A First Attempt to Describe the Real-Time Behavior and Fate of Marine Litter Items in the Nearshore and Foreshore under Low Energetic Marine Conditions
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- (i)
- (ii)
- Neutral buoyancy items: items that floated just below the water surface; i.e., a bottle cap and a plastic glass (Table 1);
- (iii)
- Items with negative buoyancy: items that sank and moved (or not) on the sea bottom; i.e., a plastic bottle completely filled with sea water (Table 1 and Figure A1). At the foreshore, point 0, the behavior of a cigarette butt and a cotton bud that presented a negative buoyancy was also assessed (Table 1 and Figure A1).
4. Results and Discussion
4.1. Forcing Factors
4.2. Marine Litter Behavior and Fate
4.2.1. Positive Buoyancy Items
4.2.2. Neutral-Buoyancy Items
4.2.3. Negative-Buoyancy Items
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- United Nations Environment Programme Nairobi. United Nations Environment Programme Marine Litter: An Analytical Overview; United Nations Environment Programme: Nairobi, Kenya, 2005; p. 53. [Google Scholar]
- Cheshire, A.C.; Adler, E.; Barbière, J.; Cohen, Y.; Evans, S.; Jarayabhand, S.; Jeftic, L.; Jung, R.T.; Kinsey, S.; Kusui, E.T.; et al. NEP/IOC Guidelines on Survey and Monitoring of Marine Litter; United Nations Environment Programme: Nairobi, Kenya, 2023; Volume 186, p. 120. [Google Scholar]
- Schneider, F.; Parsons, S.; Clift, S.; Stolte, A.; McManus, M.C. Collected Marine Litter—A Growing Waste Challenge. Mar. Pollut. Bull. 2018, 128, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.R. Environmental Implications of Plastic Debris in Marine Settings—Entanglement, Ingestion, Smothering, Hangers-on, Hitch-Hiking and Alien Invasions. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Votier, S.C.; Archibald, K.; Morgan, G.; Morgan, L. The Use of Plastic Debris as Nesting Material by a Colonial Seabird and Associated Entanglement Mortality. Mar. Pollut. Bull. 2011, 62, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Rech, S.; Borrell, Y.; García-Vazquez, E. Marine Litter as a Vector for Non-Native Species: What We Need to Know. Mar. Pollut. Bull. 2016, 113, 40–43. [Google Scholar] [CrossRef]
- Campbell, M.L.; Peters, L.; McMains, C.; de Campos, M.C.R.; Sargisson, R.J.; Blackwell, B.; Hewitt, C.L. Are Our Beaches Safe? Quantifying the Human Health Impact of Anthropogenic Beach Litter on People in New Zealand. Sci. Total Environ. 2019, 651, 2400–2409. [Google Scholar] [CrossRef]
- Tudor, D.T.; Williams, A.T. Public Perception and Opinion of Visible Beach Aesthetic Pollution: The Utilisation of Photography. J. Coast. Res. 2003, 19, 1104–1115. [Google Scholar]
- Krelling, A.P.; Williams, A.T.; Turra, A. Differences in Perception and Reaction of Tourist Groups to Beach Marine Debris That Can Influence a Loss of Tourism Revenue in Coastal Areas. Mar. Policy 2017, 85, 87–99. [Google Scholar] [CrossRef]
- Prevenios, M.; Zeri, C.; Tsangaris, C.; Liubartseva, S.; Fakiris, E.; Papatheodorou, G. Beach Litter Dynamics on Mediterranean Coasts: Distinguishing Sources and Pathways. Mar. Pollut. Bull. 2018, 129, 448–457. [Google Scholar] [CrossRef]
- Hanke, G.; Galgani, F.; Werner, S.; Oosterbaan, L.; Nilsson, P.; Fleet, D.; Kinsey, S.; Thompson, R.; Van Franeker, J.A.; Vlachogianni, T.; et al. Guidance on Monitoring of Marine Litter in European Seas; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-79-32709-4. [Google Scholar]
- Ryan, P.G. Does Size and Buoyancy Affect the Long-Distance Transport of Floating Debris? Environ. Res. Lett. 2015, 10, 084019. [Google Scholar] [CrossRef]
- Lebreton, L.; Egger, M.; Slat, B. A Global Mass Budget for Positively Buoyant Macroplastic Debris in the Ocean. Sci. Rep. 2019, 9, 12922. [Google Scholar] [CrossRef]
- Maclean, K.; Weideman, E.A.; Perold, V.; Ryan, P.G. Buoyancy Affects Stranding Rate and Dispersal Distance of Floating Litter Entering the Sea from River Mouths. Mar. Pollut. Bull. 2021, 173, 113028. [Google Scholar] [CrossRef]
- Andrady, A.L.; Neal, M.A. Applications and Societal Benefits of Plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef]
- Andrady, A.L. Persistence of Plastic Litter in the Oceans. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 57–72. ISBN 978-3-319-16510-3. [Google Scholar]
- Duhec, A.V.; Jeanne, R.F.; Maximenko, N.; Hafner, J. Composition and Potential Origin of Marine Debris Stranded in the Western Indian Ocean on Remote Alphonse Island, Seychelles. Mar. Pollut. Bull. 2015, 96, 76–86. [Google Scholar] [CrossRef]
- Ruiz, I.; Rubio, A.; Abascal, A.J.; Basurko, O.C. Modelling Floating Riverine Litter in the South-Eastern Bay of Biscay: A Regional Distribution from a Seasonal Perspective. Ocean Sci. 2022, 18, 1703–1724. [Google Scholar] [CrossRef]
- Fazey, F.M.C.; Ryan, P.G. Biofouling on Buoyant Marine Plastics: An Experimental Study into the Effect of Size on Surface Longevity. Environ. Pollut. 2016, 210, 354–360. [Google Scholar] [CrossRef]
- Ye, S.; Andrady, A.L. Fouling of Floating Plastic Debris under Biscayne Bay Exposure Conditions. Mar. Pollut. Bull. 1991, 22, 608–613. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Rizzo, A.; Rangel-Buitrago, N.; Impedovo, A.; Mastronuzzi, G.; Scardino, G.; Scicchitano, G. A Rapid Assessment of Litter Magnitudes and Impacts along the Torre Guaceto Marine Protected Area (Brindisi, Italy). Mar. Pollut. Bull. 2021, 173, 112987. [Google Scholar] [CrossRef]
- Rizzo, A.; Sozio, A.; Anfuso, G.; La Salandra, M. The Use of UAV Images to Assess Preliminary Relationships between Spatial Litter Distribution and Beach Morphodynamic Trends: The Case Study of Torre Guaceto Beach (Apulia Region, Southern Italy). Geogr. Fis. Din. Quat. 2022, 45, 237–250. [Google Scholar]
- Scarrica, V.; Aucelli, P.; Cagnazzo, C.; Casolaro, A.; Fiore, P.; La Salandra, M.; Rizzo, A.; Scardino, G.; Scicchitano, G.; Staiano, A. A Novel Beach Litter Analysis System Based on UAV Images and Convolutional Neural Networks. Ecol. Inform. 2022, 72, 101875. [Google Scholar] [CrossRef]
- De Giosa, F.; Scardino, G.; Vacchi, M.; Piscitelli, A.; Milella, M.; Ciccolella, A.; Mastronuzzi, G. Geomorphological Signature of Late Pleistocene Sea Level Oscillations in Torre Guaceto Marine Protected Area (Adriatic Sea, SE Italy). Water 2019, 11, 2409. [Google Scholar] [CrossRef]
- Lapietra, I.; Lisco, S.; Mastronuzzi, G.; Milli, S.; Pierri, C.; Sabatier, F.; Scardino, G.; Moretti, M. Morpho-Sedimentary Dynamics of Torre Guaceto Beach (Southern Adriatic Sea, Italy). J. Earth Syst. Sci. 2022, 131, 64. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Caputo, R.; Di Bucci, D.; Fracassi, U.; Iurilli, V.; Milella, M.; Pignatelli, C.; Sansò, P.; Selleri, G. Middle-Late Pleistocene Evolution of the Adriatic Coastline of Southern Apulia (Italy) in Response to Relative Sea-Level Changes. Geogr. Fis. Din. Quat. 2011, 34, 207–221. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Milella, M.; Piscitelli, A.; Simone, O.; Quarta, G.; Scarano, T.; Calcagnile, L.; Spada, I. Landscape Analysis in Torre Guaceto Area (Brindisi) Aimed at the Reconstruction of the Late Holocene Sea Level Curve. Geogr. Fis. Din. Quat. 2018, 41, 65–79. [Google Scholar] [CrossRef]
- Rech, S.; Macaya-Caquilpán, V.; Pantoja, J.F.; Rivadeneira, M.M.; Madariaga, D.J.; Thiel, M. Rivers as a Source of Marine Litter—A Study from the SE Pacific. Mar. Pollut. Bull. 2014, 82, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Asensio-Montesinos, F.; Anfuso, G.; Randerson, P.; Williams, A.T. Seasonal Comparison of Beach Litter on Mediterranean Coastal Sites (Alicante, SE Spain). Ocean Coast. Manag. 2019, 181, 104914. [Google Scholar] [CrossRef]
- Asensio-Montesinos, F.; Anfuso, G.; Ramírez, M.O.; Smolka, R.; Sanabria, J.G.; Enríquez, A.F.; Arenas, P.; Macias Bedoya, A. Beach Litter Composition and Distribution on the Atlantic Coast of Cádiz (SW Spain). Reg. Stud. Mar. Sci. 2020, 34, 101050. [Google Scholar] [CrossRef]
- Lyddon, C.E.; Brown, J.M.; Leonardi, N.; Saulter, A.; Plater, A.J. Quantification of the Uncertainty in Coastal Storm Hazard Predictions Due to Wave-Current Interaction and Wind Forcing. Geophys. Res. Lett. 2019, 46, 14576–14585. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP); Suppl. A; Deutches Hydrographisches Institut: Hamburg, Germany, 1973; pp. 8–12. Available online: http://resolver.tudelft.nl/uuid:f204e188-13b9-49d8-a6dc-4fb7c20562fc (accessed on 1 January 2024).
- Davies, A.M.; Flather, R.A. Computing Extreme Meteorologically Induced Currents, with Application to the Northwest European Continental Shelf. Cont. Shelf Res. 1987, 7, 643–683. [Google Scholar] [CrossRef]
- Kagan, B.A.; Álvarez, O.; Izquierdo, A.; Mañanes, R.; Tejedor, B.; Tejedor, L. Weak Wind-Wave/Tide Interaction over a Moveable Bottom: Results of Numerical Experiments in Cádiz Bay. Cont. Shelf Res. 2003, 23, 435–456. [Google Scholar] [CrossRef]
- Pugh, D.T. Tides, Surges and Mean Sea Level; Wiley: Chichester, UK, 1987; ISBN 978-0-471-91505-8. [Google Scholar]
- Longuet-Higgins, M.S. Longshore Currents Generated by Obliquely Incident Sea Waves: 1. J. Geophys. Res. 1970, 75, 6778–6789. [Google Scholar] [CrossRef]
- Isobe, A.; Kubo, K.; Tamura, Y.; Kako, S.; Nakashima, E.; Fujii, N. Selective Transport of Microplastics and Mesoplastics by Drifting in Coastal Waters. Mar. Pollut. Bull. 2014, 89, 324–330. [Google Scholar] [CrossRef] [PubMed]
Id | Item | Weight (gr) | Dimensions (cm) Height (h), Diameter (d) | Composition and Density of the Polymer (gr/cm3) | Buoyancy |
---|---|---|---|---|---|
01_1 | Plastic water bottle (500 mL—green with white cap) | 12.7 | h. 20, d.5 | PET—Polyethylene terephthalate 1.06 | Positive |
01_2 | Plastic water bottle partially filled with sea water (500 mL—green with white cap) | 185 | h. 20, d.5 | PET—Polyethylene terephthalate 1.06 | Positive |
01_3 | Plastic water bottle completely filled with sea water (500 mL—green with white cap) | 428.7 | h. 20, d.5 | PET—Polyethylene terephthalate 1.06 | Negative |
02 | Plastic water bottle (500 mL—transparent with red cap) | 13.1 | h. 21, d.5 | PET—Polyethylene terephthalate 1.06 | Positive |
03 | Glass bottle (180 mL) | 147.2 | h. 18.5, d. 4.5 | Glass 2.5 | Positive |
04 | Bottle caps (red/white) | Empty 1.5 Full 5.0 | h. 0.7, d. 2.9 | PE—Polyethylene 0.92–0.98 | Neutral |
05 | Plastic glass | Empty 1.7 Full 127.8 | h. 7 smaller d. 4.5 larger d. 6.5 | PET—Polyethylene terephthalate 1.06 | Neutral–negative |
06 | Cotton bud | Dry 0.4 Wet 1.19 | h. 8, d. 0.2 | Cotton 1.32 | Negative |
07 | Cigarette butt | Dry 0.3 Wet 0.83 | h. 3, d. 0.5 | Plastic, CA—Cellulose acetate | Negative |
Point Number—Water Depth | ||||
---|---|---|---|---|
Variable | Point 0—Foreshore, 0 m | Point 1—Breaking, 0.2 m | Point 2 0.50 m | Point 3 1.0 m |
Wind speed (m/s) and approaching direction | 2.4 m/s/N–NW | 2.9 m/s/N–NW | 3.8 m/s/N–NW | 3.8 m/s/N–NW |
Significant wave height (m) and period (s) | − | 0.14 m/3 s | 0.19 m/3 s | 0.21 m/3 s |
Current meter position and measured velocity and direction | Not used (insufficient water depth) | On the bottom 0.073 m/s, longshore | 0.25 m from the bottom 0.034 m/s, shoreward (i.e., normal to wave fronts) | 0.25 m from the bottom No data (measured values within the accuracy of the instrument) |
Calculated (m/s) wind-induced water current (Uw) at sea surface, Stokes drift (Ust), and wave current under breaking conditions (Ud) | Uw = 0.72 m/s Ust and Ud were not calculated | Uw = 0.009 m/s Ust = 0.04 m/s Ud = 0.67 m/s | Uw = 0.11 m/s Ust = 0.04 m/s | Uw = 0.11 m/s Ust = 0.05 m/s |
Point 0 Foreshore, 0 m | Point 1 Breaking, 0.20 m | Point 2 0.50 m | Point 3 1.0 m | ||
---|---|---|---|---|---|
Buoyancy | Item | Velocity (m/s) | Velocity (m/s) | Velocity (m/s) | Velocity (m/s) |
Positive | Plastic water bottle (500 mL), empty | 0.08 (in swash–backwash zone, ca. 10% of cases stranded on the beach face); swash–backwash process. 0.23 (9.6%; alongshore, at the plunge step, not entering the swash–backwash zone); wind; (7) | 0.70 (shoreward, surfing wave crests); breaking waves; (4) | 0.26 (6.8%; alongshore, according to wind direction); wind; (4) | 0.33 (8.7%; alongshore, according to wind direction); wind; (3) |
Plastic water bottle partially filled with sea water | 0.04 (in swash–backwash zone, ca. 5% of cases stranded on the beach face); swash–backwash process; (3) | 0.05 (shoreward, surfing wave crests);breaking waves; (4) | 0.09 (2.4%; alongshore, according to wind direction); wind; (3) | 0.11 (2.9%; alongshore, according to wind direction); wind; (4) | |
Glass bottle (180 mL) | 0.05 (in swash–backwash zone, ca. 5% of cases stranded on the beach face); swash–backwash process; (6) | 0.10 (3.4%; alongshore, according to wind direction and slight influence of breaking waves); wind; (4) | 0.10 (2.6%; alongshore, according to wind direction); wind; (3) | 0.11 (2.9%; alongshore, according to wind direction); wind; (3) | |
Neutral | Bottle cap | 0.08 (in swash–backwash zone, ca. 20% of cases stranded on the beach face); swash–backwash process; (9) | 0.06 (2.0%; alongshore, according to wind direction); wind; (4) | 0.06 (1.6%; alongshore, according to wind direction); wind; (4) | 0.09 (2.3%; alongshore, according to wind direction); wind; (3) |
Plastic glass | 0.02 (in swash–backwash zone, ca. 40% of cases stranded on the beach face); Swash–backwash process; (5) | 0.06 (2.0%; alongshore, according to wind direction); wind; (3) | 0.06 (1.6%; alongshore, according to wind direction); wind; (6) | 0.07 (1.8%; alongshore, according to wind direction); wind; (3) | |
Negative | Plastic water bottle completely filled with sea water | No movement (3) | 0.05 (alongshore because of the longshore component of wave fronts); breaking waves; (3) | 0.02 (shoreward, perpendicular to wave fronts); waves; (3) | No movement (3) |
Cotton bud (wet) | 0.06 (alongshore, at the plunge step, not entering the swash–backwash zone); longshore current; (4) | Not used | Not used | Not used | |
Cigarette butt (wet) | 0.05 (alongshore, at the plunge step, not entering the swash–backwash zone); longshore current; (4) | Not used | Not used | Not used |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anfuso, G.; Álvarez, O.; Dilauro, G.; Sabato, G.; Scardino, G.; Sozio, A.; Rizzo, A. A First Attempt to Describe the Real-Time Behavior and Fate of Marine Litter Items in the Nearshore and Foreshore under Low Energetic Marine Conditions. Water 2024, 16, 409. https://doi.org/10.3390/w16030409
Anfuso G, Álvarez O, Dilauro G, Sabato G, Scardino G, Sozio A, Rizzo A. A First Attempt to Describe the Real-Time Behavior and Fate of Marine Litter Items in the Nearshore and Foreshore under Low Energetic Marine Conditions. Water. 2024; 16(3):409. https://doi.org/10.3390/w16030409
Chicago/Turabian StyleAnfuso, Giorgio, Oscar Álvarez, Grazia Dilauro, Gaetano Sabato, Giovanni Scardino, Angelo Sozio, and Angela Rizzo. 2024. "A First Attempt to Describe the Real-Time Behavior and Fate of Marine Litter Items in the Nearshore and Foreshore under Low Energetic Marine Conditions" Water 16, no. 3: 409. https://doi.org/10.3390/w16030409
APA StyleAnfuso, G., Álvarez, O., Dilauro, G., Sabato, G., Scardino, G., Sozio, A., & Rizzo, A. (2024). A First Attempt to Describe the Real-Time Behavior and Fate of Marine Litter Items in the Nearshore and Foreshore under Low Energetic Marine Conditions. Water, 16(3), 409. https://doi.org/10.3390/w16030409