Impact of Diverse Rainfall Patterns and Their Interaction on Soil and Water Loss in a Small Watershed within a Typical Low Hilly Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area Overview
2.2. Data Sources and Research Methods
3. Results
3.1. Rainfall Types
3.2. Variation Characteristics of River Water and Sediment
3.3. Impact of Various Rainfall Types on Water and Sediment in the Watershed
3.4. Impact of Soil and Water Conservation Measures on Rainfall and Sediment Reduction
4. Discussion
4.1. Key Findings and Reflections
4.2. Implications for Practice
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.H.; Li, Y.C.; Gan, Y.S.; Zhao, L.; Qin, W.; Ding, L. Rainfall erosivity index for monitoring global soil erosion. Catena 2024, 234, 273–281. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, Q.; Hou, R.; Wu, F. Effect of rainfall intensity and duration on soil erosion on slopes with different microrelief patterns. Geoderma 2021, 396, 115085. [Google Scholar] [CrossRef]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef]
- Ghosh, S.; Guchhait, S.K.; Illahi, R.A.; Bera, S.; Roy, S. Geomorphic character and dynamics of gully morphology, erosion and management in laterite Terrain: Few observations from Dwarka–Brahmani Interfluve, Eastern India. Geol. Ecol. Landsc. 2022, 6, 188–216. [Google Scholar] [CrossRef]
- Li, Y.; Shen, M.; Sun, R.; Hu, Y.; Zhao, J.C.; Tang, P.; Zhang, J. Rill Erosion Processes and Morphological Characteristics: Simulated Scouring Experiments of Exposed Slope in Loess Region. Available at SSRN 4635071. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4635071 (accessed on 16 December 2023).
- Ghosh, S.; Roy, S. Morphological Dynamics, Erosion Potential and Morphogenesis of Badlands in Laterites of the Bengal Basin, India. In Drainage Basin Dynamics: An Introduction to Morphology, Landscape and Modelling; Springer Nature: Delhi, India, 2022; pp. 11–62. [Google Scholar]
- Alavinia, M.; Saleh, F.N.; Asadi, H. Effects of rainfall patterns on runoff and rainfall-induced erosion. Int. J. Sediment Res. 2019, 34, 270–278. [Google Scholar] [CrossRef]
- Pei, Y.; Yuan, X.; Wei, Z.; Yang, Z.; Xu, C.; Chen, S. The subtropical forest soil organic carbon under different forest management pattern loss difference. J. Subtrop. Resour. Environ. 2023, 18, 33–40. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Yue, L.; Juying, J.; Bingzhe, T.; Binting, C.; Hang, L. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. J. Hydrol. 2020, 584, 124694. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, L.; Xia, Z.; Xu, W.; Xia, L.; Liang, Y.; Xia, D. Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope. Adv. Civ. Eng. 2019, 2019, 7043428. [Google Scholar] [CrossRef]
- Wolka, K.; Birhanu, B.; Vegard, M.; Jan, M. Soil and water conservation management on hill slopes in Southwest Ethiopia. I. Effects of soil bunds on surface runoff, erosion and loss of nutrients. Sci. Total Environ. 2021, 757, 142877. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Nearing, M.A.; Borrelli, P.; Xue, X. Rainfall erosivity: An overview of methodologies and applications. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef]
- Ma, X.; He, Y.; Xu, J.; van Noordwijk, M.; Lu, X. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. CATENA 2014, 121, 248–259. [Google Scholar] [CrossRef]
- Beguería, S.; Serrano-Notivoli, R.; Tomas-Burguera, M. Computation of rainfall erosivity from daily precipitation amounts. Sci. Total. Environ. 2018, 637–638, 359–373. [Google Scholar] [CrossRef]
- Yin, S.; Xie, Y.; Liu, B.; Nearing, M.A. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrol. Earth Syst. Sci. 2015, 19, 4113–4126. [Google Scholar] [CrossRef]
- Nearing, M.A.; Yin, S.-Q.; Borrelli, P.; Polyakov, V.O. Rainfall erosivity: An historical review. CATENA 2017, 157, 357–362. [Google Scholar] [CrossRef]
- Xie, Y.; Yin, S.-Q.; Liu, B.-Y.; Nearing, M.A.; Zhao, Y. Models for estimating daily rainfall erosivity in China. J. Hydrol. 2016, 535, 547–558. [Google Scholar] [CrossRef]
- Jun, W.; Lina, Z.; Wenwu, Z.; Lingxiao, Y. The Influence of Rainfall and Land Use Patterns on Soil Erosion in Multi-Scale Watersheds: A Case Study in the Hilly and Gully Area on the Loess Plateau, China. J. Geogr. Sci. 2018, 28, 1415–1426. [Google Scholar]
- Sobral, A.C.; Peixoto, A.S.P.; Nascimento, V.F.; Rodgers, J.; Da Silva, A.M. Natural and anthropogenic influence on soil erosion in a rural watershed in the Brazilian southeastern region. Reg. Environ. Chang. 2015, 15, 709–720. [Google Scholar] [CrossRef]
- Mohamadi, M.A.; Kavian, A. Effects of rainfall patterns on runoff and soil erosion in field plots. Int. Soil Water Conserv. Res. 2015, 3, 273–281. [Google Scholar] [CrossRef]
- Fu, B.; Liang, Q.; Ma, J.; Pan, Y. Pupiao river basin, western yunnan erosive rainfall and characteristics of the runoff and sediment yield research J/OL. J. Southwest For. Univ. Nat. Sci. 2023, 44, 1–9. Available online: http://kns.cnki.net/kcms/detail/53.1218.S.20231102.1028.004.html (accessed on 2 November 2023).
- Wang, H.; Yang, S.; Yue, X.; Jiang, F.; Zhang, Y.; Huang, Y.; Lin, J. Runoff and Sediment of Different Rainfall Types on Bare Slop in the Red Soil Region. J. Soil Water Conserv. 2023, 5, 61–68. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, W.; Hu, C.; Wang, Y.; Wang, Z.; Zhang, X.; Zhu, B.; Cheng, C.; Yin, X.; Liu, B.; et al. Analysis of changes in characteristics of flood and sediment yield in typical basins of the Yellow River under extreme rainfall events. Catena 2019, 177, 31–40. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, L.; Fan, X.; Sun, T.; Fei, K.; Ni, L. Effects of rainfall intensity and slope gradient on runoff and sediment yield from hillslopes with weathered granite. Environ. Sci. Pollut. Res. 2019, 26, 32559–32573. [Google Scholar] [CrossRef] [PubMed]
- Puntenney-Desmond, K.C.; Bladon, K.D.; Silins, U. Runoff and sediment production from harvested hillslopes and the riparian area during high intensity rainfall events. J. Hydrol. 2020, 582, 124452. [Google Scholar] [CrossRef]
- Meng, Z.K.; Wang, B.; Daniel, M. Effects of temporal and spatial distribution of rainfall on sediment yield and runoff in a watershed. China Soil Water Conserv. Sci. 2023, 21, 69–78. [Google Scholar]
- Wu, L.; Peng, M.; Qiao, S.; Ma, X. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil. Environ. Sci. Pollut. Res. 2018, 25, 3480–3487. [Google Scholar] [CrossRef]
- Yan, Y.; Dai, Q.; Yuan, Y.; Peng, X.; Zhao, L.; Yang, J. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma 2018, 330, 30–40. [Google Scholar] [CrossRef]
- Tuset, J.; Vericat, D.; Batalla, R.J. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci. Total Environ. 2016, 540, 114–132. [Google Scholar] [CrossRef]
- da Silva, R.M.; Santos, C.A.G.; dos Santos, J.Y.G. Evaluation and modeling of runoff and sediment yield for different land covers under simulated rain in a semiarid region of Brazil. Int. J. Sediment Res. 2018, 33, 117–125. [Google Scholar] [CrossRef]
- Berihun, M.L.; Tsunekawa, A.; Haregeweyn, N.; Dile, Y.T.; Tsubo, M.; Fenta, A.A.; Meshesha, D.T.; Ebabu, K.; Sultan, D.; Srinivasan, R. Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Sci. Total Environ. 2020, 747, 141118. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Lin, K.; Tang, C. How effective are soil and water conservation measures (SWCMs) in reducing soil and water losses in the red soil hilly region of China? A meta-analysis of field plot data. Sci. Total Environ. 2020, 735, 139517. [Google Scholar] [CrossRef] [PubMed]
- Diyabalanage, S.; Samarakoon, K.K.; Adikari, S.B.; Hewawasam, T. Impact of soil and water conservation measures on soil erosion rate and sediment yields in a tropical watershed in the Central Highlands of Sri Lanka. Appl. Geogr. 2017, 79, 103–114. [Google Scholar] [CrossRef]
- Cai, M.; An, C.; Guy, C.; Lu, C. Assessment of soil and water conservation practices in the loess hilly region using a coupled rainfall-runoff-erosion model. Sustainability 2020, 12, 934. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Xu, G.; Fu, J.; Cai, S.; Mu, X.; Zhou, T.; Zhang, W.; Chen, J.; Li, L.; et al. Assessment of Integrated Soil and Water Conservation Practices on Soil Erosion Risk in a Typical Red-Beds Watershed in South China. Water 2023, 15, 2613. [Google Scholar] [CrossRef]
- Girma, R.; Gebre, E. Spatial modeling of erosion hotspots using GIS-RUSLE interface in Omo-Gibe river basin, Southern Ethiopia: Implication for soil and water conservation planning. Environ. Syst. Res. 2020, 9, 19. [Google Scholar] [CrossRef]
- Anache, J.A.A.; Wendland, E.C.; Oliveira, P.T.S.; Flanagan, D.C.; Nearing, M.A. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena 2017, 152, 29–39. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. A review of the design and operation of runoff and soil loss plots. Catena 2016, 145, 257–265. [Google Scholar] [CrossRef]
- Fang, N.F.; Wang, L.; Shi, Z.H. Runoff and soil erosion of field plots in a subtropical mountainous region of China. J. Hydrol. 2017, 552, 387–395. [Google Scholar] [CrossRef]
- GB/T 50159-2015; Code for Measurement of Suspended Load in Open Channels. China Planning Press: Beijing, China, 2015.
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Sahu, P.K.; Pradip, K.S. Analysis of Variance. In Applied Statistics for Agriculture, Veterinary, Fishery, Dairy and Allied Fields; Springer: New Delhi, India, 2016; pp. 277–318. [Google Scholar]
- Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Wang, J.; Xia, J.; Cai, C.; Wei, Z. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China. Sci. Total Environ. 2018, 621, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Jiao, J.; Dang, W.; Cao, W. The Thresholds of Sediment-Generating Rainfall from Hillslope to Watershed Scales in the Loess Plateau, China. Water 2019, 11, 2392. [Google Scholar] [CrossRef]
- de Almeida, W.S.; Seitz, S.; de Oliveira, L.F.C.; de Carvalho, D.F. Duration and intensity of rainfall events with the same erosivity change sediment yield and runoff rates. Int. Soil Water Conserv. Res. 2021, 9, 69–75. [Google Scholar] [CrossRef]
- Perruchet, C. Constrained agglomerative hierarchical classification. Pattern Recognit. 1983, 16, 213–217. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.J.; Yang, J.; Tang, C.J.; Shi, Z.H. Role of groundcover management in controlling soil erosion under extreme rainfall in citrus orchards of southern China. J. Hydrol. 2020, 582, 124290. [Google Scholar] [CrossRef]
- Han, J.; Ge, W.; Hei, Z.; Cong, C.; Ma, C.; Xie, M.; Liu, B.; Feng, W.; Wang, F.; Jiao, J. Agricultural land use and management weaken the soil erosion induced by extreme rainstorms. Agric. Ecosyst. Environ. 2020, 301, 107047. [Google Scholar] [CrossRef]
- Jia, L.; Yu, K.; Li, Z.; Li, P.; Zhang, J.; Wang, A.; Ma, L.; Xu, G.; Zhang, X. Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load. Catena 2022, 210, 105931. [Google Scholar] [CrossRef]
- Chen, X.; Liang, Z.; Zhang, Z.; Zhang, L. Effects of soil and water conservation measures on runoff and sediment yield in red soil slope farmland under natural rainfall. Sustainability 2020, 12, 3417. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Yang, X. Water and sediment yield response to extreme rainfall events in a complex large river basin: A case study of the Yellow River Basin, China. J. Hydrol. 2021, 597, 126183. [Google Scholar] [CrossRef]
- Damtie, B.B.; Mengistu, D.A.; Waktola, D.K.; Meshesha, D.T. Impacts of soil and water conservation practice on soil moisture in Debre Mewi and Sholit Watersheds, Abbay Basin, Ethiopia. Agriculture 2022, 12, 417. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, B.; Chen, S.; Wang, X.; Ma, X.; Pan, B. Large-scale afforestation enhances precipitation by intensifying the atmospheric water cycle over the Chinese Loess Plateau. J. Geophys. Res. Atmos. 2022, 127, e2022JD036738. [Google Scholar] [CrossRef]
- Zambon, N.; Johannsen, L.L.; Strauss, P.; Dostal, T.; Zumr, D.; Cochrane, T.A.; Klik, A. Splash erosion affected by initial soil moisture and surface conditions under simulated rainfall. Catena 2021, 196, 104827. [Google Scholar] [CrossRef]
- Yaekob, T.; Tamene, L.; Gebrehiwot, S.G.; Demissie, S.S.; Adimassu, Z.; Woldearegay, K.; Mekonnen, K.; Amede, T.; Abera, W.; Recha, J.W.; et al. Assessing the impacts of different land uses and soil and water conservation interventions on runoff and sediment yield at different scales in the central highlands of Ethiopia. Renew. Agric. Food Syst. 2022, 37, S73–S87. [Google Scholar] [CrossRef]
- Li, Z.; Ning, K.; Chen, J.; Liu, C.; Wang, D.; Nie, X.; Hu, X.; Wang, L.; Wang, T. Soil and water conservation effects driven by the implementation of ecological restoration projects: Evidence from the red soil hilly region of China in the last three decades. J. Clean. Prod. 2020, 260, 121109. [Google Scholar] [CrossRef]
Year | Frequency of Erosive Rainfall | Total Annual Runoff/104·m3 | Sediment Transport/t |
---|---|---|---|
2013 | 29 | 39.2 | 140.8 |
2014 | 31 | 41.6 | 495.7 |
2015 | 33 | 95.6 | 1030.9 |
2016 | 42 | 246.3 | 1801.1 |
2017 | 34 | 78.5 | 2605.7 |
2018 | 48 | 59.1 | 925.0 |
2019 | 20 | 47.3 | 629.5 |
2020 | 53 | 163.6 | 2493.3 |
2021 | 15 | 54.6 | 479.2 |
Rainfall Type | Center Value | Radius | Central Value of I30 | Radius | Frequency | Proportion |
---|---|---|---|---|---|---|
A | 78.54 | 13–286 | 6.91 | 1–46 | 39 | 12.78% |
B | 3.88 | 1–64 | 2.18 | 1–25 | 197 | 64.59% |
C | 28.19 | 1–165 | 46.56 | 18–100 | 69 | 22.63% |
Parameter | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|
P | 0.50 | 286.00 | 30.53 | 34.05 |
T | 5.00 | 4565.00 | 835.90 | 806.12 |
I30 | 0.50 | 100.70 | 14.45 | 14.71 |
R | 0.08 | 4149.82 | 172.65 | 377.34 |
Qmax | 0.00 | 61.99 | 1.13 | 4.61 |
H | 0.00 | 398.45 | 11.68 | 43.91 |
Rc | 0.00 | 6.85 | 0.22 | 0.72 |
C | 0.00 | 7.67 | 0.42 | 1.04 |
Ms | 0.00 | 5.07 | 0.14 | 0.56 |
Parameter | P | T | I30 | R | Qmax | H | Rc | C | Ms |
---|---|---|---|---|---|---|---|---|---|
P | 1 | ||||||||
T | 0.55 ** | 1 | |||||||
I30 | 0.482 ** | −0.083 | 1 | ||||||
R | 0.746 ** | 0.157 ** | 0.742 ** | 1 | |||||
Qmax | 0.322 ** | 0.12 | 0.439 ** | 0.645 ** | 1 | ||||
H | 0.511 ** | 0.208 ** | 0.294 ** | 0.481 ** | 0.353 ** | 1 | |||
Rc | 0.289 ** | 0.023 ** | 0.378 ** | 0.501 ** | 0.833 ** | 0.270 ** | 1 | ||
C | 0.165 ** | −0.049 | 0.337 ** | 0.235 ** | 0.237 ** | 0.192 ** | 0.258 ** | 1 | |
Ms | 0.406 ** | 0.121 * | 0.338 ** | 0.398 ** | 0.317 ** | 0.722 ** | 0.252 ** | 0.513 ** | 1 |
Fit the Regression Equation | R2 | F | Sig. |
---|---|---|---|
Ms = 0.499C + 0.07H + 0.001P − 0.04 | 0.828 | 346.84 | 0.001 |
Q = 0.586C + 0.028H + 0.01I30 + 0.164 | 0.810 | 307.10 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Shao, G.; Jiang, Y. Impact of Diverse Rainfall Patterns and Their Interaction on Soil and Water Loss in a Small Watershed within a Typical Low Hilly Region. Water 2024, 16, 372. https://doi.org/10.3390/w16030372
Zhou Y, Shao G, Jiang Y. Impact of Diverse Rainfall Patterns and Their Interaction on Soil and Water Loss in a Small Watershed within a Typical Low Hilly Region. Water. 2024; 16(3):372. https://doi.org/10.3390/w16030372
Chicago/Turabian StyleZhou, Yuhao, Guangcheng Shao, and Yanhua Jiang. 2024. "Impact of Diverse Rainfall Patterns and Their Interaction on Soil and Water Loss in a Small Watershed within a Typical Low Hilly Region" Water 16, no. 3: 372. https://doi.org/10.3390/w16030372
APA StyleZhou, Y., Shao, G., & Jiang, Y. (2024). Impact of Diverse Rainfall Patterns and Their Interaction on Soil and Water Loss in a Small Watershed within a Typical Low Hilly Region. Water, 16(3), 372. https://doi.org/10.3390/w16030372