–1011. [Google Scholar]
- Jiang, M.; Zou, Y.C.; Zhang, G.X.; Tong, S.; Wu, H.; Liu, X.; Zhang, Z.; Xue, Z.; Lü, X. Progress and prospects of wetland science in China-Commemoration on the 60th anniversary of the founding of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences. Wetl. Sci. 2018, 16, 279–287. (In Chinese) [Google Scholar]
- Yu, G.R.; Yang, M.; Hao, T.X. Coordinate the five-pool functions of ecosystem and buildstrong national ecological infrastructures—Ecological construction ideology, tasks and goals in the new developing era of China. Bull. Chin. Acad. Sci. 2022, 37, 1534–1538. (In Chinese) [Google Scholar]
Level-1 Indicator | Level-2 Indicator | Data Source | Frequency |
---|---|---|---|
Soil | Soil pH | Experimental analysis | 1 time per year |
Organic matter content | |||
TP | |||
TN | |||
Hg | |||
Water | Water pH | Experimental analysis | 3 times (spring, summer, and autumn) |
DO | |||
BOD5 | |||
CODMn | |||
The comprehensive nutritive index | |||
Wetland waterfowl | Waterfowl species and populations | Sampling the line transect or sampling sites’ data statistics | 1 time per year |
Landscape indices | Change rate of wetland area | Remote sensing image processing | 1 time per year |
Land-use intensity | |||
Largest patch index | |||
Patch density | |||
Shannon’s diversity index | |||
Society | Tourism value | Questionnaire | 1 time per year |
Scientific research value |
Overall Normalized Score | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|
Soil pH | 7–8 | 6–7, 8–9 | 5–6, 9–10 | 3–5, 10–12 | 0–3, 12–14 |
Organic matter content (%) | >4 | 3-4 | 2-3 | 1-2 | <1 |
TP (g/kg) | >1.0 | 0.7–1.0 | 0.4–0.7 | 0.2–0.4 | <0.2 |
TN (g/kg) | >2.0 | 1.5–2.0 | 1.0–1.5 | 0.5–1.0 | <0.5 |
Hg (mg/kg) | <0.05 | 0.05–0.1 | 0.1–0.15 | 0.15–0.2 | >0.2 |
Water pH | 6–9 | 5–6, 9–10 | 3–5, 10–12 | 2–3, 12–13 | 0–2, 13–14 |
DO (mg/L) | ≥7.5 | ≥6 | ≥5 | ≥3 | ≥2 |
BOD5 (mg/L) | ≤3 | ≤3 | ≤4 | ≤6 | ≤10 |
CODMn (mg/L) | ≤15 | ≤15 | ≤20 | ≤30 | ≤40 |
The comprehensive nutritive index (TLI) | 0–30 | 30–50 | 50–60 | 60–70 | >70 |
Waterfowl species and populations | >4 | 3–4 | 2–3 | 1–2 | <1 |
Change rate of wetland area | First | Second | Third | Forth | Fifth |
Land-use intensity | <0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | >0.8 |
Largest patch index(LPI) | 80–100 | 60–80 | 40–60 | 20–40 | 0–20 |
Shannon’s diversity index (SHDI) | >0.8 | 0.6–0.8 | 0.4–0.6 | 0.2–0.4 | <0.2 |
Patch density (PD) | <2 | 2–10 | 10–20 | 20–40 | >40 |
Tourism value | 4–5 | 3–4 | 2–3 | 1–2 | 0–1 |
Scientific research value | 4–5 | 3–4 | 2–3 | 1–2 | 0–1 |
Level | Excellent | Good | Fair | Poor | Very Poor |
---|---|---|---|---|---|
EHI | 4~5 | 3~4 | 2~3 | 1~2 | 0~1 |
Intensity of Importance | Definition | Explanation |
---|---|---|
1 | Equal importance | Two criteria/sub-criteria are equally important |
2 | Weak | |
3 | Moderate importance | One criterion/sub-criterion is slightly favored over another |
4 | Moderate plus | |
5 | Strong importance | One criterion/sub-criterion is strongly favored over another |
6 | Strong plus | |
7 | Very strong | One criterion/sub-criterion is very strongly favored over another |
8 | Very, very strong | |
9 | Extreme importance | Evidence favoring one criterion/sub-criterion over the other is the highest possible order of affirmation |
Reciprocals of the above | If activity i is the judgement value when i is compared with activity j, then j has a reciprocal value when compared with i | A reasonable assumption |
Farmland (ha) | Building (ha) | Shelterbelt (ha) | Land-Use Intensity | LPI | PD | SHDI | Wetland Area (ha) |
---|---|---|---|---|---|---|---|
88.29 | 12.195 | 9.945 | 0.096 | 53.408 | 2.09 | 0.986 | 910.73 |
Spring | Summer | Autumn | |
---|---|---|---|
Shannon–Winner index | 1.5 | 1.82 | 1.65 |
Margalef index | 2.56 | 2.62 | 3.10 |
Pielou index | 0.46 | 0.56 | 0.48 |
Level-1 Indicator | Level-2 Indicator | Weight | EHI Score |
---|---|---|---|
Soil (0.184) | pH | 0.073 | 3.68 |
Organic matter content | 0.045 | ||
TP | 0.031 | ||
TN | 0.022 | ||
Hg | 0.013 | ||
Water (0.382) | pH | 0.019 | |
DO | 0.116 | ||
BOD5 | 0.057 | ||
CODMn | 0.037 | ||
The comprehensive nutritive index | 0.153 | ||
Wetland waterfowl (0.114) | Waterfowl species and population | 0.114 | |
Landscape indices (0.243) | Change rate of wetland area | 0.056 | |
Land-use intensity | 0.056 | ||
Largest patch index | 0.088 | ||
Patch density | 0.031 | ||
Shannon’s diversity index | 0.013 | ||
Society (0.077) | Tourism value | 0.052 | |
Scientific research value | 0.026 |
Year | NP | PD | LPI | SHDI |
---|---|---|---|---|
2017 | 4465 | 4.38 | 37.94 | 1.16 |
2020 | 3030 | 2.90 | 25.93 | 1.39 |
2022 | 2408 | 2.09 | 53.41 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Wang, J.; Tian, X.; Zou, Y.; Jiang, M.; Yu, H.; Zhao, C.; Zhou, X. Post-Restoration Monitoring of Wetland Restored from Farmland Indicated That Its Effectiveness Barely Measured Up. Water 2024, 16, 410. https://doi.org/10.3390/w16030410
Cao R, Wang J, Tian X, Zou Y, Jiang M, Yu H, Zhao C, Zhou X. Post-Restoration Monitoring of Wetland Restored from Farmland Indicated That Its Effectiveness Barely Measured Up. Water. 2024; 16(3):410. https://doi.org/10.3390/w16030410
Chicago/Turabian StyleCao, Rui, Jingyu Wang, Xue Tian, Yuanchun Zou, Ming Jiang, Han Yu, Chunli Zhao, and Xiran Zhou. 2024. "Post-Restoration Monitoring of Wetland Restored from Farmland Indicated That Its Effectiveness Barely Measured Up" Water 16, no. 3: 410. https://doi.org/10.3390/w16030410
APA StyleCao, R., Wang, J., Tian, X., Zou, Y., Jiang, M., Yu, H., Zhao, C., & Zhou, X. (2024). Post-Restoration Monitoring of Wetland Restored from Farmland Indicated That Its Effectiveness Barely Measured Up. Water, 16(3), 410. https://doi.org/10.3390/w16030410