Integrated Geospatial and Analytical Hierarchy Process Approach for Assessing Sustainable Management of Groundwater Recharge Potential in Barind Tract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Preparation of Input Database
2.3. Analytical Hierarchical Process (AHP)
2.3.1. GW-RP-Influencing Factor Selection
2.3.2. Development of PWCM
2.3.3. Estimation of Weight Relevant to the Factors
2.3.4. Consideration for Consistency of the PWCM
2.4. Overlay Operation
2.5. Recharge Volume Estimation
3. Results
3.1. GW-Recharge-Governing Factor Evaluation
3.2. Rainfall Features
3.3. Slope Features
3.4. Geology Features
3.5. Drainage Density Features
3.6. LULC Features
3.7. Lineament Density Features
3.8. Soil Type Features
3.9. Estimation of GW RP
3.9.1. AHP-Based GW RP
3.9.2. Estimation of GW Recharge
= 2554 × 106 m3/year
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. The United Nations World Water Development Report 2021: Valuing Water; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Jha, M.K.; Shekhar, A.; Jenifer, M.A. Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Res. 2020, 179, 115867. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. Annual Report; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Avtar, R.; Singh, C.K.; Shashtri, S.; Singh, A.; Mukherjee, S. Identification and analysis of groundwater potential zones in Ken–Betwa river linking area using remote sensing and geographic information system. Geocarto Int. 2010, 25, 379–396. [Google Scholar] [CrossRef]
- de Vries, J.J.; Simmers, I. Groundwater recharge: An overview of processes and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- Allison, G.B. A Review of Some of the Physical, Chemical and Isotopic Techniques Available for Estimating Groundwater Recharge. In Estimation of Natural Groundwater Recharge; Simmers, I., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 49–72. [Google Scholar]
- Mukherjee, A.; Scanlon, B.R.; Aureli, A.; Langan, S.; Guo, H.; McKenzie, A. Chapter 1—Global groundwater: From scarcity to security through sustainability and solutions. In Global Groundwater; Mukherjee, A., Scanlon, B.R., Aureli, A., Langan, S., Guo, H., McKenzie, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–20. [Google Scholar]
- Lerner, D.N. Groundwater recharge in urban areas. Atmos. Environ. Part B Urban Atmos. 1990, 24, 29–33. [Google Scholar] [CrossRef]
- Makki, Z.F.; Zuhaira, A.A.; Al-Jubouri, S.M.; Al-Hamd, R.K.S.; Cunningham, L.S. GIS-based assessment of groundwater quality for drinking and irrigation purposes in central Iraq. Environ. Monit. Assess. 2021, 193, 107. [Google Scholar] [CrossRef]
- Michael, H.A.; Voss, C.I. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh. Hydrogeol. J. 2009, 17, 1329–1346. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Ahmed, Z.; Krupnik, T.J. Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities; United States Agency for International Development: Washington, DC, USA, 2014. [Google Scholar]
- BBS. Bangladesh Statistics 2017; Statistics and Informatics Division, Ministry of Planning, Bangladesh Bureau of Statistics (BBS): Dhaka, Bangladesh, 2017. [Google Scholar]
- Dey, N.C.; Saha, R.; Parvez, M.; Bala, S.K.; Islam, A.K.M.S.; Paul, J.K.; Hossain, M. Sustainability of groundwater use for irrigation of dry-season crops in northwest Bangladesh. Groundw. Sustain. Dev. 2017, 4, 66–77. [Google Scholar] [CrossRef]
- Dhaka Water Supply and Sewerage Authority. Establishment of Groundwater Monitoring System in Dhaka City for Aquifer Systems and DWASA Production Wells; Dhaka Water Supply and Sewerage Authority: Dhaka, Bangladesh, 2018. [Google Scholar]
- Adhikary, S.K.; Das, S.; Saha, G.; Chaki, T. Groundwater drought assessment for Barind irrigation Project in Northwestern Bangladesh. In Proceedings of the 20th International Congress on Modelling and Simulation (MODSIM2013), Adelaide, SA, Australia, 1–6 December 2013; Modelling and Simulation Society of Australia and New Zealand: Canberra, Australia, 2013; pp. 2917–2923. [Google Scholar]
- BMDA. Borandro Authority Past–Present; Barind Multipurpose Development Authority: Rajshahi, Bangladesh, 2006. [Google Scholar]
- BMDA. Annual Report: 2018–2019; BMDA: Rajshahi, Bangladesh, 2019. [Google Scholar]
- BADC. Minor Irrigation Servey Report 2018–2019; BADC: Dhaka, Bangladesh, 2020. [Google Scholar]
- Jha, M.K.; Chowdary, V.M.; Chowdhury, A. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol. J. 2010, 18, 1713–1728. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdhury, A.; Chowdary, V.M.; Peiffer, S. Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resour. Manag. 2007, 21, 427–467. [Google Scholar] [CrossRef]
- Saranya, T.; Saravanan, S. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model. Earth Syst. Environ. 2020, 6, 1105–1122. [Google Scholar] [CrossRef]
- Ahmad, I.; Dar, M.A.; Andualem, T.G.; Teka, A.H. GIS-based multi-criteria evaluation of groundwater potential of the Beshilo River basin, Ethiopia. J. Afr. Earth Sci. 2020, 164, 103747. [Google Scholar] [CrossRef]
- Das, N.; Mukhopadhyay, S. Application of multi-criteria decision making technique for the assessment of groundwater potential zones: A study on Birbhum district, West Bengal, India. Environ. Dev. Sustain. 2020, 22, 931–955. [Google Scholar] [CrossRef]
- Rahmati, O.; Nazari Samani, A.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab. J. Geosci. 2015, 8, 7059–7071. [Google Scholar] [CrossRef]
- Jahan, C.S.; Rahaman, M.F.; Arefin, R.; Ali, M.S.; Mazumder, Q.H. Delineation of groundwater potential zones of Atrai–Sib river basin in north-west Bangladesh using remote sensing and GIS techniques. Sustain. Water Resour. Manag. 2019, 5, 689–702. [Google Scholar] [CrossRef]
- Nithya, C.N.; Srinivas, Y.; Magesh, N.S.; Kaliraj, S. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sens. Appl. Soc. Environ. 2019, 15, 100248. [Google Scholar] [CrossRef]
- Roy, S.; Hazra, S.; Chanda, A.; Das, S. Assessment of groundwater potential zones using multi-criteria decision-making technique: A micro-level case study from red and lateritic zone (RLZ) of West Bengal, India. Sustain. Water Resour. Manag. 2020, 6, 4. [Google Scholar] [CrossRef]
- Saaty, T.L. An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Manag. Sci. 1990, 36, 259–268. [Google Scholar] [CrossRef]
- Adham, M.I.; Jahan, C.S.; Mazumder, Q.H.; Hossain, M.M.A.; Haque, A.-M. Study on groundwater recharge potentiality of Barind Tract, Rajshahi District, Bangladesh using GIS and Remote Sensing technique. J. Geol. Soc. India 2010, 75, 432–438. [Google Scholar] [CrossRef]
- Ahmed, A.; Alrajhi, A.; Alquwaizany, A. Identification of Groundwater Potential Recharge Zones in Flinders Ranges, South Australia Using Remote Sensing, GIS, and MIF Techniques. Water 2021, 13, 2571. [Google Scholar] [CrossRef]
- Zghibi, A.; Mirchi, A.; Msaddek, M.H.; Merzougui, A.; Zouhri, L.; Taupin, J.-D.; Chekirbane, A.; Chenini, I.; Tarhouni, J. Using analytical hierarchy process and multi-influencing factors to map groundwater recharge zones in a semi-arid Mediterranean coastal aquifer. Water 2020, 12, 2525. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Z.; Xu, N.; Wu, J.; Yao, Z. A secondary modal decomposition ensemble deep learning model for groundwater level prediction using multi-data. Environ. Model. Softw. 2024, 175, 105969. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Z.; Wu, T. Risk analysis and assessment of water resource carrying capacity based on weighted gray model with improved entropy weighting method in the central plains region of China. Ecol. Indic. 2024, 160, 111907. [Google Scholar] [CrossRef]
- Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain. Energy Rev. 2007, 11, 1584–1595. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Jhariya, D.C.; Kumar, T.; Gobinath, M.; Diwan, P.; Kishore, N. Assessment of groundwater potential zone using remote sensing, GIS and multi criteria decision analysis techniques. J. Geol. Soc. India 2016, 88, 481–492. [Google Scholar] [CrossRef]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Januchowski, S.R.; Pressey, R.L.; VanDerWal, J.; Edwards, A. Characterizing errors in digital elevation models and estimating the financial costs of accuracy. Int. J. Geogr. Inf. Sci. 2010, 24, 1327–1347. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 205–217. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Ahmed, K.M.; Zahid, A. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: Evidence from Bangladesh. Hydrogeol. J. 2011, 19, 901–916. [Google Scholar] [CrossRef]
- Ferozur, R.M.; Jahan, C.S.; Arefin, R.; Mazumder, Q.H. Groundwater potentiality study in drought prone barind tract, NW Bangladesh using remote sensing and GIS. Groundw. Sustain. Dev. 2019, 8, 205–215. [Google Scholar] [CrossRef]
- Shaban, A.; Khawlie, M.; Abdallah, C. Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeol. J. 2006, 14, 433–443. [Google Scholar] [CrossRef]
- Saaty, T.L. The analytic hierarchy process (AHP). J. Oper. Res. Soc. 1980, 41, 1073–1076. [Google Scholar]
- Li, F.; Zhang, G.; Xu, Y.J. Spatiotemporal variability of climate and streamflow in the Songhua River Basin, northeast China. J. Hydrol. 2014, 514, 53–64. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Li, W.; Nie, Q.; Song, C.; Wei, C. Integrating wavelet analysis and BPANN to simulate the annual runoff with regional climate change: A case study of Yarkand River, Northwest China. Water Resour. Manag. 2014, 28, 2523–2537. [Google Scholar] [CrossRef]
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Gupta, S.; Guin, S.; Kaur, H. Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: A case study from Birbhum district, West Bengal. Appl. Water Sci. 2017, 7, 4117–4131. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.; Cerdà, A.; Echeverría, M.; Fister, W.; Geißler, C.; Kuhn, N.; León, F.; Peters, P.; Schindewolf, M. Comparative measurements with seven rainfall simulators on uniform bare fallow land. Z. Geomorphol. 2012, 57, 11–26. [Google Scholar] [CrossRef]
- Huang, J.; Wu, P.; Zhao, X. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 2013, 104, 93–102. [Google Scholar] [CrossRef]
- Anuraga, T.S.; Ruiz, L.; Kumar, M.S.M.; Sekhar, M.; Leijnse, A. Estimating groundwater recharge using land use and soil data: A case study in South India. Agric. Water Manag. 2006, 84, 65–76. [Google Scholar] [CrossRef]
- Kaliraj, S.; Chandrasekar, N.; Magesh, N. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab. J. Geosci. 2014, 7, 1385–1401. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Yeh, H.-F.; Lee, C.-H.; Hsu, K.-C.; Chang, P.-H. GIS for the assessment of the groundwater recharge potential zone. Environ. Geol. 2009, 58, 185–195. [Google Scholar] [CrossRef]
- Bonilla Valverde, J.P.; Blank, C.; Roidt, M.; Schneider, L.; Stefan, C. Application of a GIS Multi-Criteria Decision Analysis for the Identification of Intrinsic Suitable Sites in Costa Rica for the Application of Managed Aquifer Recharge (MAR) through Spreading Methods. Water 2016, 8, 391. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Nath, H.; Adhikary, S.K.; Nath, S.; Kafy, A.A.; Islam, A.R.M.T.; Alsulamy, S.; Khedher, K.M.; Shohan, A.A.A. Long-term trends and spatial variability in rainfall in the southeast region of Bangladesh: Implication for sustainable water resources management. Theor. Appl. Climatol. 2024, 155, 3693–3717. [Google Scholar] [CrossRef]
- Cristiano, E.; ten Veldhuis, M.-c.; Van De Giesen, N. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas—A review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef]
- Ogunbode, T.; Ifabiyi, P. Rainfall trends and its implications on water resources management: A case study of Ogbomoso city in Nigeria. Int. J. Hydrol. 2019, 3, 210–215. [Google Scholar] [CrossRef]
- Liu, H.; Lei, T.; Zhao, J.; Yuan, C.; Fan, Y.; Qu, L. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. J. Hydrol. 2011, 396, 24–32. [Google Scholar] [CrossRef]
- Hawke, R.; Price, A.; Bryan, R. The effect of initial soil water content and rainfall intensity on near-surface soil hydrologic conductivity: A laboratory investigation. Catena 2006, 65, 237–246. [Google Scholar] [CrossRef]
- Nath, H.; Rafizul, I.M. Spatial Variability of Metal Elements in Soils of a Waste Disposal Site in Khulna: A Geostatistical Study. In Advances in Civil Engineering, Proceedings of the 5th International Conference on Advances in Civil Engineering (ICACE), Chattogram, Bangladesh, 21–23 December 2020; Springer: Singapore, 2022; pp. 25–36. [Google Scholar]
- Yasrebi, J.; Saffari, M.; Fathi, H.; Karimian, N.; Emadi, M.; Baghernejad, M. Spatial variability of soil fertility properties for precision agriculture in Southern Iran. J. Appl. Sci. 2008, 8, 1642–1650. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K. Characterizing rainfall–groundwater dynamics in a hard-rock aquifer system using time series, geographic information system and geostatistical modelling. Hydrol. Process. 2014, 28, 2824–2843. [Google Scholar] [CrossRef]
- Hammouri, N.; El-Naqa, A.; Barakat, M. An Integrated Approach to Groundwater Exploration Using Remote Sensing and Geographic Information System. J. Water Resour. Prot. 2012, 04, 717–724. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2015, 188, 44. [Google Scholar] [CrossRef] [PubMed]
- Pirone, M.; Papa, R.; Nicotera, M.V.; Urciuoli, G. In situ monitoring of the groundwater field in an unsaturated pyroclastic slope for slope stability evaluation. Landslides 2015, 12, 259–276. [Google Scholar] [CrossRef]
- Nowreen, S.; Newton, I.H.; Zzaman, R.U.; Islam, A.; Islam, G.M.T.; Alam, M.S. Development of potential map for groundwater abstraction in the northwest region of Bangladesh using RS-GIS-based weighted overlay analysis and water-table-fluctuation technique. Environ. Monit. Assess. 2021, 193, 24. [Google Scholar] [CrossRef]
- Andualem, T.G.; Demeke, G.G. Groundwater potential assessment using GIS and remote sensing: A case study of Guna Tana landscape, Upper Blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2019, 24, 100610. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar]
- Tucker, G.E.; Catani, F.; Rinaldo, A.; Bras, R.L. Statistical analysis of drainage density from digital terrain data. Geomorphology 2001, 36, 187–202. [Google Scholar] [CrossRef]
- Henderson-Sellers, A.; Wilson, M.F. Surface albedo data for climatic modeling. Rev. Geophys. 1983, 21, 1743–1778. [Google Scholar] [CrossRef]
- He, S.; Wu, J. Relationships of groundwater quality and associated health risks with land use/land cover patterns: A case study in a loess area, Northwest China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 354–373. [Google Scholar] [CrossRef]
- Irwin, E.G.; Geoghegan, J. Theory, data, methods: Developing spatially explicit economic models of land use change. Agric. Ecosyst. Environ. 2001, 85, 7–24. [Google Scholar] [CrossRef]
- Karcz, I. Rapid determination of lineament and joint densities. Tectonophysics 1978, 44, T29–T33. [Google Scholar] [CrossRef]
- Sander, P. Lineaments in groundwater exploration: A review of applications and limitations. Hydrogeol. J. 2007, 15, 71–74. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Ma, K.; Zhou, H.; Wang, J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. CATENA 2000, 39, 69–78. [Google Scholar] [CrossRef]
- Broersma, K.; Robertson, J.A.; Chanasyk, D.S. Effects of different cropping systems on soil water properties of a Boralf soil. Commun. Soil Sci. Plant Anal. 1995, 26, 1795–1811. [Google Scholar] [CrossRef]
- Upwanshi, M.; Damry, K.; Pathak, D.; Tikle, S.; Das, S. Delineation of potential groundwater recharge zones using remote sensing, GIS, and AHP approaches. Urban Clim. 2023, 48, 101415. [Google Scholar] [CrossRef]
- Kaewdum, N.; Chotpantarat, S. Mapping potential zones for groundwater recharge using a GIS technique in the lower Khwae Hanuman Sub-Basin Area, Prachin Buri Province, Thailand. Front. Earth Sci. 2021, 9, 717313. [Google Scholar] [CrossRef]
Data Type | Source | Data Type |
---|---|---|
Study Area Map | BARC | Vector |
DEM | US geological survey (USGS), SRTM data | Raster, 30 m × 30 m |
Slope, Lineament Density, Drainage Density | Derived using SRTM data | Raster, 30 m × 30 m |
Land Use/Land Cover (LULC) | Landsat 8 satellite image, USGS online portal | Raster, 30 m × 30 m |
Geology, Soil Type | BARC | Vector |
Rainfall | Bangladesh Meteorological Department (BMD) | Point Data |
Importance | Scale | Remarks |
---|---|---|
Extremely less important | 1/9 | |
1/8 | ||
Very strongly less important | 1/7 | |
1/6 | ||
Strongly less important | 1/5 | |
1/4 | ||
Moderately less important | 1/3 | |
1/2 | ||
Equal Importance | 1 | |
2 | ||
Moderately more important | 3 | |
4 | ||
Strongly more important | 5 | |
6 | ||
Very strongly more important | 7 | |
8 | ||
Extremely more important | 9 |
Rainfall | Geology | Slope | DD | LULC | LD | ST | |
---|---|---|---|---|---|---|---|
Rainfall | 1.00 | 0.33 | 3.00 | 3.00 | 0.33 | 3.00 | 0.33 |
Geology | 3.00 | 1.00 | 3.00 | 5.00 | 3.00 | 5.00 | 3.00 |
Slope | 0.33 | 0.33 | 1.00 | 1.00 | 0.33 | 0.33 | 0.20 |
DD | 0.33 | 0.20 | 1.00 | 1.00 | 0.33 | 1.00 | 0.33 |
LULC | 3.00 | 0.33 | 3.00 | 3.00 | 1.00 | 3.00 | 1.00 |
LD | 0.33 | 0.20 | 3.00 | 1.00 | 0.33 | 1.00 | 1.00 |
ST | 3.00 | 0.33 | 5.00 | 3.00 | 1.00 | 1.00 | 1.00 |
Total (a) | 11 | 2.73 | 19 | 17 | 6.33 | 14.33 | 6.87 |
Rainfall | Geology | Slope | DD | LULC | LD | ST | Weight (%) (b) | |
---|---|---|---|---|---|---|---|---|
Rainfall | 0.091 | 0.122 | 0.158 | 0.176 | 0.053 | 0.209 | 0.049 | 12.25 |
Geology | 0.273 | 0.366 | 0.158 | 0.294 | 0.474 | 0.349 | 0.437 | 33.57 |
Slope | 0.030 | 0.122 | 0.053 | 0.059 | 0.053 | 0.023 | 0.029 | 5.27 |
DD | 0.030 | 0.073 | 0.053 | 0.059 | 0.053 | 0.070 | 0.049 | 5.51 |
LULC | 0.273 | 0.122 | 0.158 | 0.176 | 0.158 | 0.209 | 0.146 | 17.74 |
LD | 0.030 | 0.073 | 0.158 | 0.059 | 0.053 | 0.070 | 0.146 | 8.40 |
ST | 0.273 | 0.122 | 0.263 | 0.176 | 0.158 | 0.070 | 0.146 | 17.25 |
Total | 100 |
Factors | Relative Weight (a) (Table 3) | Eigenvalue Factor (b) (Table 4) | Eigenvalue (a × b) |
---|---|---|---|
Rainfall | 11.00 | 0.123 | 1.348 |
Geology | 2.73 | 0.336 | 0.918 |
Slope | 19.00 | 0.053 | 1.001 |
Drainage Density | 17.00 | 0.055 | 0.937 |
LULC | 6.33 | 0.177 | 1.124 |
Lineament Density | 14.33 | 0.084 | 1.204 |
Soil Type | 6.87 | 0.173 | 1.185 |
7.716 |
n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
RI | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.51 | 1.52 |
RP Category | Estimates (%) | Average (%) |
---|---|---|
Very Good | 45–50 | 47.5 |
Good | 30–35 | 32.5 |
Moderate | 10–20 | 15.0 |
Poor | 5–10 | 7.5 |
Very Poor | 0–5 | 2.5 |
Criteria | Feature Class | AHP Score | |
---|---|---|---|
Total (%) (Xi) | Individual | ||
Rainfall (mm) | 1200–1400 | 12 | 2 |
1400–1550 | 3 | ||
1550–1650 | 6 | ||
1650–1800 | 9 | ||
1800–2200 | 12 | ||
Geology | Ultrabasic | 34 | 14 |
Sedimentation | 24 | ||
Water | 34 | ||
Lake | 34 | ||
Slope (%) | 0–1 | 5 | 5 |
1–2 | 4 | ||
2–3 | 3 | ||
3–6 | 2 | ||
6–40 | 1 | ||
Drainage Density (km/km2) | 0.05–0.75 | 6 | 6 |
0.75–1.05 | 5 | ||
1.05–1.25 | 4 | ||
1.25–1.5 | 3 | ||
1.5–2.5 | 2 | ||
LULC | Urban | 18 | 3 |
Bare Land | 8 | ||
Forest | 13 | ||
Agriculture | 13 | ||
Water | 18 | ||
Lineament Density (km/km2) | 0–0.25 | 8 | 3 |
0.25–0.65 | 4 | ||
0.65–1.2 | 5 | ||
1.2–1.85 | 7 | ||
1.85–3 | 8 | ||
Soil Type | Acid Basin Clay | 17 | 8 |
Urban | 8 | ||
Shallow Terrace Soil | 13 | ||
Calcar. Alluvium | 13 | ||
Noncalcar. Alluvium | 13 | ||
Calcar. Floodplain | 17 | ||
Deep Terrace Soils | 17 | ||
Noncalcar. Floodplain | 17 |
Recharge Potential Zone | Areal Extent (km2) | Areal Extent (%) |
---|---|---|
Poor (zone 1) | 700.22 | 9.23 |
Moderate (zone 2) | 3617.13 | 47.68 |
Good (zone 3) | 2816.13 | 37.12 |
Very Good (zone 4) | 452.70 | 5.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.Z.; Adhikary, S.K.; Nath, H.; Kafy, A.A.; Altuwaijri, H.A.; Rahman, M.T. Integrated Geospatial and Analytical Hierarchy Process Approach for Assessing Sustainable Management of Groundwater Recharge Potential in Barind Tract. Water 2024, 16, 2918. https://doi.org/10.3390/w16202918
Hossain MZ, Adhikary SK, Nath H, Kafy AA, Altuwaijri HA, Rahman MT. Integrated Geospatial and Analytical Hierarchy Process Approach for Assessing Sustainable Management of Groundwater Recharge Potential in Barind Tract. Water. 2024; 16(20):2918. https://doi.org/10.3390/w16202918
Chicago/Turabian StyleHossain, Md. Zahed, Sajal Kumar Adhikary, Hrithik Nath, Abdulla Al Kafy, Hamad Ahmed Altuwaijri, and Muhammad Tauhidur Rahman. 2024. "Integrated Geospatial and Analytical Hierarchy Process Approach for Assessing Sustainable Management of Groundwater Recharge Potential in Barind Tract" Water 16, no. 20: 2918. https://doi.org/10.3390/w16202918
APA StyleHossain, M. Z., Adhikary, S. K., Nath, H., Kafy, A. A., Altuwaijri, H. A., & Rahman, M. T. (2024). Integrated Geospatial and Analytical Hierarchy Process Approach for Assessing Sustainable Management of Groundwater Recharge Potential in Barind Tract. Water, 16(20), 2918. https://doi.org/10.3390/w16202918